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The ABC-stacked N-layer-graphene family of two-dimensional electron systems is described at low energies
by two remarkably flat bands with Bloch states that have strongly momentum-dependent phase differences
between carbon �-orbital amplitudes on different layers and large associated momentum-space Berry phases.
These properties are most easily understood using a simplified model with only nearest-neighbor interlayer
hopping which leads to gapless semiconductor electronic structure and pN dispersion in both conduction and
valence bands. We report on a study of the electronic band structures of trilayers which uses ab initio density-
functional theory and k ·p theory to fit the parameters of a �-band tight-binding model. We find that when
remote interlayer hopping is retained, the triple Dirac point of the simplified model is split into three single
Dirac points located along the three KM directions. External potential differences between top and bottom
layers are strongly screened by charge transfer within the trilayer but still open an energy gap at overall
neutrality.
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I. INTRODUCTION

Success1 in isolating nearly perfect monolayer and few
layer sheets from bulk graphite, along with progress2 in the
epitaxial growth of few-layer graphene samples, has led to an
explosion of experimental and theoretical3–7 interest in this
interesting class of quasi-two-dimensional electron systems
�2DESs�. Unique aspects of the electronic structure of
graphene based 2DESs have raised a number of new funda-
mental physics issues and raised hope for applications.

Monolayer graphene has a honeycomb lattice structure
and is a gapless semiconductor. Hopping between its equiva-
lent A and B sublattices gives rise to a massless Dirac fer-
mion band structure with J=1 chirality when the sublattice
degree of freedom is treated as a pseudospin. In this paper
we will find it useful to view the quantum two-level degree
of freedom associated with two sublattice sites as a pseu-
dospin in the multilayer case as well. In AB-stacked
graphene bilayers, for example, electrons on the A2 and B1
sublattices are repelled from the Fermi level by a direct in-
terlayer tunneling process with energy �1, leaving8 only
states that are concentrated on the A1 and B2 sites in the
low-energy band-structure projection. When direct hopping
between A1 and B2 sites is neglected, the two-step hopping
process via high-energy sites leads to p2 conduction and
valence-band dispersions and to a pseudospin chirality that is
doubled, i.e., to a phase difference between sublattice projec-
tions which is proportional to 2�p, where �p is the two-
dimensional momentum orientation. Pseudospin chirality has
a substantial influence on interaction physics9 in both single-
layer and bilayer graphene, and through the associated mo-
mentum space Berry phases also on Landau quantization and
the integer quantum-Hall effect.8,10–13 Because the two low-
energy sublattices in bilayer graphene are located on oppo-
site layers it is possible to introduce14–18 a gap19–26 in the

electronic structure simply by using gates to induce a differ-
ence in electric potential between layers. According to some
theories a small gap could even emerge spontaneously27–32 in
neutral graphene bilayers with weak disorder because of
layer inversion symmetry breaking.

Graphene bilayer 2DESs are quite distinct from single
layer 2DESs because of their flatter band dispersion and the
possibility of using external potentials to create gaps. Among
all stacking possibilities, only the ABC arrangement �see be-
low� maintains the following features that make Bernal bi-
layer electronic structure interesting in thicker N-layer films:
�i� there are two low-energy sublattice sites, implying that a
two-band model provides a useful tool to describe its phys-
ics; �ii� the low-energy sublattice sites are localized in the
outermost layers, at A1 and BN, and can be separated ener-
getically by an electric field perpendicular to the film; �iii�
hopping between low-energy sites via high-energy states is
an N-step process which leads to pN dispersion in conduction
and valence bands, sublattice pseudospin chirality N, and
Berry phase N�. The low-energy bands are increasingly flat
for larger N, at least when weak remote hopping processes
are neglected, and the opportunity for interesting interaction
and disorder physics is therefore stronger. Consequently, in
the simplified chiral model, the density of states D�E�
�E�2−N�/N diverges as E approaches zero for N�2 whereas it
remains finite for N=2 and vanishes for N=1. These proper-
ties also have some relevance to more general stacking ar-
rangements since the low-energy Hamiltonian of a multilayer
with any type of stacking can always be chiral decomposed
to a direct sum of ABC-stacked layers.13

ABC-stacked multilayers are the chiral generalizations of
monolayer and Bernal bilayer graphene, and we refer them
collectively as the chiral 2DES �C2DES� family. We believe
that they are likely to prove to be fertile ground for new
physics. As a first step in the exploration of these materials
we report in this paper on an effort to characterize the way in
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which the chirality N bands of an N-layer C2DES are altered
by remote hopping processes neglected in the simplified
model, focusing on the N=3 trilayer case. We use ab initio
density-functional theory �DFT� calculations, combined with
a k ·p expansion of the low-energy bands near the Dirac
point, to fit the parameters of a phenomenological tight-
binding method for the � bands of multilayer
graphene.13,33–37 We find that details of the low-energy band
dispersion can be used to fix rather definite values for the
model’s remote interlayer hopping parameters.

Our paper is organized as follows. In Sec. II we first
sketch the derivation of the low-energy effective band
Hamiltonian of a trilayer, reserving details to an Appendix
and explain how the interlayer hopping parameters influence
the shape of constant energy surfaces. The values for these
parameters obtained by fitting to our DFT calculations are
surprisingly different from the values for the analogous hop-
ping parameters in Bernal stacked layers, and are not yet
available from experiment. In Sec. II we also discuss the
evolution of constant energy surface pockets with energy,
concentrating on the Lifshitz transitions at which pockets
combine, in terms of Berry phase considerations and a com-
petition between chiral dispersion and trigonal warping. In
Sec. III we use DFT to estimate the dependence of the
trilayer energy gap on the external potential difference be-
tween top and bottom layers and compare with predictions
based on the simplified two-band model. The simplified
model picture is readily extended to higher N and we use it
to discuss trends in thicker ABC multilayers. Finally, we con-
clude in Sec. IV with a discussion of how Berry phases
modify the integer quantum-Hall effect and weak localiza-
tion in C2DESs and with some speculations on the role of
electron-electron interactions in these two-dimensional mate-
rials.

II. EFFECTIVE MODEL AND BAND STRUCTURE

A. Low-energy effective model

In ABC-stacked graphene layers, each layer has inequiva-
lent triangular A and B sublattices. As illustrated in Fig. 1�a�,
each adjacent layer pair forms a AB-stacked bilayer with the

upper B sublattice directly on top of the lower A sublattice,
and the upper A above the center of a hexagonal plaquette of
the layer below. Our microscopic analysis uses the categori-
zation of interlayer hopping processes illustrated in Fig. 1�b�,
which is analogous to the Slonczewski-Weiss-McClure
�SWM� parametrization of the tight-binding model of bulk
graphite with the Bernal stacking order.38 Following conven-
tion �0 and �1 describe nearest-neighbor intralayer and inter-
layer hopping, respectively, �3 represents hopping between
the low-energy sites of a AB-stacked bilayer �i.e.,
Ai↔Bi+1�i=1,2��, �4 couples low- and high-energy sites lo-
cated on different layers �i.e., Ai↔Ai+1 and Bi↔Bi+1�i
=1,2��. We use �2 to denote direct hopping between the
trilayer low-energy sites and � as the on-site energy differ-
ence of A1 and B3 with respect to the high-energy sites. �5
and �6 correspond to the presumably weaker couplings
B1↔A3 and S1↔S3�S=A ,B�, respectively, and ui is used to
denote the average potential of the ith layer.

The massless Dirac-Weyl quasiparticles of monolayer
graphene are described by a k� ·p� Hamiltonian,

Ĥ = v0�0 �†

� 0
� , �1�

where �=�px+ ipy and �=+�−� for valley K�K��. �In the rest
of the paper we focus on bands near Brillouin-zone �BZ�
corner K; the general result can be obtained by setting px to
�px.� The trilayer � bands are the direct produce of three sets
of monolayer bands modified by the various interlayer cou-
pling processes identified above. In a representation of sub-
lattice sites in the order A1 ,B3 ,B1 ,A2 ,B2 ,A3, the trilayer
Hamiltonian near valley K can then be expressed in the form

Ĥtrilayer
ABC =�

u1 + �
1

2
�2 v0�† v4�† v3� v6�

1

2
�2 u3 + � v6�† v3�† v4� v0�

v0� v6� u1 �1 v4�† v5�†

v4� v3� �1 u2 v0�† v4�†

v3�† v4�† v4� v0� u2 �1

v6�† v0�† v5� v4� �1 u3

	 ,

�2�

where vi=
3a�i /2� and a=0.246 nm.
The identification of A1 and B3 as the low-energy sublat-

tice sites is made by neglecting the weaker remote interlayer
hopping processes and setting �→0. We treat coupling be-
tween the low- and high-energy subspaces perturbatively by
writing the trilayer Green’s function as

G = �Ĥtrilayer
ABC − 	�−1 = �H11 − 	 H12

H21 H22 − 	
�−1

, �3�

where the indices 1 and 2 denote the 2
2 low-energy block
and the 4
4 high-energy block, respectively. We then solve
the Schrödinger equation, �G�11

−1�low=0, by using the block
matrix inversion rule �A−1�11= �A11−A12�A22�−1A21�−1 to ob-
tain
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FIG. 1. �Color online� �a� Lattice structure of ABC-stacked
graphene trilayer; blue/cyan/green indicate links on the top/middle/
bottom layers while purple/red distinguish the A /B sublattices. �b�
Schematic of the unit cell of ABC-stacked graphene trilayer and the
most important interlayer hopping processes.
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��H11 − 	� − H12�H22 − 	�−1H21��low�A1,B3� = 0. �4�

Since we are interested in the low-energy part of the spec-
trum we can view 	 as small compared to H22. Expanding
Eq. �4� to first order in 	, we find that �Heff−	��low=0, where

Heff = �1 + H12�H22�−2H21�−1�H11 − H12�H22�−1H21� . �5�

The terms in the second parenthesis capture the leading hop-
ping processes between low-energy sites, including virtual
hopping via high-energy states, while the first parenthesis
captures an energy scale renormalization by a factor of order
1− �v0p /�1�2 due to higher-order processes which we drop
except in the terms which arise from an external potential.

Using Eq. �5� we find that for ABC trilayer graphene,

Ĥeff = Ĥch + Ĥs + Ĥtr + Ĥgap + Ĥs�,

Ĥch =
v0

3

�1
2� 0 ��†�3

�3 0
� =

�v0p�3

�1
2 �cos�3�p�x + sin�3�p�y� ,

Ĥs = �� −
2v0v4p2

�1
�0,

Ĥtr = ��2

2
−

2v0v3p2

�1
�x,

Ĥgap = ud�1 − �v0p

�1
�2�z,

Ĥs� =
ua

3
�1 – 3�v0p

�1
�2�0. �6�

Here we have chosen tan �p= py / px, defined ud= �u1−u3� /2
and ua= �u1+u3� /2−u2, and neglected an overall energy
scale associated with the external potentials. 0 is the iden-
tity matrix and the i’s are Pauli matrices acting on the low-
energy pseudospin. We have retained leading terms with cu-
bic, quadratic, and constant dispersions, which are due,
respectively, to three-step, two-step, and one-step hopping
processes between low-energy sites. For trilayer graphene,
the linear term is absent because the one-step hopping ��2� is
normal to the 2D space and therefore independent of mo-

mentum. Ĥch is the only term which appears in the effective
Hamiltonian in the simplified model with only nearest-
neighbor interlayer tunneling. This term has pseudospin
chirality J=3 and dominates at larger values of p. It reflects
coupling between low-energy sites via a sequence of three

nearest-neighbor intralayer and interlayer hopping events. Ĥtr
is proportional to x and, because it is isotropic in 2D mo-
mentum space, is responsible for trigonal warping of con-
stant energy surfaces when combined with the J=3 chiral
term. Notice that the direct hopping �2 process opens a small

gap at the K points so that Ĥtr vanishes at finite p if �2 is

positive. Ĥs arises from a weaker coupling between low-
energy and high-energy states that is present in bilayers and
for any N�1 multilayer system. This term in the effective

Hamiltonian preserves layer inversion symmetry. Ĥgap cap-

tures the external potential processes which break layer in-
version symmetry and introduce a gap between electron and
hole bands. The possibility of opening a gap with an external
potential is unique to ABC-stacked multilayers, increasing
the possibility that they could be useful materials for future
semiconductor devices. The strength of the gap term de-
creases with increasing momentum �since v0p��1� so that
the gap around K has a Mexican hat shape, as we will dis-
cuss later. Ĥs� is nonzero when the potential of the middle
layer deviates from the average of the potentials on the out-
ermost layers. Unlike Ĥgap, this term preserves the layer in-
version symmetry and is not responsible for an energy gap. A
nonzero Ĥs� is relevant when the electric fields in the two
interlayer regions are different. Further discussion on the
derivation of this effective Hamiltonian and on the physical
meaning of the various terms can be found in the Appendix.
Note that for strict consistency the constant terms � and �2 /2
should be accompanied by the factor 1− �v0p�2 /�1

2 based on
Eq. �5� which does appear in Ĥgap. However we ignore this
factor because � and �2 /2 are already small.

B. Ab initio density-functional theory calculations

We have performed ab initio DFT calculations39 for an
isolated graphene trilayer in the absence of a transverse ex-
ternal electric field which induces an electric potential differ-
ence between the layers. �DFT calculations in the presence of
electric fields will be discussed in the next section.� Our
electronic-structure calculations were performed with plane-
wave basis sets and ultrasoft pseudopotentials.40 The local-
density approximation �LDA� was used for the exchange and
correlation potential. We have used the layer separation at
the experimental value 0.335 nm, instead of allowing relax-
ation, because the layer separation is known to depend on
van der Waals interactions that are not captured by the LDA.
We note that the main role of the van der Waals interactions
is to anchor the layers at a fixed distance through its influ-
ence on the overall energy.41,42 Although DFT with local or
semilocal approximations does not reliably predict interlayer
separations, the electronic structure at a given layer separa-
tion is not strongly influenced by van der Waals forces.41,42

We placed bulk trilayer graphene in a supercell with a 40 nm
vacuum region large enough to avoid intercell interactions. A
21
21
1 k-point mesh in the full supercell BZ �FBZ� was
used with a 408 eV kinetic-energy cutoff. The calculations
were tested for large k-point meshes in the FBZ and large
energy cutoffs for convergence studies. Figure 2 shows the
DFT energy band structure of ABC-stacked trilayer graphene
in the absence of an external electric field. The low-energy
band dispersion is nearly cubic at the two inequivalent cor-
ners K and K� of the hexagonal Brillouin zone, as predicted
by the �-orbital tight-binding and continuum model phenom-
enologies. The conduction and valence bands meet at the
Fermi level. Close enough to Fermi level the band is nearly
flat, which indicates the important role interactions might
play in this material.

C. Extracting hopping parameters from DFT

Previously, bulk graphite �with the Bernal stacking order�
SWM hopping parameters have been extensively studied us-
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ing DFT and measured in experiments. However, the values
of the SWM parameters appropriate for ABC-stacked trilayer
graphene were previously unknown. We extract their values
by fitting the effective model with the DFT data in the zero
electric field limit. The eigenenergies of the Hamiltonian in
Eq. �6� in the absence of external potentials are

E��� = hs � 
hch
2 + htr

2 + 2 cos�3�p�hchhtr, �7�

where hch= �v0p�3 /�1
2, htr=�2 /2−2v0v3p2 /�1, and hs=�

−2v0v4p2 /�1. To extract the remote hopping parameters we
first set the nearest-neighbor in-plane hopping parameter �0
to 3.16 eV to set the overall energy scale. The values of �
and, up to a sign, �2 can then be obtained by comparing the
band energies at p=0 calculated by the two different meth-
ods. Then comparing E�+�+E�−� from the DFT data with Eq.
�7�, we obtain a value for �4�0 /�1. Finally we notice that Eq.
�7� implies that the gap between conduction �+� and valence
�−� bands vanishes at cos�3�p�=1 if htr is negative and at
cos�3�p�=−1 if htr is positive. Because of this property the
Fermi level of a neutral balanced ABC trilayer is at the en-
ergy of three distinct Dirac points which are removed from
the Dirac point separated in direction by 2� /3. The triple
Dirac point of the trilayer’s simplified model is split into
three separate single Dirac points. The DFT theory result that
the conduction valence gap vanishes along the K�M direc-
tions for which cos�3�p�=1 implies that htr is negative and
helps to fix the sign of �2. Values for �3�0 /�1 and �0

3 /�1
2 are

provided by the value of p at the Dirac points and the size of
the splitting between conduction and valence bands
�2
hch

2 +htr
2� along the cos�3�p�=0 directions. The best over-

all fit we obtained to the bands around the K point and the
deformed Dirac cones is summarized in Table I, where we
compare with the corresponding fitting parameters for bulk
graphite.6,38 Our fit is extremely good in the low-energy re-
gion in which we are interested, as shown in Fig. 3, though
there are still discrepancies as higher energies are ap-
proached. These discrepancies are expected because of the

perturbative nature of the effective model and can be partly
corrected by restoring the 1− �v0p�2 /�1

2 correction factor in
Eq. �5�.

D. Electron (hole) pockets and Lifshitz transitions

With the effective model hopping parameters extracted
from DFT we study the shape of the Fermi surface of a
graphene trilayer. Figure 4�a� shows the constant energy con-
tour plot of the electron band around zero energy. Clearly,
under remote hopping the J=3 Dirac points evolve into three
separate J=1 Dirac points symmetrically shifted away a little

bit in the KM directions �k̂x�; each shifted Dirac point re-
sembles a linear cone like the ones in monolayer graphene.
The property that total chirality is conserved can be estab-
lished by evaluating Berry phases along circular paths far
from the Dirac points where the remote hopping processes
do not play an essential role. The Dirac point distortion oc-
curs because the direct hopping �2 process does not involve
2D translations and therefore gives a momentum-
independent contribution to the Hamiltonian which does not
vanish at the Brillouin-zone corners. A similar distortion of
the simplified-model ideal chirality Dirac point occurs in any
3m-layer system of ABC-stacked �m is a positive integer�

0

−1

−2

−3

−4

−5

1

2

3

4

5

Γ KM Γ

E
(e

V
)

FIG. 2. �Color online� Band structure of ABC-stacked graphene
trilayers in the absence of an external electric field. The zero of
energy in this plot is at the Fermi energy of a neutral trilayer. Notice
the single low-energy band with extremely flat dispersion near the
K point.

TABLE I. Summary of SWM hopping parameters obtained by
fitting DFT bands in ABC-stacked trilayer graphene to a low-energy
effective model. We compare with bulk graphite values from Refs.
6 and 38.

Parameters
Graphite

�eV�
ABC trilayer

�eV�

� 0.008 −0.0014

�1 0.39 0.502

�3 0.315 −0.377

�4 −0.044 −0.099

�2 −0.020 −0.0171
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FIG. 3. �Color online� The magenta curve is the DFT data while
the green one represents the effective model using the extracted
parameters shown in Table I. G=4� / �
3a� is the length of the
reciprocal vectors and k=0 is the K point.
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graphene sheets. Around each deformed Dirac cone there is
an electron �hole�-like pocket in the conduction �valence�
band at low carrier densities and two Lifshitz transitions43 as
a function of carrier density. Take the conduction band, for

example. As shown in Fig. 4�a�, immediately above zero
energy, the constant energy surface consists of three separate
Dirac pockets. At the first critical energy 6.7 meV, the three
electron pockets combine and a central trianglelike hole
pocket appears. �Energies are measured from the Fermi en-
ergy of a neutral trilayer.� At this energy three band-structure
saddle points occur midway between the shifted Dirac
points, and thus the density of states diverges. Fermi levels
close to these 2D logarithmic van Hove singularities could
lead to broken-symmetry states. At the second critical energy
7.2 meV, the central pocket and the three remote pockets
merge into a single pocket with a smoothed triangle shape.
Figure 4�a� is in excellent agreement with constant energy
surfaces constructed directly from our DFT calculations �fig-
ure not shown�. The two similar Lifshitz transition energies
in the valence band occur at −7.9 and −9.9 meV. The con-
stant energy surface at the second Lifshitz transition solves

E����p � 0� = E����p = 0� , �8�

where +�−� refers to conduction- and valence-band cases.
This critical condition can be specified using the law of co-
sines as shown in Fig. 5, where for trilayers �Berry=3� and
h0= �2 /2�2v0v4p2 /�1. This momentum-dependent trigo-
nometric condition can be easily generalized to the case of
any other graphene multilayer and to the case with an exter-
nal potential difference. Above the second Lifshitz transition,
the constant energy surface is triangular in shape, with a
trigonal distortion that differs in orientation compared to the
one obtained by plugging the bulk graphite values for the
hopping parameters into the same effective model Eq. �6� as
illustrated in Fig. 4�b�. The ABC-stacked trilayer trigonal dis-
tortion has a different orientation and is weaker. The differ-
ence mainly reflects a difference in the sign of �3, which
favors antibonding orbitals at low energies. The warping of
the constant energy surface becomes hexagonal at 8–9 meV,
which provides nearly parallel flat pieces on the edges of the
hexagon leading to strong nesting. This might support some
competing ground states and a density-wave ordered phase
might then exist at a small but finite interaction strength. The
electronic properties of low-carrier density systems in
graphene trilayers will be sensitive to these detailed band
features. Future angle-resolved photoemission spectroscopy
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FIG. 4. �Color online� Constant energy �in units of electron volt�
contour plots of the conduction band near zero energy. G
=4� / �
3a� is the length of the reciprocal vector and k=0 is a K
point. �a� ABC-valued, �b� bulk graphite-valued Fermi surfaces of a
ABC trilayer. �a� The energies of the initial three electron pockets
from inner to outer are 0.0, 2.5, 5.0, 6.0, and 6.7 meV. The energies
of the central triangles from outer to inner are 6.8, 6.9, 7.0, 7.1, and
7.2 meV. The energies of the bigger triangles from inner to outer are
6.8, 6.9, 7.0, 7.1, 7.2, 7.5, 9.0, 10.0, 15.0, 20.0, and 30.0 meV. �b�
The energies of the initial three electron pockets from inner to outer
are 1.0, 5.0, 7.5, 10.0, 10.2, 10.4, and 10.6 meV. The energies of the
central triangles from inner to outer are 10.0, 10.2, 10.4, and 10.6
meV. The energies of the bigger triangles from inner to outer are
10.8, 15.0, 20.0, and 30.0 meV.

FIG. 5. �Color online� A momentum-dependent trigonometric
relationship which describes how the shape of the constant energy
surfaces near the Lifshitz transitions is collectively governed by
chiral dispersion, trigonal warping, and Berry phases.
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experiments should be able to determine whether or not these
features are predicted correctly by our DFT calculations.

III. INDUCED BAND GAPS IN TRILAYERS

A. Energy bands with electric fields

Figure 6 shows the energy band structure of a
ABC-stacked graphene trilayer for several external electric
potential differences between the outermost layers. In the
presence of an external field, as in the graphene bilayer case,
the energy gap is direct but, because the low-energy spec-
trum develops a Mexican hat structure as the electric poten-
tial difference increases, occurs away from the K or K� point.
Charge transfer from the high-potential layer to the low-
potential layer partially screens the external potential in both
bilayer and multilayer cases. Figure 7�a� plots the screened
potential U and Fig. 7�b� the energy gap, as a function of the
external potential Uext for bilayers and trilayers calculated
using both DFT and the full band self-consistent Hartree ap-
proximation. The simple model Hartree calculations agree
quite well with the DFT results generally. We find that the
screening is stronger in a trilayer system and that the maxi-
mum energy gap is slightly smaller. In both bilayer and
trilayer, remote hopping suppresses the size of the energy
gap but make little difference to the screening.

B. Self-consistent Hartree calculation

As in the bilayer case, it is interesting to develop a theory
of gap formation and external potential screening for ABC
trilayers by combining the low-energy effective model with a
Poisson equation which takes Hartree interactions into ac-
count. This simplified approach provides a basis for discuss-
ing the dependence on layer number for general N. We there-
fore consider an isolated graphene N layer with an interlayer
separation d=0.335 nm under an external electric field Eext
perpendicular to the layers, neglecting the finite thickness
and crystalline inhomogeneity of the graphene layers. In an
isolated system charge can only be transferred between lay-

ers so that n=nt+nb=0. Defining �n=nb=−nt and using a
Poisson equation, we find that the screened electric potential
difference U between the outermost layers is

U = Uext + 4�e2�N − 1�d�n . �9�

In the two-band effective model, �n is accumulated through
the layer pseudospin polarization of the valence-band states
and is thus given by the following integral over momentum
space:

�n = �
i�v

2�
BZ

d2k

�2��2 ��i�k�
z

2
�i�k�� , �10�

where the factor 2 accounts for spin degeneracy, �i�k�� is a
band eigenstate in the presence of Eext, band index i runs
over all the filled valence-band states, and z /2 denotes the
layer pseudospin. Any Hamiltonian of a two-band model can
be generally written as H=h0�p�+h�p� ·. Defining tan �p

=
h1
2+h2

2 /h3 and tan �p=h2 /h1 the conduction- and valence-
band states in the sublattice representation are
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FIG. 6. �Color online� The band structures of a ABC graphene
trilayer with external electric potential differences between the out-
ermost layers. The external potential difference Uext values are 0.0
�red� eV, 0.2 �blue� eV, 1.0 �green� eV, and 2.0 �magenta� eV, re-
spectively. G=4� / �
3a� is the length of the reciprocal vectors and
k=0 is a K point.
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+ ,p� =� cos
�p

2

sin
�p

2
ei�p	, − ,p� =� − sin

�p

2

cos
�p

2
ei�p	 . �11�

It follows that

�n = 4�
p�pc

d2p

�2���2 �− ,p
z

2
− ,p�

= −
1

2�2�2�
0

2� �
0

pc

cos �ppdpd�p, �12�

where pc=�1 /v0 is the high momentum cutoff of the effec-
tive model and �p is the angle of p.

Let us first discuss the simplified two-band model which
has only the chiral term. For general N,

Ĥch
�N� =

v0
N

�− �1�N−1� 0 ��†�N

�N 0
�

=
�v0p�N

�− �1�N−1 �cos�N�p�x + sin�N�p�y� . �13�

The electric potential in the two-band model is �
Uext

2 z. In-
serting Eq. �13� in Eqs. �9� and �12�, we obtain an algebraic
formula for the self-consistent Hartree potential valid for
general N,

Uext

�1
=

U

�1
+

4�N − 1�d
a0

m2

me
F�N,U� ,

F�N,U� =
1

tc
�

0

tc dt

tN + 1

= 2F1� 1

N
,
1

2
,
1 + N

N
,− �2�1

U
�2� ,

�14�

where a0=0.053 nm is the Bohr radius, m2 is the effective
mass of a graphene bilayer, tc= �2�1 /U�2/N, and 2F1 is Gauss’
hypergeometric function. In the limit of large N, F�N ,U�
→1 and thus the Hartree equation reduces to

U � Uext −
4�N − 1�d

a0

m2

me
�1 �15�

except at very small U. For small U and N=2, the Hartree
equation reads

Uext

U
�

2d

a0

m2

me
ln

4�1

U
, �16�

which is consistent with previous Hartree calculations in
graphene bilayers.15 In the limit of small U for N�2, the
Hartree equation has the asymptotic form

U

2�1
� �Uext

2�1
�N/2

C , �17�

where the factor C= � 2�N−1�d
a0

m2

me
�1− 2

2−N + 1
2−3N ��−N/2. The larger

the value of N, the flatter the chiral bands, and the stronger
the screening. For N=2 the screening response is linear up to
a logarithmic factor, while for larger N, superlinear screening

leads to a screened potential difference which initially grows
slowly with external potential following U�Uext

N/2. The stron-
gest possible screening reduction in the external potential
corresponds to the Hartree potential due to transfer of all the
states in the energy regime �2�1 over which the low-energy
model applies to one layer.

For the trilayer case we can perform a similar calculation
using the full low-energy Hamiltonian derived in Eq. �6�. In
this case we find that

Uext

�1
=

U

�1
+

8d

a0

m2

me
G�U� ,

G�U� =
2

�
�

0

1

dt

hgapK� 4
2hchhtr

�hch + 
2htr�2 + hgap
2 �


�hch + 
2htr�2 + hgap
2

, �18�

where hch= t3/2, htr= 
�2

2�1
−

2v3

v0
t, hgap= U

2�1
�1− t�, t= � v0p

�1
�2, and

K�x� is the complete elliptic integral of the first kind. Figure
8 compares the screening properties of the full low-energy
effective model for trilayers to the chiral model results for
N=2,3 ,4 ,5. For Uext��1 /2, the energy regime over which
the low-energy effective model applies, we see that screening
increases systematically with N because of smaller gaps be-
tween conduction- and valence-band orbitals which make the
occupied valence-band orbitals more polarizable. The com-
parison between the simplified chiral model and the low-
energy effective model for N=3 demonstrates that remote
hopping processes suppress screening because they tend to
increase the gap between conduction and valence bands at
momenta near the Brillouin-zone corner.

In concluding this section we caution that occupied  or-
bitals, neglected in the low-energy effective model and
�-band tight-binding models, will contribute slightly to po-
larization by an external electric field and therefore to
screening. Furthermore exchange potentials will also be al-
tered by an external electric field and influence the screening.
Since exchange interactions are attractive, they always work
against screening and will make a negative contribution to
the screening ratio we have discussed in multilayers. Be-
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FIG. 8. �Color online� U vs Uext plot describes the screening
effect in different chiral-N systems. The Chiral model results refer
to the Hamiltonian in Eq. �13� while the full model results refer to
the Hamiltonian in Eq. �6�.

BAND STRUCTURE OF ABC-STACKED GRAPHENE… PHYSICAL REVIEW B 82, 035409 �2010�

035409-7



cause the low-energy eigenstates in multilayers are coherent
superpositions of states localized in different layers, our DFT
calculations which employ a local exchange approximation,
might also yield inaccurate results for the screening ratio. In
fact simple measurements of the screening properties might
provide a valuable window on many-body physics in
ABC-stacked graphene multilayers which lies outside the
scope of commonly employed approximations.

IV. DISCUSSION

We have derived an effective model for the low-energy
conduction and valence bands of a ABC-stacked graphene
multilayer. The low-energy model can be viewed as a
momentum-dependent pseudospin Hamiltonian with the
pseudospin constructed from the low-energy sites on the top
and bottom layers. The simplified version of this model starts
from a �-band tight-binding model with only nearest-
neighbor hopping and yields a pseudospin magnetic field
whose magnitude varies as momentum pN in an N-layer
stack and whose direction is N�p, where �p is the momen-
tum orientation. The likely importance of electron-electron
interactions in multilayers can be judged by comparing the
characteristic band and interaction energies in a system with
carrier density n and Fermi wave vector pF�
n. The char-
acteristic Coulomb interaction energy per particle in all cases
goes like e2n1/2 while the band energy goes like nN/2. For
low-carrier densities the band energy scale is always smaller.
In the case of trilayer ABC graphene, the interaction energy
scale is larger than the band energy scale for carrier density
n�1012 cm−2.

Although interactions are clearly important and can po-
tentially introduce new physics, the chiral band model is not
valid at low densities because of the influence of remote
hopping processes which we have estimated in this paper by
carefully fitting a low-energy effective model to DFT bands.
The Hamiltonian in Eq. �6� combined with the parameters in
Table I should be used to describe graphene trilayers with
low-carrier densities. In a realistic system the Fermi surface
of a ABC trilayer with a low-carrier density consists of three
electron pockets centered away from the K point. As the
carrier density grows these pockets convert via a sequence of
two closely spaced Lifshitz transitions into a single
K-centered pocket. The carrier density at the Lifshitz transi-
tion is �1011 cm−2, which translates to a Coulomb interac-
tion scale of �45 meV, compared to a Fermi energy of
�7 meV.

The Berry phase associated with the momentum depen-
dence of the pseudospin orientation field, � for a full rotation
in single layers and 2� in the bilayer chiral model, for ex-
ample, is known44–50 to have an important influence on quan-
tum corrections to transport. Because of their very different
Berry phases time-reversed paths are expected to interfere
destructively for N-odd systems while constructively for
N-even system, leading to weak antilocalization for odd N
and weak localization for even N. This general tendency will
however be altered by trigonal and other corrections to the
low-energy effective Hamiltonian, like those we have de-
rived for trilayers. The influence of these band features on

quantum corrections to transport can be evaluated starting
from the results obtained here.

Another important consequence of Berry phases in the
chiral model is the unconventional Landau level structure it
yields.8,10–13 In the chiral model for ABC trilayers there is a
threefold degeneracy at the Dirac point, in addition to the
usual spin and valley degeneracies. This grouping of Landau
level leads to the expectation that quantum-Hall studies in
trilayers will reveal plateaus that jump from one at −6e2 /h to
one at 6e2 /h. Electron-electron interactions acting alone are
expected to lift these degeneracies and give rise to quantum-
Hall ferromagnetism.51–53 These interaction effects will act in
concert with small corrections to the Landau level structures
due to the remote hopping terms that have been quantified in
this paper.

Although we have discussed the case of ABC-stacked
trilayers, we expect qualitatively similar results for
ABC-stacking sequences of general thickness N. At low en-
ergies the band structure will consist of a conduction and a
valence band with pN dispersion and a gap in the presence of
an external electric field across the film. In the presence of a
magnetic field N Landau levels are pinned to the neutral
system Fermi level for each spin and valley. At the lowest
energies, within around 10 meV of the neutral system Fermi
level, constant energy surfaces will be strongly influenced by
remote hopping processes which will also split the Dirac
point Landau levels. The remote hopping terms give rise to
saddle points in the band structure at which the density of
states will diverge. Broken-symmetry electronic states are
mostly likely to occur when the Fermi level is coincident
with these saddle points. The energy range over which the
low-energy effective model applies will, however, decrease
with film thickness. We expect both disorder and interaction
effects to be strong within this family of low-dimensional
electron systems, which should be accessible to experimental
study in samples for which disorder is weak on the energy
scale over which the low-energy effective model applies.

In summary, we have derived an effective model for
trilayers, extracted the hopping parameters for ABC-stacked
multilayers, from DFT and studied the trilayer Fermi sur-
faces. Furthermore, we have explored the screening effect in
trilayers and then explained and compared with other
C2DES cases by a tight-binding model self-consistent Har-
tree method. Lastly, we have argued the importance of Berry
phases and interactions in C2DES.
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APPENDIX: DIAGRAMMATIC DERIVATION OF THE
LOW-ENERGY EFFECTIVE MODEL

As a result of tight-binding model, each term of the effec-
tive Hamiltonian �6� has a unique physical picture. Hereafter,
we view the strongly stacked pair BiAi+1 as a single dimer
site and assume zero external potentials for simplicity. The
general formula of effective low-energy models, Eq. �5�, can
be understood as follows. The terms in the second parenthe-
sis represent the leading hopping processes while the terms
in the first parenthesis are approximately 1− �v0p /�1�2 and
give a small correction. H11 is the unperturbed Hamiltonian
of low-energy sites and thus includes the direct hopping and
on-site energy. H21 and H12 are hoppings from and to low-
energy sites, respectively, describing the coupling to high-
energy ones. H22 contains the hoppings between high-energy
sites and is an intermediate process. Therefore H12�H22�−1H21
together gives the general “three”-step hoppings which start
from and end at low-energy sites by way of high-energy
ones. Note that the intermediate process within high-energy
sites is zero for single layers, a constant for bilayers, one step
for trilayers, and multistep for N�3 layers. In bilayers, for
example, the linear trigonal warping term arises from H11
while the chiral term attributes to H12�H22�−1H21. Because
H22 gives no hopping and is simply �1, H12�H22�−1H21 is
reduced to two step and hence the chiral term is quadratic. In
the trilayer case, for the matrix element B3A1, H11 provides

the first term of Ĥtr shown in Fig. 9�a� while H12�H22�−1H21

contributes Ĥch and the second term of Ĥtr as depicted in
Figs. 9�b�–9�d�, respectively. H12�H22�−1H21 also gives rise to

the second term of Ĥs for the matrix element A1A1 as pre-
sented in Figs. 9�e� and 9�f�.

Generally, in order to derive the low-energy effective
model for a general ABC-stacked N-layer graphene, we first
need to write a 2N
2N Hamiltonian matrix as Eq. �2�, then
we specify all the leading hopping processes in the diagram-
matic language like Fig. 9, instead of inverting the large
Hamiltonian matrix. The hopping diagrams are convenient
for systematic calculations in a way similar to the way Feyn-
man diagrams help in perturbation theories. The exact coef-
ficient of one hopping process can be easily calculated using
Eq. �5� by picking up the starting and ending sites, setting
matrix elements of unrelated sites as zero and turning off the

unrelated hopping parameters. Frequently, one hopping pro-
cess can be neglected because its requirement of more than
one subhopping with comparably small amplitudes.

*zhangfan@physics.utexas.edu
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.

Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sci-
ence 306, 666 �2004�.

2 P. First et al., MRS Bull. �to be published�.
3 T. Ando, J. Phys. Soc. Jpn. 74, 777 �2005�.
4 A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 �2007�.
5 A. K. Geim and A. H. MacDonald, Phys. Today 60�8�, 35

�2007�.
6 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 �2009�.

7 Michael Fuhrer et al., MRS Bull. �to be published�.
8 E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 �2006�.
9 Y. Barlas, T. Pereg-Barnea, M. Polini, R. Asgari, and A. H. Mac-

Donald, Phys. Rev. Lett. 98, 236601 �2007�.
10 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

11 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature �Lon-
don� 438, 201 �2005�.

12 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I.
Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim,

A1B1

A3B3

A2 B2�2/2

A1B1

A3B3

A2 B2

�0

��

��

��

��

A1B1

�3

A3B3

A2 B2

��

��

A1B1

A3B3

A2 B2

�3

��

��

A1B1

��

A3B3

A2 B2

��

��
A1B1

��

A3B3

A2 B2

��

��

(a) (b)

(c) (d)

(e) (f)

FIG. 9. �Color online� Schematic of hoppings from A1 to B3. �a�
One-step A1→B3, �b� three-step A1→B1A2→B2A3→B3, and ��c�
and �d�� two-step A1→B1A2→B3 and A1→B2A3→B3. Schematic
of hoppings from A1 to A1. �e� Two-step A1→B1A2→A1 and �f�
two-step A1→A2B1→A1.

BAND STRUCTURE OF ABC-STACKED GRAPHENE… PHYSICAL REVIEW B 82, 035409 �2010�

035409-9

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1143/JPSJ.74.777
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1063/1.2774096
http://dx.doi.org/10.1063/1.2774096
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1103/PhysRevLett.98.236601
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235


Nat. Phys. 2, 177 �2006�.
13 H. Min and A. H. MacDonald, Phys. Rev. B 77, 155416 �2008�;

Prog. Theor. Phys. Suppl. 176, 227 �2008�.
14 E. McCann, Phys. Rev. B 74, 161403�R� �2006�.
15 H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, Phys.

Rev. B 75, 155115 �2007�.
16 C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. L. Lin,

Phys. Rev. B 73, 144427 �2006�.
17 M. Aoki and H. Amawashi, Solid State Commun. 142, 123

�2007�.
18 P. Gava, M. Lazzeri, A. M. Saitta, and F. Mauri, Phys. Rev. B

79, 165431 �2009�.
19 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,

Science 313, 951 �2006�.
20 Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P.

Kim, H. L. Stormer, and D. N. Basov, Phys. Rev. Lett. 102,
037403 �2009�.

21 L. M. Zhang, Z. Q. Li, D. N. Basov, M. M. Fogler, Z. Hao, and
M. C. Martin, Phys. Rev. B 78, 235408 �2008�.

22 A. B. Kuzmenko, E. van Heumen, D. van der Marel, P. Lerch, P.
Blake, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 79,
115441 �2009�.

23 Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M.
F. Crommie, Y. Ron Shen, and F. Wang, Nature �London� 459,
820 �2009�.

24 K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett.
102, 256405 �2009�.

25 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J.
M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and
A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 �2007�.

26 J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L.
M. K. Vandersypen, Nature Mater. 7, 151 �2007�.

27 F. Zhang, H. Min, M. Polini, and A. H. MacDonald, Phys. Rev.
B 81, 041402�R� �2010�.

28 F. Guinea, Physics 3, 1 �2010�.
29 H. Min, G. Borghi, M. Polini, and A. H. MacDonald, Phys. Rev.

B 77, 041407�R� �2008�.

30 R. Nandkishore and L. Levitov, Phys. Rev. Lett. 104, 156803
�2010�.

31 O. Vafek and K. Yang, Phys. Rev. B 81, 041401�R� �2010�.
32 K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett.

103, 046811 �2009�.
33 F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B

73, 245426 �2006�.
34 S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 �2006�.
35 M. Koshino and E. McCann, Phys. Rev. B 80, 165409 �2009�.
36 M. Koshino, Phys. Rev. B 81, 125304 �2010�.
37 H. Min, M. D. Stiles, and A. H. MacDonald �unpublished�.
38 M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 �2002�.
39 P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502

�2009�.
40 D. Vanderbilt, Phys. Rev. B 41, 7892 �1990�.
41 N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich,

L. Kronik, and O. Hod, arXiv:1002.1728 �unpublished�.
42 T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and

D. C. Langreth, Phys. Rev. B 76, 125112 �2007�.
43 L. M. Lifshitz, Zh. Eksp. Teor. Fiz. 38, 1565 �1960�.
44 S. Hikami, A. I. Larkin, and N. Nagaosa, Prog. Theor. Phys. 63,

707 �1980�.
45 H. Suzuura and T. Ando, Phys. Rev. Lett. 89, 266603 �2002�.
46 A. F. Morpurgo and F. Guinea, Phys. Rev. Lett. 97, 196804

�2006�.
47 E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando,

and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 �2006�.
48 K. Kechedzhi, V. I. Fal’ko, E. McCann, and B. L. Altshuler,

Phys. Rev. Lett. 98, 176806 �2007�.
49 F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V.

Gorbachev, Phys. Rev. Lett. 103, 226801 �2009�.
50 E. McCann, Physics 2, 98 �2009�.
51 Y. Barlas, R. Cote, K. Nomura, and A. H. MacDonald, Phys.

Rev. Lett. 101, 097601 �2008�.
52 B. Feldman, J. Martin, and A. Yacoby, Nat. Phys. 5, 889 �2009�.
53 Y. Zhao, P. Cadden-Zimansky, Z. Jiang, and P. Kim, Phys. Rev.

Lett. 104, 066801 �2010�.

ZHANG et al. PHYSICAL REVIEW B 82, 035409 �2010�

035409-10

http://dx.doi.org/10.1038/nphys245
http://dx.doi.org/10.1103/PhysRevB.77.155416
http://dx.doi.org/10.1143/PTPS.176.227
http://dx.doi.org/10.1103/PhysRevB.74.161403
http://dx.doi.org/10.1103/PhysRevB.75.155115
http://dx.doi.org/10.1103/PhysRevB.75.155115
http://dx.doi.org/10.1103/PhysRevB.73.144427
http://dx.doi.org/10.1016/j.ssc.2007.02.013
http://dx.doi.org/10.1016/j.ssc.2007.02.013
http://dx.doi.org/10.1103/PhysRevB.79.165431
http://dx.doi.org/10.1103/PhysRevB.79.165431
http://dx.doi.org/10.1126/science.1130681
http://dx.doi.org/10.1103/PhysRevLett.102.037403
http://dx.doi.org/10.1103/PhysRevLett.102.037403
http://dx.doi.org/10.1103/PhysRevB.78.235408
http://dx.doi.org/10.1103/PhysRevB.79.115441
http://dx.doi.org/10.1103/PhysRevB.79.115441
http://dx.doi.org/10.1038/nature08105
http://dx.doi.org/10.1038/nature08105
http://dx.doi.org/10.1103/PhysRevLett.102.256405
http://dx.doi.org/10.1103/PhysRevLett.102.256405
http://dx.doi.org/10.1103/PhysRevLett.99.216802
http://dx.doi.org/10.1038/nmat2082
http://dx.doi.org/10.1103/PhysRevB.81.041402
http://dx.doi.org/10.1103/PhysRevB.81.041402
http://dx.doi.org/10.1103/Physics.3.1
http://dx.doi.org/10.1103/PhysRevB.77.041407
http://dx.doi.org/10.1103/PhysRevB.77.041407
http://dx.doi.org/10.1103/PhysRevLett.104.156803
http://dx.doi.org/10.1103/PhysRevLett.104.156803
http://dx.doi.org/10.1103/PhysRevB.81.041401
http://dx.doi.org/10.1103/PhysRevLett.103.046811
http://dx.doi.org/10.1103/PhysRevLett.103.046811
http://dx.doi.org/10.1103/PhysRevB.73.245426
http://dx.doi.org/10.1103/PhysRevB.73.245426
http://dx.doi.org/10.1103/PhysRevLett.97.036803
http://dx.doi.org/10.1103/PhysRevB.80.165409
http://dx.doi.org/10.1103/PhysRevB.81.125304
http://dx.doi.org/10.1080/00018730110113644
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://arXiv.org/abs/arXiv:1002.1728
http://dx.doi.org/10.1103/PhysRevB.76.125112
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1103/PhysRevLett.89.266603
http://dx.doi.org/10.1103/PhysRevLett.97.196804
http://dx.doi.org/10.1103/PhysRevLett.97.196804
http://dx.doi.org/10.1103/PhysRevLett.97.146805
http://dx.doi.org/10.1103/PhysRevLett.98.176806
http://dx.doi.org/10.1103/PhysRevLett.103.226801
http://dx.doi.org/10.1103/Physics.2.98
http://dx.doi.org/10.1103/PhysRevLett.101.097601
http://dx.doi.org/10.1103/PhysRevLett.101.097601
http://dx.doi.org/10.1038/nphys1406
http://dx.doi.org/10.1103/PhysRevLett.104.066801
http://dx.doi.org/10.1103/PhysRevLett.104.066801

