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ABSTRACT
This  paper  describes  the  role  of  the  Primitive  Mobility 
(PrimMob)  module  within  the  Mobility  Open  Architecture 
Simulation  and  Tools(MOAST)  environment.  Descriptions 
are  given  of   several  alternative  implementations  of  the 
module motivated by a desire to make MOAST more usable 
for an industrial Automated Guided Vehicle(AGV).  A series 
of performance metrics  is described as  a series of tests that  
allow  those  performance  metrics  to  be  determined.  Tools 
added  to  MOAST in  2009-2010 that  greatly  ease  recording 
and  visualization  of  these  performance  metrics  are  also 
described.
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1. INTRODUCTION
The  Mobility  Open  Architecture  Simulation  and 
Tools(MOAST)  system[1],[2] is  a  hierarchical  architecture 
that  is  an implementation  of  National  Institute  of  Standards 
and Technology(NIST)  [3] Real-Time  Control  System(RCS)
[4] reference model architecture[5]. It is intended as a general 
purpose  research  tool  with  applications  ranging  from  low-
level  robotic  control  to  behavior  generation  for  groups  of 
heterogeneous  robots.  In  addition  to  research  applications, 
MOAST  has  been  used  as  the  control  system  for  teams 
competing  in  the  RoboCup rescue  virtual  robot  competition 
(RoboCup)[6] as  well  as  the  IEEE  Virtual  Manufacturing 
Automation Competition (VMAC) [7],  [8]. MOAST was also 
previously used in evaluation of range imaging sensors for the 
ANSI/ITSDF B56.5 safety standard[9]. 

Automated or Automatic Guided Vehicles (AGVs) are mobile 
robots typically used in an industrial setting to move materials  
around a factory or warehouse[11]. There are a wide variety of 
AGVs. They vary depending on the load to carry, the type of  
infrastructure  installed  to  allow  them  to  determine  position 
(buried  wires,  laser  reflectors),   and  whether  the  AGV will 
also  be  manually  driven,  the  steering  mechanism[12] etc. 
They differ  from autonomous  vehicles  used in  research  and 
military  applications  in  that  paths  are  preplanned  off-board.  
Preference is given to having repeatable, reliable, predictable,  
and safe operation over the ability to search unknown terrain  
to find paths in unstructured environments.  

As part of the Mobility and Manipulation Project  [13], it was 
decided to adapt MOAST for use in an industrial  scenario. A 
first  attempt  was  made  to  utilize  the  entire  autonomous 
navigation capabilities  in MOAST. However,  this  turned out 
to be unsatisfactory for several reasons:

 Many hazards either  to the vehicle  or from the vehicle  to  
personnel  or  equipment  in  the  environment  could  only,  be 
identified by trained safety experts and not by the vehicle's on  
board  systems.  These  included  overhanging  obstacles,  wire 
fences,  glass  dividers,  negative  obstacles  and  places  where 
people  or  equipment  might  move  in  the  future.  (  Negative  
obstacles  are obstacles with negative height  such as holes in 
the  ground.  )  Adding  additional  sensors  and  more 
sophisticated  sensor  processing  and  world  modeling   might 
have alleviated the problem but it was beyond the budget and  
scope of this project.
 One approach for dealing with these undetectable obstacles 
was MOAST's support  for virtual  obstacles.  This is a list  of  
obstacle  positions stored in a file a priori.  However this was 
also  insufficient:  errors  in  the  positioning  system  tended  to 
move virtual obstacles too close to detected obstacles.
 The map used by the autonomous system was too coarse to 
allow the AGV to negotiate corners with very tight tolerances 
within  the safety  fence surrounding  the robot.  Adjusting  the 
resolution  of  the  map  was  possible,  however  the  software 
development cost and time were deemed excessive.
 Since the autonomous  navigation  level  constantly  updates  
the  path,  it  was  impossible  to  tell  whether  path  following 
problems were caused by unacceptable paths, or if there was 
an underlying problem in the lower levels.

For  these  reasons  it  was  decided  to  focus  on  the  Primitive  
Mobility level.

2. MOAST Primitive Mobility
For a  full  overview of  MOAST see  [14].  Here we are  only 
interested  in  isolating  and  testing  the  Primitive  
Mobility(PrimMob)  module  as  highlighted  in  Figure  1.  The 
PrimMob  level  normally   expects  the  higher  level 
Autonomous Mobility(AMMob) level to combine sensor data 
and provide  an obstacle  free  path  to  goals  selected   by the  
Vehicle  level  or  above.  The  Servo  Mob  level  handles  the 
electronic  hardware specific  tasks  including  interfacing  with 
the digital-to-analog converter (DAC) and tuning the output to 
match the  amplifiers and motors to achieve the commanded 

Figure 1: Moast Hierarchy For a Single 
Vehicle, highlighting PrimMob.
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wheel  speeds.   The  modules  in  the  mission(Mis)  column 
handle  systems  that  do  not  affect  mobility  such  as  the 
conveyor  on  a  unit  loader.  The  modules  in  the  sensory 
processing(SP) column handle analysis and collection of data  
from sensors.  

While there are several housekeeping commands to respond to 
and other  auxiliary  inputs  and outputs,  we can simplify  the  
analysis by considering only two inputs and one output:

•“primMobJACmd1”  buffer,  which  will  at  anytime 
contain either a message of type 

• PrimMobJACmdMoveWaypoint   --  a  list  of 
Cartesian  waypoints  implying  line-segments 
between them form an obstacle-free path to the 
goal.

• PrimMobJACmdMoveArcSegment – a list of a 
mix  of  line  segments  and  circular  arcs 
providing an obstacle-free path to the goal.

•“navDataExt1”  buffer  that  contains  a  message  of  type 
NavDataExt  that  contains  the  vehicle's  current  
measured position {x,y} and orientation yaw.

•“servoMobJACmd1” is written by PrimMob and read by 
ServoMob  and  contains  a  message  of  type 
ServoMobJACmdSkid since our AGV is a skid-steer 
or differential drive type. The AGV has two wheels  
on the left and two wheels on the right. It is steered 
by commanding a different  speed to the  right  and 
left  wheels.  If  the  right  wheels  are  commanded  to 
rotate  faster,  it  turns  right.  If  the  left  wheels  are 
commanded to rotate faster, it turns  left. For sharp  
turns, it can turn in place by having one side reverse 
direction.  ServoMobJACmdSkid  has  two 
variables(wLeft and wRight) which are the left  and 
right  commanded  rotational  wheel  speeds  in 
radians/second.

All of the implementations  of PrimMob need to convert  the 
translational  forward  velocity  (VT)  in  meters/second and 
rotational  velocity  (VR)  in  radians/second  to  the  wheel 
velocities,  also in radians/second.  This  is  done by using  the 
constant  separation  distance  between  the 
wheels(WHEELseparation)  and  the  constant  radius  of  the 
wheels(WHEELradius) as shown in  Equation 1.

Equation 1: Compute Skid Steer Wheel Velocities from 
forward translational velocity and rotational velocity.

The  remaining  algorithms  describe  how  to  compute  the 
vehicle's translational and rotational speeds  VT and  VR. These 
speeds  are  expressed  in  a  Cartesian  coordinate  system 
independent  from  vehicle  configurations,  making  these 
calculations easily adaptable to a variety of vehicle types. In 
the  tests  described  here,  they  are  computed  periodically,  
nominally every 10 milliseconds. 

PrimMobJACmdMoveWaypoint
Of the two commands we will deal with, the simpler one is the 
PrimMobJACmdMoveWaypoint command that provides a list  
of  up  to  one  hundred  waypoints.   Each  waypoint  has  four 
variables of interest. 

{x,y} – Cartesian X and Y coordinates in meters of 
the end of the line segment.

neighborhood  –  The  maximum  allowed  deviation 
from the line segment in meters.

speed  –  Maximum  forward  translational  speed  in 
meters/second   allowed  along   line  segment  ending  in  this 
waypoint.  A negative speed indicates  that the vehicle should 
back up. In the rest of this paper speeds will be assumed to be 
positive.  All  algorithms  here  handle  negative  speeds  by 
assuming the vehicle heading to be reversed and then treating 
the speed as positive.

There is also a z value that will be ignored since the vehicles  
are only capable of moving in 2 dimensions. An available roll-
pitch-yaw (rpy)   and quality  variable  were  also  not  used  in 
these tests.

PrimMobJACmdMoveArcSegment
PrimMobJACmdMoveArcSegment  is  more  general  and 
contains  a  list  of  up  to  one  hundred  ArcSegments.  Each 
ArcSegment contains either an arc or a line, distinguished by a 
flag.   Arcs are specified additionally  with the coordinates of 
the  arc  center.  The  radius  of  the  arc  must  be computed  by 
determining  the  distance  between  the  end  point  and  center 
point.  The  angle  of  the  arc  can  be  computed  using  the 
previous end point as the start of the arc. A normal is provided  
but ignored in these tests  since in two dimensions only arcs 
around the z axis are possible.   An annular tolerance is used 
with arcSegments instead of a neighborhood. The translational  
maximum  velocity   associated  with  each  Waypoint  or 
ArcSegment will be denoted as Vi for the i th  Waypoint.

Global Constraints
In addition  to  the  constraints  included  in  the  path  there  are 
four global constraints set in the configuration file:

VTMAX=Maximum Translational Velocity in m/s

ATMAX=Maximum Translational Acceleration in m/s2

VRMAX=Maximum Rotational Velocity in deg./s

ARMAX=Maximum Rotational Acceleration in deg./s2

3. PrimMob Algorithms

Proportional Error Algorithm: A0

Algorithm  A0 sets  both  VT and  VR based  on the  difference 
between the current heading and the heading along  which the 
goal  or  next  waypoint  could  be  achieved  (θE),  as  shown in 
Figure  2.  The  algorithm  can  be  tuned  by  setting  two 
parameters: θVCUTOFF , the angle  at which translational velocity 
will  be  cut  off,  and  θWCUTOFF,  the  angle  at  which  rotational 
velocity will be clipped to VRMAX . 
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Figure 2: Diagram showing 
how the Heading Error is 

calculated.
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Equation 2: Equations to compute translational and 
rotational velocities for algorithm A0 before 

acceleration constraints are applied.

After Equation 2 is applied, the values may need to be clipped 
to enforce the acceleration constraints. In order to enforce the 
acceleration  constraints,  it  is  necessary  to  know  the  last  
translational velocity VTL, the last rotational velocity VRL, the 
cycle time TC, and the distance to the end of the path D.  VT 

and VR computed using  Equation 2 will  be denoted as  VTin 

and VRin.  For convenience, we also introduce VTll,  VTul  ,VRll, 
VRul  as the temporary upper and lower limits for translational  
and  rotational  velocities,  respectively.  VTdecel is  a  temporary 
variable for the velocity required to decelerate to zero at the  
end.  VTfinal an  VRfinal are  the  final  output  translational  and 
rotational velocities.

Equation 3: Equations used to enforce Acceleration 
Constraints

ArcSegments are handled by converting each ArcSegment into 
a series of waypoints each separated by the annular tolerance  
along the arc. 

Finally,  a  rule  must  be  defined  for  determining  when  to 
increment the path index. The path index is always set to zero 
when a new command is received and incremented when the 
distance to the current waypoint is less than the neighborhood  
associated  with  that  waypoint.  If  the  distance  to  the  last  
waypoint is less than the last neighborhood, motion is stopped 
and a DONE flag is sent to the supervising module (AMMob)  
until the next command is received.

Constant Arc Radius Algorithm:  A1
One limitation  of  algorithm  A0 is  that  when the  θE    peaks 
generally  at  the beginning  of each segment,  VT  will  be very 
small  or  possibly  zero,  which robs the AGV of  momentum.  
To keep  VT closer to its maximum we can delay the rotation 
and distribute it over the entire curve.

Equation 4: Compute Translational and Rotational 
Velocities using algorithm A1

With  this  algorithm  each  waypoint  is  first  transformed  into 
vehicle-relative  coordinates  by  subtracting  the  currently 
sensed navigation position and rotating the coordinates based 
on the  current  yaw orientation.   A special  case is  made  for  
when XV is  less  than  zero,  i.e.,  when the  next  waypoint  is 
behind  the  vehicle.  It  was decided  to  do  a  180 degree  turn  
followed by a straight  line rather  than an arc that  might  be  
huge compared to the distance to the waypoint.  The radius of  
curvature(R)  and  the  initial  values  for   VT and  VR   are 
computed  with  Equation  4.  Just  as  with  algorithm  A0,  the 
acceleration constraints are enforced by applying  Equation 3; 
however,  as  with  all  the  following  algorithms,  VTin and VRin 

are first computed by projecting ahead along the path that the  
vehicle would follow if commanded  VT and VR for time TC. 
This  leaves  us  with  a  new projected  point  and potentially  a 
new  next  waypoint,  so  the  primary  algorithm  (in  this  case 
Equation  4 )   is  reapplied.  If  the new projected  point  has  a 
lower  VT than  the  current  point  then  Equation  5 is  applied, 
where VTorig and Vrorig are simply the original values of VT and 
VR. After each projection the new  VTprojected and VRprojected   are 
used  to  compute  the  next  projected  point  until  Dprojected   is 
greater than (VT

 )2/2*ATMAX.

Equation 5: Use projected velocities to recompute 
current velocities.
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 The path index to the next waypoint is incremented under the 
same condition as with A0 when the distance to the waypoint  
is less than the neighborhood; however, it also increments the  
waypoint index if the distance to the next line segment  is less  
than the distance to the current line segment. This eliminates  
the need to spiral  around a waypoint that was missed due to 
positioning noise or a very small neighborhood. ArcSegments 
do not need to be interpolated as with algorithm A0. Instead 
the end point of the arc is simply treated as another waypoint.

Algorithm  A1  is  good  at  maintaining  a  high  translational 
velocity.  However,  the  arcs  may  deviate  greatly  from  the 
straight  line  segments  between  points.  Additionally,  
oscillations can be produced as the vehicle overshoots the line 
after  passing  though  each  waypoint  as  in  Figure  3.  The 
oscillations decrease each time since the vehicle begins an arc 
to the next waypoint before reaching the current waypoint and 
therefore before overshooting.  One solution would be to add 
additional intermediate waypoints to cause the oscillations to 
decrease more rapidly and thereby keep the vehicle closer to 
the  intended  path.  Adding  additional  waypoints  can  also 
reduce the distance A0 deviates  from the path although it  is  
less critical since a similar effect can be achieved by reducing 
the cutoff angles ( θVCUTOFF  and  θWCUTOFF ).

Fixed-distance ahead Algorithm : A2
 While algorithm A1 is impractical for an AGV in the general  
case  where  one can not  ensure  closely  spaced  waypoints,  it  
can be adapted by replacing the next given waypoint with an 
effective  waypoint  that  is  always  a  fixed  chosen  distance 
ahead (Lahead) along the path as shown in Figure 4. To find the 
effective waypoint, the vehicle's current position is projected  
onto  the  closest  segment  between  waypoints  and  then  the 
length to each successive waypoint is added until the the sum 
of  the  distances  exceeds   Lahead.  The  effective  waypoint  is 

chosen  along   the  segment  just  before  the  distance  was 

exceeded  based on the remaining distance of Lahead minus the 
sum of the previous distances.

The  points  can  be  projected  onto  arc  segments  in  a  similar  
fashion.  If  Lahead is chosen smaller than the neighborhood or 
tolerance then the vehicle will generally stay within tolerance.  
If it is chosen larger the vehicle will begin to cut to the inside  
of corners.

Finding the Longest Path Algorithm : A3
While  A2  removes  the  large  overshoots  of  A1  and  never 
brings  the  vehicle  to  a  complete  halt  like  A0,  it  still  
concentrates  most  of  the  turning  near  the  waypoints  with  a 
corresponding decrease in speed. A3 can be more aggressive 
than A2 while  keeping  the  overshoot  strictly  limited  by the 
neighborhood  specified  in  the  path.  The  goal  is  to  find  an 
effective  waypoint  with the largest  possible  Lahead at  a given 
location  that  provides  an  arc  which  stays  within  the 
tolerances.

The  algorithm  requires  repeated  application  of  Equation  4. 
Instead  of just  using  the next  waypoint  as  A1 would do we 
check each waypoint starting with the current one to see if an  
arc as computed with Equation 4 would ever reach a point that 
was  farther  away  from  all  segments  than  the  neighborhood 
associated with that line segment would  allow. If the arc does 
not exceed any neighborhood limit the next waypoint is tested.  
As soon as  an arc  to  a  waypoint  fails  this  test,  we test  the 
midpoint  between  the last  successful  waypoint  and the first  
failing  waypoint.  We continue  to  test  the midpoint  between 
the last successful point and the first failing point on the line  
segment between these points until the difference between  the  
points is less than an arbitrarily-chosen minimum, here 5mm. 
After  the  curve  is  chosen,  the  same  projections  to  compute 
speed to limit acceleration are performed that were done in A1 
and  A2.  Arc  segments  are  handled  almost  the  same  as 
waypoints, except when determining whether the arc is within 
tolerance, we check its distance from the arc segment.

One  additional  modification  is  needed  to  bring  the  vehicle 
back to the path if it is outside the neighborhood. The servo 
controller  may  not  respond  as  commanded  or  the  position  
system  may suddenly  reacquire  an absolute  position  marker 
and discover  the position is already outside of the tolerance.  
In this situation, A3 would be unable to find an arc since all  
arcs would be at least partially outside the tolerance. It might  
also  be  unable  to  find  an  arc  while  currently  inside  the 
allowed area,  but already pointed so far away from the path 
that  all  circular  arcs  leave  the  allowed  area.  The  solution 
chosen is to revert to algorithm A2 and simply choose an Lahead 

equal to the neighborhood associated with the next waypoint  
even if that results in  a path farther from the commanded path  
than a tolerance would allow.

Figure 5: Diagram showing selected curve in orange 
and a curve that was tested and rejected in dark-red. 

There is a purple circle with a radius equal to the 
neighborhood around each waypoint. The orange circle 

shows the algorithm's output command.
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Limited Neighborhood Algorithm : A4
A3  keeps  speeds  as  high  as  possible  while  staying  within 
tolerance, at least as long as the servo layer behaves perfectly.  
However, it tends to ride the edges: after a left turn it will end 
up on the right edge of the neighborhood, and after a right turn 
it  will  end  up  on  the  left  edge  of  the  neighborhood,  only 
briefly  passing through the center  in either  case.  Equation 6 
reduces the effective neighborhood   (N)   from the original  
neighborhood specified in the command (Norig) whenever  the 
arc  length  (L)  is  greater  than some  chosen  minimum  (Lmin). 
The neighborhood is never allowed to reach zero but instead 
kept to a fraction (Nminscale)  of  the original neighborhood if the 
arc length exceeds a chosen maximum (Lmax).  All of our tests 
were done with the following settings:

Lmin = 5*Norig

Lmax = 25*Norig

Nminscale = 0.5

Equation 6: Limit Neighborhood to Bring Vehicle 
back to Center

4. Metrics
For each test we will report the following metrics.

• Emax =  maximum  error  =  maximum  value  of  the 
distance  from  the  commanded  path   minus  the 
tolerance specified for that section of the path

• Tmove  =  move  time  = time  between the command 
being  sent  and  a  corresponding   status  of  DONE 
being received. In all tests the vehicle reached Table
1 neighborhood  of  the  last  waypoint  and  stopped 
motion before reporting DONE.

5. Tools

Two  new  tools  were  developed  and  added  to  MOAST  to 
support  these tests.

• moastLogRecorder  –  A  program  that  runs  in  the 
background and records all data sent from any given 
set  of  MOAST Neutral  Message  Language  (NML) 
buffers in NML Packed Message files[17].

• PathDraw – A graphical application that allows the 
user to draw, save and reload sets of waypoints and 
arc segments and send these as commands to either 
the AM or PRIM level.  It also provides a real-time 
display of the vehicle's  position and orientation  as 
well as obstacles detected by the laser line scanner,  
virtual obsacles, and a trace of previous positions. It  
is also capable of  reading the files recorded by the 
moastLogRecorder and computing the metrics.

6. Tests
Each test  consists of a starting point and a set of waypoints or 
arc  segments  stored  in  a  file  that  could  be  converted  to  a 
PrimMobJACmdMoveWaypoint  or 
PrimMobJACmdMoveArcSegment  command and sent  to  the 
primMobJACmd  buffer.  MOAST  can  be  configured  to  use 
either  the  Player/Stage/Gazebo  interfaces  for  simulation  or 
USARsim  (Unified  System  for  Automation  and  Robot 
Simulation). Player is a network server for robot control[16]. 
Two simulators are built to work with Player. Stage is a 2.5D 
multiple-robot  simulator[20].  Gazebo  is  a  3D  multi-robot 
simulator  with  dynamics  for  outdoor  environments.[21] For 

these tests, whenever we used Player we also used Stage since  
it was simpler than Gazebo and the vehicle only moves in two 
dimensions. USARSim  is a high-fidelity simulation of robots 
and environments  based on a commercial  game engine  [22]. 
While  USARSim  is  itself  open-source  and  portable,  its 
dependence  on a commercial  game engine  prevented  its  use 
on the system where  the simulated tests were performed. 

[PLATFORM.ATRV]
MAX_TRAN_VEL = 2.5
MAX_TRAN_ACC = 0.2
MAX_ROT_VEL = 5
MAX_ROT_ACC = 200
V_CUTOFF_ANGLE = 15
W_CUTOFF_ANGLE = 15
Figure 6: Moast.ini listing with global constraints.

The  global  constraints  are  stored  in  the  section 
“[PLATFORM.ATRV]”  of  the  file  “etc/moast.ini”  as  shown 
in Figure 6. In other words, VTMAX = 2.5 m/s ( 8.2 ft/s) , ATMAX 

=0.2  m/s2  (0.65  ft/s2),  VRMAX= 0.8  rad/s  (5°/s),  ARMAX= 3.49 
rad/s2 (200°/s2 ),  and θVCUTOFF   = θWCUTOFF = 0.26 rad (15°). The 
parameters  are left  the same for all  tests except  for the runs 
for A0 where  θVCUTOFF, and θWCUTOFF  are set  to between 10° 
and 25° that are indicated with the subscripts. Diagrams of the 
waypoints or arc-segments commands for each test are given 
in the results section along with the results for that set.

7. Results
 Single-Turn  in Simulation

This  test  consists  of  only  two line  segments  at  a  90° angle 
both with max_speed of 0.5 m/s (1.6 ft/s) and a neighborhood  
of 0.1 m (0.32 ft).  In the first test, the starting position lined 
up  exactly  with  the  first  segment.  All  of  the  A0  traces  
overshot  the corner  by more than 0.3m (1ft).  To bypass this  
issue, a small offset of 0.25 m (0.82 ft) to the starting position  
was added. The plots of the test with A0 running in simulation 
are shown in  Figure 7.  Plots for the other algorithms in the 
same test are shown in  Figure 8. The metrics for the test are 
given in  Table  1.  It  was surprising that  A0 was faster  with 

smaller  cutoff  angles.  Although  smaller  cutoff  angles  make 
the paths slightly shorter it also means that it will be stopped 
longer while doing the turn. The plot of velocities in Figure 9 
provides two explanations.  The shorter cutoff angles allowed 
the  vehicle  to  reach  higher  speeds  after  the  turn.  A0 never 
decelerates  properly  at  the  end  of  the  path.  The shorter  the 
cutoff angle, the more severe the sudden stop at the end.

Figure 7: Traces of the position of the Vehicle in 
simulation controlled by A0 with 

10°(yellow),15°(green), 20°(blue), and 25°(red). 
Neighborhood around waypoints shown in 

magenta.
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Algorithm Emax Tmove

A0(10°) 0 31.14 s

A0(15°) 0 32.55 s

A0(20°) 0 34.79 s

A0(25°) 3 cm (1.2in) 38.29 s

A1 0.54m(1.77ft) 33.77 s

A2 0 31.64 s

A3 0 32.74 s

A4 0 31.06 s

Table 1: Times and Error Distances for each algorithm for 
single turn test in simulation.

Single-Turn on Real AGV
For experiments using a real AGV, we eliminated A1 and the  
A0(25°)  tests  that  left  the  required  neighborhood  in 
simulation,  as  well  as  A0(10°)  test  that  had  an  extremely 
sudden  stop  at  the  end.   The  position  traces  are  shown  in 
Figure  10.  The  position  was  produced  from  a  commercial 
system using a spinning laser mounted on a post on top of the  
vehicle.  The  spinning  laser  detects  highly  reflective  targets 
mounted  on  the  walls  and  other  fixed  structures  in  the 
environment. The position  of each of these targets was stored  
in  the  system before  the tests.  When the lasers  detect  these 
targets it triangulates its own position from the position of the  
targets.  Unfortunately,  the vehicle  vibrates  as it  turns  which 
causes  the position sensor on the mast to move more than the  
base of the vehicle.  This causes the positions recorded to be  
noisier than the simulation traces. The times values shown in 
Table 2 seem to indicate that while all of the algorithms had 
onger times than in simulation,  the increase for  A3 and A4 
(which  depended  on  the  relative  position  of  a  point  farther 
away than A2) were also slowed less than A0, which depends  
on angular error.

Algorithm Emax Tmove

A0(15°) 3 cm (1.2 in) 49.63 s

A0(20°) 4 cm (1.6in) 57.08 s

A2 5 cm(2.0in) 55.06 s

A3 3 cm(1.2in) 43.90 s

A4 1 cm(0.4in) 41.57 s

Table 2: Times and Error Distances for each algorithm for 
single turn test or real AGV.

8. Conclusion
MOAST  provides  a  good  framework  for  the  evaluation  of 
algorithms for the primitive mobility level of an Autonomous  
Guided  Vehicle.  All  the  algorithm  developer/tester  needs  to 
do is  code a function  to  compute  the commanded velocities 
from the  sensed/simulated  positioning  and commanded  path 
with constraints and the frame work provides everything else 
needed  to  run  it  in  simulation  or  on  a   real  vehicle.   The 
framework was recently extended with additional data logging  
and display  capabilities  for  analyzing  these  algorithms.  The 
simulation is useful for debugging algorithms and can isolate  
issues that might have been lost in the noise when running on 
the real system; however, testing on the  real vehicle showed  
that  an algorithm that  was only slightly  better  in simulation  
was more substantially  better  in the real world.   It would be  
beneficial  if  future  algorithm  developers  will  commit  their  
algorithms  to  the  MOAST  repository  so  they  can  be  more 
directly compared with those that came before.  
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