
Performance Evaluation of the Primitive Mobility
Execution of an Automated Guided Vehicle within the

Mobility Open Architecture Simulation and Tools
Environment

Will Shackleford
National Institute of Standards and Technology(NIST)

100 Bureau Drive, Stop 8230, Gaithersburg, MD 20899
(301) 975-4286, shackle@nist.gov

ABSTRACT
This paper describes the role of the Primitive Mobility
(PrimMob) module within the Mobility Open Architecture
Simulation and Tools(MOAST) environment. Descriptions
are given of several alternative implementations of the
module motivated by a desire to make MOAST more usable
for an industrial Automated Guided Vehicle(AGV). A series
of performance metrics is described as a series of tests that
allow those performance metrics to be determined. Tools
added to MOAST in 2009-2010 that greatly ease recording
and visualization of these performance metrics are also
described.

Keywords
MOAST, Data-Collection, Automated Guided Vehicles(AGV)

1. INTRODUCTION
The Mobility Open Architecture Simulation and
Tools(MOAST) system[1],[2] is a hierarchical architecture
that is an implementation of National Institute of Standards
and Technology(NIST) [3] Real-Time Control System(RCS)
[4] reference model architecture[5]. It is intended as a general
purpose research tool with applications ranging from low-
level robotic control to behavior generation for groups of
heterogeneous robots. In addition to research applications,
MOAST has been used as the control system for teams
competing in the RoboCup rescue virtual robot competition
(RoboCup)[6] as well as the IEEE Virtual Manufacturing
Automation Competition (VMAC) [7], [8]. MOAST was also
previously used in evaluation of range imaging sensors for the
ANSI/ITSDF B56.5 safety standard[9].

Automated or Automatic Guided Vehicles (AGVs) are mobile
robots typically used in an industrial setting to move materials
around a factory or warehouse[11]. There are a wide variety of
AGVs. They vary depending on the load to carry, the type of
infrastructure installed to allow them to determine position
(buried wires, laser reflectors), and whether the AGV will
also be manually driven, the steering mechanism[12] etc.
They differ from autonomous vehicles used in research and
military applications in that paths are preplanned off-board.
Preference is given to having repeatable, reliable, predictable,
and safe operation over the ability to search unknown terrain
to find paths in unstructured environments.

As part of the Mobility and Manipulation Project [13], it was
decided to adapt MOAST for use in an industrial scenario. A
first attempt was made to utilize the entire autonomous
navigation capabilities in MOAST. However, this turned out
to be unsatisfactory for several reasons:

 Many hazards either to the vehicle or from the vehicle to
personnel or equipment in the environment could only, be
identified by trained safety experts and not by the vehicle's on
board systems. These included overhanging obstacles, wire
fences, glass dividers, negative obstacles and places where
people or equipment might move in the future. (Negative
obstacles are obstacles with negative height such as holes in
the ground.) Adding additional sensors and more
sophisticated sensor processing and world modeling might
have alleviated the problem but it was beyond the budget and
scope of this project.
 One approach for dealing with these undetectable obstacles
was MOAST's support for virtual obstacles. This is a list of
obstacle positions stored in a file a priori. However this was
also insufficient: errors in the positioning system tended to
move virtual obstacles too close to detected obstacles.
 The map used by the autonomous system was too coarse to
allow the AGV to negotiate corners with very tight tolerances
within the safety fence surrounding the robot. Adjusting the
resolution of the map was possible, however the software
development cost and time were deemed excessive.
 Since the autonomous navigation level constantly updates
the path, it was impossible to tell whether path following
problems were caused by unacceptable paths, or if there was
an underlying problem in the lower levels.

For these reasons it was decided to focus on the Primitive
Mobility level.

2. MOAST Primitive Mobility
For a full overview of MOAST see [14]. Here we are only
interested in isolating and testing the Primitive
Mobility(PrimMob) module as highlighted in Figure 1. The
PrimMob level normally expects the higher level
Autonomous Mobility(AMMob) level to combine sensor data
and provide an obstacle free path to goals selected by the
Vehicle level or above. The Servo Mob level handles the
electronic hardware specific tasks including interfacing with
the digital-to-analog converter (DAC) and tuning the output to
match the amplifiers and motors to achieve the commanded

Figure 1: Moast Hierarchy For a Single
Vehicle, highlighting PrimMob.

Primitive
Mobility
Module

Vehicle

AM Mis AM MobAM SP

Prim Mis Prim MobPrim SP

Servo Mis Servo MobServo SP

This paper is authored by employees of the United States Government
and is in the public domain.

mailto:shackle@nist.gov

wheel speeds. The modules in the mission(Mis) column
handle systems that do not affect mobility such as the
conveyor on a unit loader. The modules in the sensory
processing(SP) column handle analysis and collection of data
from sensors.

While there are several housekeeping commands to respond to
and other auxiliary inputs and outputs, we can simplify the
analysis by considering only two inputs and one output:

•“primMobJACmd1” buffer, which will at anytime
contain either a message of type

• PrimMobJACmdMoveWaypoint -- a list of
Cartesian waypoints implying line-segments
between them form an obstacle-free path to the
goal.

• PrimMobJACmdMoveArcSegment – a list of a
mix of line segments and circular arcs
providing an obstacle-free path to the goal.

•“navDataExt1” buffer that contains a message of type
NavDataExt that contains the vehicle's current
measured position {x,y} and orientation yaw.

•“servoMobJACmd1” is written by PrimMob and read by
ServoMob and contains a message of type
ServoMobJACmdSkid since our AGV is a skid-steer
or differential drive type. The AGV has two wheels
on the left and two wheels on the right. It is steered
by commanding a different speed to the right and
left wheels. If the right wheels are commanded to
rotate faster, it turns right. If the left wheels are
commanded to rotate faster, it turns left. For sharp
turns, it can turn in place by having one side reverse
direction. ServoMobJACmdSkid has two
variables(wLeft and wRight) which are the left and
right commanded rotational wheel speeds in
radians/second.

All of the implementations of PrimMob need to convert the
translational forward velocity (VT) in meters/second and
rotational velocity (VR) in radians/second to the wheel
velocities, also in radians/second. This is done by using the
constant separation distance between the
wheels(WHEELseparation) and the constant radius of the
wheels(WHEELradius) as shown in Equation 1.

Equation 1: Compute Skid Steer Wheel Velocities from
forward translational velocity and rotational velocity.

The remaining algorithms describe how to compute the
vehicle's translational and rotational speeds VT and VR. These
speeds are expressed in a Cartesian coordinate system
independent from vehicle configurations, making these
calculations easily adaptable to a variety of vehicle types. In
the tests described here, they are computed periodically,
nominally every 10 milliseconds.

PrimMobJACmdMoveWaypoint
Of the two commands we will deal with, the simpler one is the
PrimMobJACmdMoveWaypoint command that provides a list
of up to one hundred waypoints. Each waypoint has four
variables of interest.

{x,y} – Cartesian X and Y coordinates in meters of
the end of the line segment.

neighborhood – The maximum allowed deviation
from the line segment in meters.

speed – Maximum forward translational speed in
meters/second allowed along line segment ending in this
waypoint. A negative speed indicates that the vehicle should
back up. In the rest of this paper speeds will be assumed to be
positive. All algorithms here handle negative speeds by
assuming the vehicle heading to be reversed and then treating
the speed as positive.

There is also a z value that will be ignored since the vehicles
are only capable of moving in 2 dimensions. An available roll-
pitch-yaw (rpy) and quality variable were also not used in
these tests.

PrimMobJACmdMoveArcSegment
PrimMobJACmdMoveArcSegment is more general and
contains a list of up to one hundred ArcSegments. Each
ArcSegment contains either an arc or a line, distinguished by a
flag. Arcs are specified additionally with the coordinates of
the arc center. The radius of the arc must be computed by
determining the distance between the end point and center
point. The angle of the arc can be computed using the
previous end point as the start of the arc. A normal is provided
but ignored in these tests since in two dimensions only arcs
around the z axis are possible. An annular tolerance is used
with arcSegments instead of a neighborhood. The translational
maximum velocity associated with each Waypoint or
ArcSegment will be denoted as Vi for the i th Waypoint.

Global Constraints
In addition to the constraints included in the path there are
four global constraints set in the configuration file:

VTMAX=Maximum Translational Velocity in m/s

ATMAX=Maximum Translational Acceleration in m/s2

VRMAX=Maximum Rotational Velocity in deg./s

ARMAX=Maximum Rotational Acceleration in deg./s2

3. PrimMob Algorithms

Proportional Error Algorithm: A0

Algorithm A0 sets both VT and VR based on the difference
between the current heading and the heading along which the
goal or next waypoint could be achieved (θE), as shown in
Figure 2. The algorithm can be tuned by setting two
parameters: θVCUTOFF , the angle at which translational velocity
will be cut off, and θWCUTOFF, the angle at which rotational
velocity will be clipped to VRMAX .

wLeft= 1
WHEELRADIUS

∗V T
V R∗WHEELSEPARATION

2

wRight=
1

WHEELRADIUS
∗V T−

V R∗WHEELSEPARATION
2

Figure 2: Diagram showing
how the Heading Error is

calculated.

Vehicle

Veh
icl

e
Hea

di
ng

Next
Waypoint

Heading to Goal

Heading Error=θ
E

Equation 2: Equations to compute translational and
rotational velocities for algorithm A0 before

acceleration constraints are applied.

After Equation 2 is applied, the values may need to be clipped
to enforce the acceleration constraints. In order to enforce the
acceleration constraints, it is necessary to know the last
translational velocity VTL, the last rotational velocity VRL, the
cycle time TC, and the distance to the end of the path D. VT

and VR computed using Equation 2 will be denoted as VTin

and VRin. For convenience, we also introduce VTll, VTul ,VRll,
VRul as the temporary upper and lower limits for translational
and rotational velocities, respectively. VTdecel is a temporary
variable for the velocity required to decelerate to zero at the
end. VTfinal an VRfinal are the final output translational and
rotational velocities.

Equation 3: Equations used to enforce Acceleration
Constraints

ArcSegments are handled by converting each ArcSegment into
a series of waypoints each separated by the annular tolerance
along the arc.

Finally, a rule must be defined for determining when to
increment the path index. The path index is always set to zero
when a new command is received and incremented when the
distance to the current waypoint is less than the neighborhood
associated with that waypoint. If the distance to the last
waypoint is less than the last neighborhood, motion is stopped
and a DONE flag is sent to the supervising module (AMMob)
until the next command is received.

Constant Arc Radius Algorithm: A1
One limitation of algorithm A0 is that when the θE peaks
generally at the beginning of each segment, VT will be very
small or possibly zero, which robs the AGV of momentum.
To keep VT closer to its maximum we can delay the rotation
and distribute it over the entire curve.

Equation 4: Compute Translational and Rotational
Velocities using algorithm A1

With this algorithm each waypoint is first transformed into
vehicle-relative coordinates by subtracting the currently
sensed navigation position and rotating the coordinates based
on the current yaw orientation. A special case is made for
when XV is less than zero, i.e., when the next waypoint is
behind the vehicle. It was decided to do a 180 degree turn
followed by a straight line rather than an arc that might be
huge compared to the distance to the waypoint. The radius of
curvature(R) and the initial values for VT and VR are
computed with Equation 4. Just as with algorithm A0, the
acceleration constraints are enforced by applying Equation 3;
however, as with all the following algorithms, VTin and VRin

are first computed by projecting ahead along the path that the
vehicle would follow if commanded VT and VR for time TC.
This leaves us with a new projected point and potentially a
new next waypoint, so the primary algorithm (in this case
Equation 4) is reapplied. If the new projected point has a
lower VT than the current point then Equation 5 is applied,
where VTorig and Vrorig are simply the original values of VT and
VR. After each projection the new VTprojected and VRprojected are
used to compute the next projected point until Dprojected is
greater than (VT

)2/2*ATMAX.

Equation 5: Use projected velocities to recompute
current velocities.

R={
Y V

2
X V≤0

∞ Y V=0

 X V
2Y V

2

2∗Y V

Y V≠0∧X V0

V T={
V i V i∣V RMAX∗R∣

V RMAX

∣R∣
V i∣V RMAX∗R∣

V R={
V RMAX V i∣V RMAX∗R∣∧Y V0
V i

R
V i∣V RMAX∗R∣∧Y V≠0

0 Y V=0
−V RMAX V i∣V RMAX∗R∣∧Y V0

D projected=∑
j=0

j=i

T C∗V Tprojected j

V TMAXATSTART=
V TprojectedV Tprojected

2
8∗ATMAX∗D projected

2
scale=min V TMAXATSTART ,V Torig /V Torig

V T=scale∗V Torig

V R=scale∗V Rorig

V T={V i∗1−
∣E∣

VCUTOFF
 if ∣E∣VCUTOFF

0 if ∣E∣VCUTOFF

V R={
−V RMAX if E−WCUTOFF
V RMAX∗E

WCUTOFF
if ∣E∣WCUTOFF

V RMAX if EWCUTOFF

V Tdecel=min V Tin ,2∗D∗ATMAX
V Tul=V TLATMAX∗T C

V Tll=V TL−ATMAX∗T C

V Tfinal={
V Tul V TdecelV Tul

V Tdecel if V TllV TdecelV Tul

V Tll V TdecelV Tll

V Rul=V RLARMAX∗T C

V Rll=V RL−ARMAX∗T C

V Rfinal={
V Rul V RinV Rul

V Rin if V RllV RinV Rul

V Rll V RinV Rll

 The path index to the next waypoint is incremented under the
same condition as with A0 when the distance to the waypoint
is less than the neighborhood; however, it also increments the
waypoint index if the distance to the next line segment is less
than the distance to the current line segment. This eliminates
the need to spiral around a waypoint that was missed due to
positioning noise or a very small neighborhood. ArcSegments
do not need to be interpolated as with algorithm A0. Instead
the end point of the arc is simply treated as another waypoint.

Algorithm A1 is good at maintaining a high translational
velocity. However, the arcs may deviate greatly from the
straight line segments between points. Additionally,
oscillations can be produced as the vehicle overshoots the line
after passing though each waypoint as in Figure 3. The
oscillations decrease each time since the vehicle begins an arc
to the next waypoint before reaching the current waypoint and
therefore before overshooting. One solution would be to add
additional intermediate waypoints to cause the oscillations to
decrease more rapidly and thereby keep the vehicle closer to
the intended path. Adding additional waypoints can also
reduce the distance A0 deviates from the path although it is
less critical since a similar effect can be achieved by reducing
the cutoff angles (θVCUTOFF and θWCUTOFF).

Fixed-distance ahead Algorithm : A2
 While algorithm A1 is impractical for an AGV in the general
case where one can not ensure closely spaced waypoints, it
can be adapted by replacing the next given waypoint with an
effective waypoint that is always a fixed chosen distance
ahead (Lahead) along the path as shown in Figure 4. To find the
effective waypoint, the vehicle's current position is projected
onto the closest segment between waypoints and then the
length to each successive waypoint is added until the the sum
of the distances exceeds Lahead. The effective waypoint is

chosen along the segment just before the distance was

exceeded based on the remaining distance of Lahead minus the
sum of the previous distances.

The points can be projected onto arc segments in a similar
fashion. If Lahead is chosen smaller than the neighborhood or
tolerance then the vehicle will generally stay within tolerance.
If it is chosen larger the vehicle will begin to cut to the inside
of corners.

Finding the Longest Path Algorithm : A3
While A2 removes the large overshoots of A1 and never
brings the vehicle to a complete halt like A0, it still
concentrates most of the turning near the waypoints with a
corresponding decrease in speed. A3 can be more aggressive
than A2 while keeping the overshoot strictly limited by the
neighborhood specified in the path. The goal is to find an
effective waypoint with the largest possible Lahead at a given
location that provides an arc which stays within the
tolerances.

The algorithm requires repeated application of Equation 4.
Instead of just using the next waypoint as A1 would do we
check each waypoint starting with the current one to see if an
arc as computed with Equation 4 would ever reach a point that
was farther away from all segments than the neighborhood
associated with that line segment would allow. If the arc does
not exceed any neighborhood limit the next waypoint is tested.
As soon as an arc to a waypoint fails this test, we test the
midpoint between the last successful waypoint and the first
failing waypoint. We continue to test the midpoint between
the last successful point and the first failing point on the line
segment between these points until the difference between the
points is less than an arbitrarily-chosen minimum, here 5mm.
After the curve is chosen, the same projections to compute
speed to limit acceleration are performed that were done in A1
and A2. Arc segments are handled almost the same as
waypoints, except when determining whether the arc is within
tolerance, we check its distance from the arc segment.

One additional modification is needed to bring the vehicle
back to the path if it is outside the neighborhood. The servo
controller may not respond as commanded or the position
system may suddenly reacquire an absolute position marker
and discover the position is already outside of the tolerance.
In this situation, A3 would be unable to find an arc since all
arcs would be at least partially outside the tolerance. It might
also be unable to find an arc while currently inside the
allowed area, but already pointed so far away from the path
that all circular arcs leave the allowed area. The solution
chosen is to revert to algorithm A2 and simply choose an Lahead

equal to the neighborhood associated with the next waypoint
even if that results in a path farther from the commanded path
than a tolerance would allow.

Figure 5: Diagram showing selected curve in orange
and a curve that was tested and rejected in dark-red.

There is a purple circle with a radius equal to the
neighborhood around each waypoint. The orange circle

shows the algorithm's output command.

Red
curve
exceeds
tolerance/
neighborhood
here

Can not
 follow
direct
curve
to this
waypoint

Current
Waypoint

Curves to
these waypoints
are in tolerance..

Figure 4: Diagram showing selection of
effective waypoint for Algorithm A2

Ve
hi

cle
 H

ea
di

ng

Single Arc

R
ad

iu
s=

R

Arc
Center

L
3

L
1

L
2

L
1
+L

2
+L

3
=L

ahead

Waypoint

Waypoint

Waypoint

Effective
Waypoint

Waypoint 1

Waypoint 2

Desired/Expected
Path

Actual Path(blue)

Begin
Next Arc

Figure 3: Example Path produced by A1

Limited Neighborhood Algorithm : A4
A3 keeps speeds as high as possible while staying within
tolerance, at least as long as the servo layer behaves perfectly.
However, it tends to ride the edges: after a left turn it will end
up on the right edge of the neighborhood, and after a right turn
it will end up on the left edge of the neighborhood, only
briefly passing through the center in either case. Equation 6
reduces the effective neighborhood (N) from the original
neighborhood specified in the command (Norig) whenever the
arc length (L) is greater than some chosen minimum (Lmin).
The neighborhood is never allowed to reach zero but instead
kept to a fraction (Nminscale) of the original neighborhood if the
arc length exceeds a chosen maximum (Lmax). All of our tests
were done with the following settings:

Lmin = 5*Norig

Lmax = 25*Norig

Nminscale = 0.5

Equation 6: Limit Neighborhood to Bring Vehicle
back to Center

4. Metrics
For each test we will report the following metrics.

• Emax = maximum error = maximum value of the
distance from the commanded path minus the
tolerance specified for that section of the path

• Tmove = move time = time between the command
being sent and a corresponding status of DONE
being received. In all tests the vehicle reached Table
1 neighborhood of the last waypoint and stopped
motion before reporting DONE.

5. Tools

Two new tools were developed and added to MOAST to
support these tests.

• moastLogRecorder – A program that runs in the
background and records all data sent from any given
set of MOAST Neutral Message Language (NML)
buffers in NML Packed Message files[17].

• PathDraw – A graphical application that allows the
user to draw, save and reload sets of waypoints and
arc segments and send these as commands to either
the AM or PRIM level. It also provides a real-time
display of the vehicle's position and orientation as
well as obstacles detected by the laser line scanner,
virtual obsacles, and a trace of previous positions. It
is also capable of reading the files recorded by the
moastLogRecorder and computing the metrics.

6. Tests
Each test consists of a starting point and a set of waypoints or
arc segments stored in a file that could be converted to a
PrimMobJACmdMoveWaypoint or
PrimMobJACmdMoveArcSegment command and sent to the
primMobJACmd buffer. MOAST can be configured to use
either the Player/Stage/Gazebo interfaces for simulation or
USARsim (Unified System for Automation and Robot
Simulation). Player is a network server for robot control[16].
Two simulators are built to work with Player. Stage is a 2.5D
multiple-robot simulator[20]. Gazebo is a 3D multi-robot
simulator with dynamics for outdoor environments.[21] For

these tests, whenever we used Player we also used Stage since
it was simpler than Gazebo and the vehicle only moves in two
dimensions. USARSim is a high-fidelity simulation of robots
and environments based on a commercial game engine [22].
While USARSim is itself open-source and portable, its
dependence on a commercial game engine prevented its use
on the system where the simulated tests were performed.

[PLATFORM.ATRV]
MAX_TRAN_VEL = 2.5
MAX_TRAN_ACC = 0.2
MAX_ROT_VEL = 5
MAX_ROT_ACC = 200
V_CUTOFF_ANGLE = 15
W_CUTOFF_ANGLE = 15
Figure 6: Moast.ini listing with global constraints.

The global constraints are stored in the section
“[PLATFORM.ATRV]” of the file “etc/moast.ini” as shown
in Figure 6. In other words, VTMAX = 2.5 m/s (8.2 ft/s) , ATMAX

=0.2 m/s2 (0.65 ft/s2), VRMAX= 0.8 rad/s (5°/s), ARMAX= 3.49
rad/s2 (200°/s2), and θVCUTOFF = θWCUTOFF = 0.26 rad (15°). The
parameters are left the same for all tests except for the runs
for A0 where θVCUTOFF, and θWCUTOFF are set to between 10°
and 25° that are indicated with the subscripts. Diagrams of the
waypoints or arc-segments commands for each test are given
in the results section along with the results for that set.

7. Results
 Single-Turn in Simulation

This test consists of only two line segments at a 90° angle
both with max_speed of 0.5 m/s (1.6 ft/s) and a neighborhood
of 0.1 m (0.32 ft). In the first test, the starting position lined
up exactly with the first segment. All of the A0 traces
overshot the corner by more than 0.3m (1ft). To bypass this
issue, a small offset of 0.25 m (0.82 ft) to the starting position
was added. The plots of the test with A0 running in simulation
are shown in Figure 7. Plots for the other algorithms in the
same test are shown in Figure 8. The metrics for the test are
given in Table 1. It was surprising that A0 was faster with

smaller cutoff angles. Although smaller cutoff angles make
the paths slightly shorter it also means that it will be stopped
longer while doing the turn. The plot of velocities in Figure 9
provides two explanations. The shorter cutoff angles allowed
the vehicle to reach higher speeds after the turn. A0 never
decelerates properly at the end of the path. The shorter the
cutoff angle, the more severe the sudden stop at the end.

Figure 7: Traces of the position of the Vehicle in
simulation controlled by A0 with

10°(yellow),15°(green), 20°(blue), and 25°(red).
Neighborhood around waypoints shown in

magenta.

N={
N orig LLmin

N orig∗1−
1−N minscale ∗L−Lmin

Lmax−Lmin
 LminLLmax

N orig∗N minscale LLmax

A0(25deg.)

Neighborhood(0.1m = 0.32ft)

Waypoints

A0(10deg.)

Grid 1 m (3.28ft)

Algorithm Emax Tmove

A0(10°) 0 31.14 s

A0(15°) 0 32.55 s

A0(20°) 0 34.79 s

A0(25°) 3 cm (1.2in) 38.29 s

A1 0.54m(1.77ft) 33.77 s

A2 0 31.64 s

A3 0 32.74 s

A4 0 31.06 s

Table 1: Times and Error Distances for each algorithm for
single turn test in simulation.

Single-Turn on Real AGV
For experiments using a real AGV, we eliminated A1 and the
A0(25°) tests that left the required neighborhood in
simulation, as well as A0(10°) test that had an extremely
sudden stop at the end. The position traces are shown in
Figure 10. The position was produced from a commercial
system using a spinning laser mounted on a post on top of the
vehicle. The spinning laser detects highly reflective targets
mounted on the walls and other fixed structures in the
environment. The position of each of these targets was stored
in the system before the tests. When the lasers detect these
targets it triangulates its own position from the position of the
targets. Unfortunately, the vehicle vibrates as it turns which
causes the position sensor on the mast to move more than the
base of the vehicle. This causes the positions recorded to be
noisier than the simulation traces. The times values shown in
Table 2 seem to indicate that while all of the algorithms had
onger times than in simulation, the increase for A3 and A4
(which depended on the relative position of a point farther
away than A2) were also slowed less than A0, which depends
on angular error.

Algorithm Emax Tmove

A0(15°) 3 cm (1.2 in) 49.63 s

A0(20°) 4 cm (1.6in) 57.08 s

A2 5 cm(2.0in) 55.06 s

A3 3 cm(1.2in) 43.90 s

A4 1 cm(0.4in) 41.57 s

Table 2: Times and Error Distances for each algorithm for
single turn test or real AGV.

8. Conclusion
MOAST provides a good framework for the evaluation of
algorithms for the primitive mobility level of an Autonomous
Guided Vehicle. All the algorithm developer/tester needs to
do is code a function to compute the commanded velocities
from the sensed/simulated positioning and commanded path
with constraints and the frame work provides everything else
needed to run it in simulation or on a real vehicle. The
framework was recently extended with additional data logging
and display capabilities for analyzing these algorithms. The
simulation is useful for debugging algorithms and can isolate
issues that might have been lost in the noise when running on
the real system; however, testing on the real vehicle showed
that an algorithm that was only slightly better in simulation
was more substantially better in the real world. It would be
beneficial if future algorithm developers will commit their
algorithms to the MOAST repository so they can be more
directly compared with those that came before.

9. REFERENCES
[1] Balakirsky, S. B., Proctor, F. M., Scrapper, C. J.,

Kramer, T., “An Integrated Control and Simulation
Environment for Mobile Robot Software Development”,
Proceedings of IDETC/CIE 2008 ASME 2008
International Design Engineering Technical Conference
& Computers and Information in Engineering Conference
,New York, NY, August 04-07, 2008,
http://www.mel.nist.gov/publications/get_pdf.cgi?
pub_id=824656

[2] Scrapper, C. J., Balakirsky, S. B., Messina, E., “MOAST
and USARSim-A Combined Framework for the
Development and Testing of Autonomous Systems”,
Proceedings of the SPIE Defense and Security
Symposium, Orlando, FL, April 17-21, 2006,
http://www.mel.nist.gov/publications/get_pdf.cgi?
pub_id=822696

[3] “National Institute of Standards and Technology”,
http://www.nist.gov/

Figure 8: Traces of the position of the Vehicle in
simulation controlled by

A1(yellow),A2(green),A3(blue) and A4(red)

A1(yellow)

A3(blue)

A2(green)
A4(red)

Grid (1m = 3.28 ft)

Figure 10: Position traces recorded on the real AGV
while controlled by A0(15°)-yellow, A0(20°)-green,

A1-blue, A3-pink, and A4-red.

A0(15deg)-yellow

A2(blue) A0(20deg) -- green

A3(pink)

A4(red)

Grid Size = 1m (3.28 ft)

Figure 9: Plot of the translational velocities (m/s)
versus time(s) for A0 for the single turn test in

simulation. A0(10º) green, A0(15º) cyan, A0(20º) blue,
A0(25º) red.

http://www.nist.gov/
http://www.mel.nist.gov/publications/get_pdf.cgi?pub_id=822696
http://www.mel.nist.gov/publications/get_pdf.cgi?pub_id=822696
http://www.mel.nist.gov/publications/get_pdf.cgi?pub_id=824656
http://www.mel.nist.gov/publications/get_pdf.cgi?pub_id=824656

[4] “Real-Time Control Systems Library –– Software and
Documentation”,
http://www.isd.mel.nist.gov/projects/rcslib/

[5] Albus, J. S., ”4D/RCS A Reference Model Architecture
for Intelligent Unmanned Ground Vehicles”, Proceedings
of the SPIE 16th Annual International Symposium on
Aerospace/Defense Sensing, Simulation and Controls,
Orlando, FL, April 1-5, 2002,
http://www.mel.nist.gov/publications/get_pdf.cgi?
pub_id=821736

[6] “RoboCup Rescue”, http://www.robocuprescue.org/

[7] “2010 Virtual Manufacturing Automation Competition”,
http://vma-competition.com/

[8] “SourceForge.net: MOAST
Wiki”,http://sourceforge.net/apps/mediawiki/moast/index
.php?title=Main_Page

[9] Shackleford, W. P., Bostelman, R. V., “Data Collection
Test-bed for the Evaluation of Range Imaging Sensors
for ANSI/ITSDF B56.5 Safety Standard for Guided
Industrial Vehicles”, Proceedings of the Performance
Metrics for Intelligent Systems Workshop 2009
(PerMIS), Gaithersburg, MD, September 21-23, 2009,
http://www.mel.nist.gov/publications/get_pdf.cgi?
pub_id=903083

[10] Mobility Open Architecture Simulation and Tools
(MOAST) framework,
https://sourceforge.net/projects/moast

[11] “Automated guided vehicle”,
http://en.wikipedia.org/wiki/Automated_guided_vehicle

[12] Koff, G.A., Demag, R., “Automatic Guided Vehicle
Systems: Basics of ATVS”, 1985 National Material
Handling Forum, February 27, 1985,
http://www.mhia.org/learning/resources/downloadfile.asp
x?id=4731

[13] “Mobility and Manipulation
Project”,http://www.nist.gov/mel/isd/ms/mmp.cfm

[14] Balakirsky, S., "MOAST Mobility Open Architecture
Simulation and Tools Reference Manual”,
http://sourceforge.net/projects/moast/files/reference
%20manual/3.4/refManualV3.4.pdf/download

[15] Neutral Message Language (NML) ,

http://www.isd.mel.nist.gov/projects/rcslib/NMLcpp.html

[16] Player Project,
http://playerstage.sourceforge.net/index.php?src=player

[17] NML Message Files,
http://www.isd.mel.nist.gov/projects/rcslib/message_files
.html

[18] Performance Simulation Project,
http://www.nist.gov/mel/isd/ks/persim.cfm

[19] Real-Time Control Systems Library,
http://www.isd.mel.nist.gov/projects/rcslib/

[20] Stage (part of the Player Project),

http://playerstage.sourceforge.net/index.php?src=stage

[21] Gazebo (part of the Player Project),

http://playerstage.sourceforge.net/index.php?src=gazebo

[22] USARSim wiki,
http://usarsim.sourceforge.net/wiki/index.php/Main_Page

http://usarsim.sourceforge.net/wiki/index.php/Main_Page
http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=stage
http://www.isd.mel.nist.gov/projects/rcslib/
http://www.nist.gov/mel/isd/ks/persim.cfm
http://www.isd.mel.nist.gov/projects/rcslib/message_files.html
http://www.isd.mel.nist.gov/projects/rcslib/message_files.html
http://playerstage.sourceforge.net/index.php?src=player
http://www.isd.mel.nist.gov/projects/rcslib/NMLcpp.html
http://sourceforge.net/projects/moast/files/reference%20manual/3.4/refManualV3.4.pdf/download
http://sourceforge.net/projects/moast/files/reference%20manual/3.4/refManualV3.4.pdf/download
http://sourceforge.net/projects/moast/files/reference%20manual/3.4/refManualV3.4.pdf/download
http://www.nist.gov/mel/isd/ms/mmp.cfm
http://www.mhia.org/learning/resources/downloadfile.aspx?id=4731
http://www.mhia.org/learning/resources/downloadfile.aspx?id=4731
http://en.wikipedia.org/wiki/Automated_guided_vehicle
https://sourceforge.net/projects/moast
http://www.mel.nist.gov/publications/get_pdf.cgi?pub_id=903083
http://www.mel.nist.gov/publications/get_pdf.cgi?pub_id=903083
http://sourceforge.net/apps/mediawiki/moast/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/moast/index.php?title=Main_Page
http://vma-competition.com/
http://www.robocuprescue.org/
http://www.mel.nist.gov/publications/get_pdf.cgi?pub_id=821736
http://www.mel.nist.gov/publications/get_pdf.cgi?pub_id=821736
http://www.isd.mel.nist.gov/projects/rcslib/

	1. INTRODUCTION
	2. MOAST Primitive Mobility
	PrimMobJACmdMoveWaypoint
	PrimMobJACmdMoveArcSegment
	Global Constraints

	3. PrimMob Algorithms
	Proportional Error Algorithm: A0
	Constant Arc Radius Algorithm: A1
	Fixed-distance ahead Algorithm : A2
	Finding the Longest Path Algorithm : A3
	Limited Neighborhood Algorithm : A4

	4. Metrics
	5. Tools
	6. Tests
	7. Results
	 Single-Turn in Simulation
	Single-Turn on Real AGV

	8. Conclusion
	9. REFERENCES

