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Abstract—This paper develops a novel 3D shape
retrieval method, which uses Bag-of-Features and
an efficient multi-view shape matching scheme. In
our approach, a properly normalized object is first
described by a set of depth-buffer views captured
on the surrounding vertices of a given unit geodesic
sphere. We then represent each view as a word
histogram generated by the vector quantization of
the view’s salient local features. The dissimilarity
between two 3D models is measured by the minimum
distance of their all (24) possible matching pairs.

This paper also investigates several critical issues
including the influence of the number of views,
codebook, training data, and distance function.
Experiments on four commonly-used benchmarks
demonstrate that: 1) Our approach obtains superior
performance in searching for rigid models. 2) The
local feature and global feature based methods are
somehow complementary. Moreover, a linear combi-
nation of them significantly outperforms the state-
of-the-art in terms of retrieval accuracy.
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1. INTRODUCTION

How to efficiently and effectively retrieve 3D models
based on their shapes has become an active subject
in several research communities such as computer vi-
sion, computer graphics, mechanical CAD, and pattern
recognition. With the development of various kinds of
3D shape retrieval benchmarks (e.g. PSB [1], ESB [2],
McGill [3], NSB [4] etc.) and the successful organiza-
tion of the 3D SHape REtrieval Contest (SHREC) [5],
more and more researchers have been attracted to work
in this area and a large number of algorithms have been
proposed.

One of the most important research directions in 3D
shape retrieval is Feature Extraction. Ideally, a good
shape descriptor has the following desirable properties,
1) High discrimination; 2) Efficient shape matching; 3)
Compact representation; 4) Efficient feature extraction;
5) Invariance to similarity transformations (in some
cases, descriptors should also be articulation invari-
ant [6]); 6) Invariance to shape representation; 7) In-
variance to shape degeneracies and noises. Generally
speaking, existing 3D shape descriptors can be loosely

classified into four categories [8]: statistics-based, graph-
based, transform-based, and view-based. Recent inves-
tigations [7], [8], [9] illustrate that view-based methods
with pose normalization preprocessing get better perfor-
mance in retrieving rigid models than other approaches
and more importantly they satisfy almost all character-
istics mentioned above. Therefore, despite the fact that
they have several intrinsic drawbacks (e.g. discarding in-
visible information of an object), view-based approaches
are still without doubt the most popular and practical
methods in the field of 3D shape retrieval.

Up to now, probably because of the computational
complexity of shape matching for local features, most
of the view-based methods utilize only global shape
descriptors to represent 2D views, which hinders the fur-
ther improvement of retrieval performance. In fact, local
features have been widely used in many computer vi-
sion applications [10]. The utilizations of local features
usually result in better performance than the traditional
methods using only global descriptors. Intuitively, it is
reasonable to infer that similar techniques can be applied
into 3D shape retrieval, especially for the view-based
methods.

Inspired by the work presented in [11] where Ohbuchi
et al. reported two shape-based 3D object retrieval
methods using salient visual local features, the first one
represents the whole 3D model by a word histogram
while the second one directly expresses and matches
two normalized models via the salient local features. In
this paper, we propose a new visual similarity based 3D
shape retrieval approach which describes each view as
a word histogram built using the vector quantization of
salient local descriptors and employs an efficient multi-
view shape matching scheme to compute the distance
between two 3D objects. An overview of the method
is as follows: First, a 3D model is properly aligned to
the canonical coordinate frame so that the normalized
pose could be suitable for drawing standard three-view
images and then depth-buffer views are captured on the
surrounding vertices of a unit geodesic sphere. After-
wards, for each view we extract salient local features
(e.g. SIFT [39]) which are subsequently quantized into
a word histogram using the Bag-of-Features approach.
Finally, according to the properties of the geodesic
sphere previously used, an efficient shape matching can
be carried out to measure the dissimilarity between two
objects by computing the minimum distance of their all



(24) possible matching pairs.

To some extent, the proposed method is quite different
from the BF-SIFT algorithm presented in [11]. Basically,
our approach is a visual similarity based method, fol-
lowing the idea that “if two 3D models are similar, they
also look similar from all viewing angles”; while BF-
SIFT [11] is a “global Bag-of-Words based method”,
that represents a 3D model as one histogram via the
vector quantization of its local features using the Bag-
of-Words approach. Moreover, several new techniques
have been developed to make our method be well suited
for practical applications of 3D rigid shape retrieval,
and results also demonstrate that our method markedly
outperforms BF-SIFT [11] in terms of retrieval accuracy.

The major contributions of this paper are twofold.

1) A novel visual similarity based 3D shape retrieval
framework is proposed, where the Bag-of-Features
method is utilized to describe each view as a word
histogram and the objects are compared by an
efficient multi-view shape matching scheme.

2) Exhaustive experiments are carried out carefully to
investigate the influence of the number of views,
codebook, training data, and distance function.
Perhaps surprisingly, our results show that, in
contrast to the traditional Bag-of-Features, the
time-consuming clustering is not necessary for the
codebook construction of our method.

The rest of the paper is organized as follows. Section
2 discusses previous work. Section 3 presents an explicit
description of our method. Experimental results are then
demonstrated and analyzed in Section 4. Finally, we
provide the conclusion of this paper in Section 5.

2. RELATED WORK

Based on the shape descriptors used, existing 3D
shape retrieval methods can also be classified into two
categories, global feature based methods and local fea-
ture based methods. In this section, we only discuss the
most relevant work with respect to our approach. For
more information about the development of 3D shape
retrieval, we refer the reader to a recent survey [12].

2.1 Global feature based 3D shape retrieval

Most of the existing 3D shape retrieval methods be-
long to this category. So far, a large number of 3D global
shape descriptors have been proposed such as D1 [13],
D2 [14], Spherical harmonic descriptor (SHD) [15], 3D
Wavelet descriptor [16], Skeleton descriptor [17], Reeb
graph descriptor [18], Light field descriptor (LFD) [19],
DESIRE [20], and so on. Since our 3D shape descriptor
is designed to be able to measure the visual similarity
between two objects, we pay more attentions to view-
based methods, which have been considered as the most
discriminative approaches in the literature [1], [5].

Among these view-based methods, Light Field De-
scriptor [19] (LFD) method is perhaps the most famous
one, where a 3D model is represented by 100 silhouettes

(10 views per group) rendered from uniformly dis-
tributed viewpoints on the half side of a unit sphere and
the silhouette is encoded by a feature vector consisting
of 35 Zernike moments and 10 Fourier coefficients. They
measured the dissimilarity between two objects by the
minimum distance of 6000 view group matching pairs,
considering all possible situations. LFD method avoids
pose normalization via an exhaustive searching which
inevitably aggravates computational cost. To address this
problem, Lian et al. [9] developed a multi-view shape
matching scheme for properly normalized generic mod-
els. The experiments showed that, with the same image
descriptors, retrieval performance including discrimina-
tion, spatial requirement and searching speed could be
considerably improved compared to the original LFD
method. As a matter of fact, pose normalization has been
widely applied in many view-based 3D shape retrieval
methods [21], [22], [7], [23], [24]. The major difference
between them is the feature vectors they used to describe
views. For instance, 2D Fourier coefficients [21], the
elevation descriptor [22], and the depth-line descrip-
tor [7] have been employed to represent depth-buffer
views. Similarly, silhouette views have been expressed
by the 2D shape distribution descriptor [23] and 1D
Fourier coefficients [24]. The methods discussed above
all utilized the images captured from viewpoints located
on the sphere. Recently, Papadakis et al. [25] proposed
a 3D shape descriptor using a set of panoramic views,
which were obtained by projecting a 3D model to the
lateral surface of a cylinder. The panoramic views were
described by their 2D Discrete Fourier coefficients as
well as 2D Discrete Wavelet coefficients.

2.2 Local feature based 3D shape retrieval

2D local features have proven to be very successful
in many applications (e.g. image retrieval [26], object
classification [27], and video data mining [28] etc.) and
a vast number of 3D local features (e.g. 3D spin im-
age [29], harmonic shape context [30], 2.5D SIFT [31],
and Thrift [32] etc.) have also been developed, however,
just a few works have been reported to apply local
features in 3D shape retrieval. This is mainly because
of the high computational cost of shape matching for
huge amounts of local descriptors extracted from 3D
objects. Local feature based 3D shape retrieval is an
interesting and promising research direction, since it
has intrinsic capability of solving articulated shape re-
trieval and partial shape retrieval problems. Funkhouser
and Shilane [33] selected distinctive multi-scale local
features, which are calculated via Spherical Harmonic
transformation, and applied Priority-Driven search to
efficiently achieve partial matching. Gal et al. [34]
proposed a curvature-based local feature that describes
the geometry of local regions on the surface and then
constructed a salient geometric descriptor by clustering
together a set of local descriptors which are interesting
enough according to a given saliency function. Geomet-
ric Hashing was utilized to accelerate the partial match-



ing of salient local features. Tal and Zuckerberge [35]
decomposed each object into meaningful components,
and then, based on the decomposition, they represented
the 3D model as an attributed graph that is invariant to
non-rigid transformations.

Bag-of-Features, which is a popular technique to
speed up the matching of image local features, has
recently been introduced into local feature-based 3D
shape retrieval. Liu et al. [36] presented a compact 3D
shape descriptor named “Shape Topics” and evaluated
its application to 3D partial shape retrieval in their
paper [36], where a 3D object was represented as a
word histogram constructed by vector quantizing the
local features of the object. Spin images, calculated on
points randomly sampled on the surface, were chosen
as the local descriptor. Li et al. [37] introduced a weak
spatial constraint to the method proposed in [36] by
partitioning a 3D model into different regions based
on the clustering of local features’ spatial positions,
but the improvement was limited. Toldo et al. [38]
applied a more sophisticated mesh segmentation method
to decompose a 3D object into several subparts. Each
segmented region was represented by one descriptor
and then a word histogram was generated by assigning
all subpart descriptors of the object into visual words.
Ohbuchi et al [11] reported a view-based method using
salient local features (SIFT [39]). They represented a
3D object by a word histogram derived from the vector
quantization of salient local descriptors extracted on
the depth-buffer views captured uniformly around the
object. Their experiments demonstrated that the method
resulted in excellent retrieval performance for both ar-
ticulated and rigid objects.

3. METHOD DESCRIPTION

In this section, we first present an overview of our
method and then elaborate on the details of each step in
the corresponding subsections.

3.1 Overview

Since the method is mainly based on the Bag-of-
Features approach and a multi-view shape matching
scheme (named Clock Matching for the sake of conve-
nience and intuition), we call it “CM-BOF” algorithm
in this paper. The CM-BOF algorithm, depicted in
Figure 1, is implemented subsequently in four steps:

1) Pose Normalization: Normalize 3D objects with
respect to the canonical coordinate frame to ensure
that their mass centers coincide with the origin,
they are bounded by the unit sphere, and they are
well aligned to three coordinate axes.

2) Local Feature Extraction: Capture depth-buffer
views on the vertices of a given unit geodesic
sphere whose mass center is also located in the
origin and then extract salient local features from
these range images.

3) Word Histogram Construction: For each view,
quantize its local features into a word histogram

using a pre-specified codebook. Normally, the
codebook is obtained off-line by clustering the
training data randomly sampled from the feature
set of all models in the target database. However,
the codebook of our method can also be directly
built using randomly sampled N,, local feature
vectors. This has been verified by the experiments
described later.

4) Multi-view Shape Matching: Carry out an effi-
cient shape matching scheme to measure the dis-
similarity between two 3D models by calculating
the minimum distance of their 24 matching pairs.

3.2 Pose Normalization

The key idea of our method is to measure the visual
similarity between 3D objects with arbitrary poses, it
is preferable if the models can be normalized in the
manner that corresponds well with human perception.
Therefore, we normalize the objects by a recently pro-
posed approach [9] which combines the PCA (principal
component analysis) based and the rectilinearity based
pose alignment algorithms to obtain better normalization
results. As we know, PCA is the most prominent tool
for accomplishing rotation invariance by solving three
principal axes of a 3D object. While the basic idea
of the rectilinearity-based method (only suitable for the
polygonal mesh) is to specify a standard pose through
the calculation of the model’s rectilinearity value. Three
steps of the composite method are described as follows.

1) Translation and scaling. For a given 3D mesh,
translate the center of its mass to the origin and
then scale the maximum polar distance of the
points on its surface to one.

2) Rotation by two methods. Apply the PCA-based
and the rectilinearity-based method, respectively,
to rotate the original model to the canonical coor-
dinate frame and then store these two normalized
meshes in memory;

3) Selection. Calculate the number of valid pixels of
three silhouettes, projected on the planes YOZ,
Z0X, XOY, for the two normalized meshes
generated in the previous step. And then select
the model, which yields the smaller value, as the
final normalization result.

Two normalization examples are displayed in Fig-
ure 2. Note that, the method only performs incomplete
pose normalization for rotation transformation. More
specifically, only the positions of three axes are fixed
for the model normalized by the composite method, that
is, the direction of each axis is still undecided and the
X-axis, y-axis, z-axis of the canonical coordinate system
can be located in all three axes. That also means 24
different orientations are still plausible for the aligned
models, or rather, 24 matching operations should be
carried out when comparing two normalized objects. For
more details of the pose alignment algorithm, we refer
the reader to the paper [9] where convincing experimen-
tal results have been obtained to illustrate the advantage
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An illustration of our method. First, a model is properly normalized. Second, depth-buffer views are captured from the vertices on

a given geodesic sphere and then, for each view, we calculate salient SIFT descriptors [39]. Third, a word histogram is obtained by vector
quantizing the view’s local features against the codebook, so that the object can be expressed by a set of histograms. Finally, an efficient shape
matching is carried out to obtain the best match from all 24 matching pairs between two objects.

of this approach, in the context of pose normalization
and 3D shape retrieval, against other methods.
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Fig. 2. Two alignment examples of the pose normalization method
we use. The final result is chosen, using a selection criterion, from
the normalization results of two methods.

3.3 Local Feature Extraction

After pose normalization, 3D meshes have been well
aligned to the canonical coordinate frame. Then their
depth-buffer views are captured on the vertices of a
given unit geodesic sphere whose mass center is also

Fig. 3. Geodesic spheres generated from a regular octahedron.

located in the origin. The geodesic spheres used here
are obtained by subdividing the unit regular octahedron
in the way shown in Figure 3. These kinds of polygonal
meshes are suitable for our multi-view based shape
retrieval mechanism, mainly because of the following
three reasons. First, the vertices are distributed evenly
in all directions. Second, these geodesic spheres enable
different level resolutions in a natural manner. The
coarsest (level-0) one is obtained using a unit regular
octahedron with 6 vertices and 8 faces. Higher levels
can be generated by recursive subdivisions. Third, since
all these spheres are derived from an octahedron, given
the positions of six vertices for the original octahedron,
other vertices can be specified automatically. Moreover,
all vertices are symmetrically distributed with respect
to the coordinate frame axes. That means, when com-
paring two models, only 24 matching pairs need to be
considered for the feature vector in an arbitrary level.
After view rendering, a 3D object can be approx-
imately represented by a set of depth-buffers from
which we extract salient SIFT descriptors, as presented
in [39]. The SIFT descriptor is calculated, using the



Fig. 4. A demonstration on the robustness of the salient local
descriptor against small viewpoint changes.

VLFeat matlab source code developed by Vedaldi and
Fulkerson [40], in the following two steps. First, ob-
tain the scale, orientation, and position information of
the salient points detected by the Different-of-Gaussian
(DoG) approach. Second, compute SIFT descriptors for
the local interesting regions which are determined by
the scale and position of the salient points. Here, the
SIFT descriptor, which is actually a 3D histogram of
gradient location and orientation, is computed using its
default parameters, where the location is divided into
a 4 x 4 grid and the gradient angle is quantized into
eight orientations. This results in a feature vector with
128 elements. The feature is designed to be robust,
to some extent, against similarity transformation, affine
distortion, noise and illumination changes of images.
Figure 4 shows some examples of SIFT descriptors ex-
tracted from the range images which are scaled, rotated,
and affine transformed. It can be seen that the SIFT
descriptor is stable to various changes of 3D viewpoints,
which is a desirable property for our visual similarity
based 3D shape retrieval method to compensate its
reliance on the stability of pose normalization.

3.4 Word Histogram Construction

Directly comparing 3D models by their local visual
features is time consuming, especially for the 3D shape
retrieval methods using a large number of views. To
address this problem, we quantize the SIFT descriptors
extracted from a depth-buffer image into one word
histogram so that the view can be represented in a highly
compact and distinctive way.

Before vector quantization, a codebook (also named
as vocabulary) with N,, visual words should be cre-
ated. Usually, the codebook is generated via off-line
clustering. More specifically, huge numbers of feature
vectors are first randomly sampled from the feature set
of the target database to form a training set. Then, the
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Fig. 5. The data structure of our 3D shape descriptor that is composed
of several word histograms.

training set is clustered into N,, clusters using the K-
means algorithm. At last, centers of the clusters are
selected as the feature vectors of visual words in the
codebook. Since the spatial requirement and calculating
time of the K-means clustering are significant, many
other algorithms [41] (e.g. kd-tree, ERC-tree, and Lo-
cality sensitive hashing) have been applied to alleviate
the computational cost. However, as we can see from the
experiments described in Section 4.2, clustering is not
necessary for the codebook construction of our method.
In other words, randomly sampled local feature vectors
can be directly used to create the vocabulary and these
two codebook construction approaches result in almost
the same discrimination for 3D shape retrieval.

By searching for the nearest neighbor in the code-
book, a local descriptor is assigned to a visual word.
Then each view can be represented using a word
histogram whose ‘" bin records the number of ‘"
visual words in the depth-buffer image. In order to
obtain satisfactory discrimination capability, usually the
histogram should have thousands of bins. Let the number
of views be 66 and the number of visual words in the
codebook be 1500, without optimization, the 3D shape
descriptor would be of dimension 99000. In fact, with
the observation that, for our method, the average number
of salient points in a view (with size 256 x 256) is only
about 30, we can represent the histogram in a better
way that not only makes the shape descriptor highly
compact but also significantly improves the efficiency
of dissimilarity calculation.

Figure 5 demonstrates an example of the data struc-
ture for our 3D shape descriptor, where only the in-
formation (i.e. bin No. and bin value) of some bins,
whose values are not equal to zero, appears in the feature
vector. Experimental results show that, considering the
method with 66 views and a 1500-dimension codebook,
on average the new data structure requires about 30
times less spatial storage and performs approximately
21 times quicker for feature comparison.

3.5 Multi-view Shape Matching

The last step of our 3D shape retrieval method is the
dissimilarity calculation (also called shape matching)
between two shape descriptors. The multi-view shape



matching (Clock Matching) scheme we use is originally
proposed in [9], here we provide more details about this
approach and apply it into our shape matching task with
new distance measures.

The basic idea of Clock Matching is that, after we
get the major axes of an object, instead of completely
solving the problem of fixing the exact positions and
directions of these three axes to the canonical coordinate
frame, all possible poses are taken into account during
the shape matching stage. The principle of the method
is simple and reasonable, moreover, our previous ex-
periments [9] have already illustrated considerable im-
provements against other approaches. As we mentioned
above, 24 different poses still exist for a normalized
model. Figure 6 shows all possible poses of a chair after
pose alignment processing in the canonical coordinate
frame. For the sake of convenience x+, x-, y+, y-,
z+, and z- axis are denoted as O, 1, 2, 3, 4, and 5,
respectively. When comparing two models, one of them
will be placed in the original orientation denoted as
a permutation pg = {po(k)|k = 0,1,2,3,4,5} while
the other one may appear in 24 different poses de-
noted as permutations p; = {p;(k)|k = 0,1,2,3,4,5},
0 < ¢ < 23. From these 24 permutations (see the
underneath of each small image in Figure 6), all possible
matching pairs ((po,p;), 0 < i < 23) between two
models can be obtained. For instance, we can capture six
silhouettes or depth buffers from the vertices of a unit
regular octahedron and then extract 2D shape descriptors
for these images to construct a view-based 3D feature
vector. The vertices in the corresponding axes are also
denoted as 0, 1, 2, 3, 4, and 5, respectively. Then we
compare all 24 matching pairs for two models and the
minimum distance is chosen as their dissimilarity.

Generally speaking, Clock Matching performs in two
steps:

1) Initialization. Recursively subdividing the original
unit octahedron n4 times, we get a geodesic sphere
with the required resolution and the coordinates
of its vertices should be recorded consecutively
according to the time they emerge. During the
process of subdivision, two tables (named edge
table and vertex table, respectively) which indicate
the relationship between old and new vertices are
also obtained. An example of the edge table and
the vertex table, utilized to store the information
during the stage of subdividing the octahedron, are
demonstrated in Figure 7. Note that we only need
to process this step once.

2) Comparison.As mentioned above, when compar-
ing two models represented by level-0 descriptors,
we calculate the minimum distance among 24
matching pairs ((po,p;), 0 < @ < 23) which
can be derived using the permutations shown in
Figure 6. If higher-level shape descriptors are
applied, we should use the edge table, vertex table,
and p;, 0 < ¢ < 23 to build new permutations
p; = {p;(k)|0 < k < N,}, 0 <i < 23 describing

{4,5,0,1,2,3}

f

|
(5,4,1,0,2,3}

{2,3,5,4,1,0}
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Fig. 6. All (24) possible poses of a chair after it has been incompletely
aligned to the canonical coordinate frame. The corresponding permu-
tations are listed underneath. The permutation p;,7 = 0,1,...,23
denotes the positions of three major axes of the object in the context
of pose 1.

all possible matching pairs (pz),p;), 0<¢<23
for two models represented by N, views. Finally,
the dissimilarity between the query model g and
the source model s is defined as,

Ny—1
Disgs = min >~ D (FVy(po(k), FVa(pi(k) ),

0<i<23

where F'V,, = {FV,,(k)|0 < k < N,} denotes
the shape descriptor of 3D object m, F'V,,(k) is
the signature of view k, and D(-, ) is the distance
function. In Section 4.4, four metrics, denoted
as DyrazHis, DMintis, DavgHis, and Dpi, are
defined and compared. By default, we utilize
Dprarmis to measure the dissimilarity between
two views.

4. EXPERIMENTS

In this section, we first present and discuss experi-
mental results to study the influence of the number of
views, codebook, training data, and distance function on
retrieval performance for our CM-BOF algorithm. Then,
3D shape retrieval results are analyzed for the visual
similarity based methods (CM-BOF and GSMD [9])
using local features and global features, respectively. Fi-
nally, we compare the retrieval accuracy of our methods
with other approaches.
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Fig. 7. The edge table and the vertex table generated when
subdividing the original octahedron into the geodesic sphere with 18
vertices. The indexes of the vertices of the original edges are stored in
the edge table. New vertices’ indexes can be obtained by using pairs of
old vertices to search in the vertex table. A more intuitive illustration
of the relations between the original vertices (green circles) and the
new vertices (red pentagons) is given in the top-right of this figure.

We run the experiments on four publicly available 3D

shape benchmarks briefly described as follows:

o PSB: The test set of the Princeton Shape Bench-
mark [1] contains 907 generic models which are
classified into 92 categories. The maximum number
of objects in a class is 50, while the minimum
number is 4.

e NSB: The NIST (National Institute of Standards
and Technology) Shape Benchmark [4] is com-
posed of 800 generic models which are classified
into 40 categories. Each class contains 20 objects.

« ESB: The Engineering Shape Benchmark [2] con-
tains 867 CAD models which are classified into
45 categories. It has maximum 58 and minimum 4
objects in a class.

o McGill: The McGill Shape Benchmark [3] consists
of 255 articulated objects which are classified into
10 categories. The maximum number of objects in
a class is 31, while the minimum number is 20.

Since our methods are specifically designed for rigid

models, most of our experiments (except the last one)
are conducted only on the PSB and NSB databases.

We implement the feature extraction in Matlab R2007,

while the shape matching code is written in C++ of
Microsoft Visual Studio 2005. All programs are run
under windows XP on a personal computer with a
2.66GHz Intel Core2 Quad CPU, 4.0GB DDR2 memory,
and a 128MB NVIDIA Quadro Fx550 graphics card.

Note that: Unless otherwise specified, the default
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Fig. 8. Influence of the number of views. (a) and (b) show the
Precision-recall plots for the methods, with different numbers of views,
run on the NSB and PSB databases, respectively.

parameters of our CM-BOF method are selected as fol-
lows: the resolution of depth-buffer images is 256 x 256,
the number of views NN,, = 66, the size (i.e. the number
of visual words) of the codebook N,, = 1500, the
size (i.e. the number of local feature vectors) of the
training set N; ~ 120000, the codebook is generated
by clustering the training set, which is derived from the
target database, using the Integer k-means method whose
source code is available on the website [40].

4.1 Influence of the number of views

In the first experiment, we investigate the influence
of the number of views on retrieval performance.

Figure 8 shows the precision-recall curves calculated
for our CM-BOF methods using geodesic spheres with
6, 18, 66, and 258 vertices. It can be observed that
retrieval performance can be improved by increasing the
number of views, especially when the number of views
jump from 6 to 66. But the improvements slow down as
the number of views keeps growing, while the compu-
tational cost still increases sharply. This is because an
upper limit exists for the retrieval performance of view-
based methods, but more views involved always means
that more time needs to be spent on calculating local
descriptors and more memories are required to store
the feature vectors. Consequently, in order to make the
balance between quality and cost, the number of views
is experimentally chosen as 66 in the following sections.
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Fig. 9. Influence of the codebook size. (a) and (b) show the DCG
versus codebook size curves for two methods (i.e. CM-BOF and BF-
SIFT [11]) run on the NSB and PSB databases, respectively.

4.2 Influence of the codebook

In the second experiment, we study the influence of
the codebook size and creation methods by comparing
retrieval performance among the shape descriptors corre-
sponding to codebooks with different sizes and different
construction methods.

Codebook size. Probably, we can say that the most
important parameter of the CM-BOF algorithm is the
number of visual words (denoted as V,,) in the code-
book. This is because the codebook size not only de-
termines the spatial requirement but also significantly
affects the retrieval performance of the method. Fig-
ure 9 demonstrates results which report the Discounted
Cumulative Gain (DCG, well-known as the most stable
retrieval measure [42]) values for CM-BOF methods
with steadily increased codebook size. We observe that,
as the codebook size enlarges, DCG values go up sharply
at the beginning and become stable approximately when
N, > 1000. Similar conclusions are obtained from
Figure 9 for the BF-SIFT method presented in the paper
[11], where only one word histogram is used to describe
a 3D object. Here, both our CM-BOF and the BF-SIFT
methods utilize 66 depth-buffer views. According to the
experimental result, we set the number of visual words
in the codebook as 1500 in this paper.

Construction methods. Next, two codebook building
methods are compared. The first one selects the centers
of feature clusters to form the codebook, after the
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Fig. 10. Influence of the training data size. (a) and (b) show the
DCG versus training data size curves for two methods (i.e. CM-BOF,
BF-SIFT [11]) run on the NSB and PSB databases, respectively.

clustering of the train data set which is composed of
a large number of local descriptors randomly sampled
from the database to be retrieved. The second method
directly uses the randomly sampled feature vectors as
the visual words in the codebook. Typically, the Bag-
of-Features method is implemented with clustering. The
previous work [43] has also demonstrated that the
first codebook construction method results in better
performance in image classification against the second
method. However, as we can see from Table 1, which
presents the means and standard deviations of the DCG
values over 10 runs of our CM-BOF algorithms with
and without clustering. A conclusion can be made that
the random sampling approach works as well as the
clustering approach for our CM-BOF 3D shape retrieval
algorithm when the codebook size has been properly
chosen. We infer that this is mainly due to the carefully-
designed shape matching scheme and the fewer invalid
information existing in the views captured from the 3D
objects compared to the ordinary images used in other
2D applications.

TABLE 1
INFLUENCE OF THE CODEBOOK CONSTRUCTION METHOD. THE
TABLE GIVES THE MEANS AND STANDARD DEVIATIONS OF THE
DCG VALUES OVER 10 RUNS OF OUR CM-BOF ALGORITHMS ON
TWO BENCHMARKS, FOR CODEBOOKS GENERATED USING
CLUSTERING (K-MEANS), AND FOR RANDOMLY SAMPLED
CODEBOOKS (RANDOM)

[[ K-means Random
NSB 83.1+£ 0.1  83.14+ 0.2%
PSB 7174 0.2%  71.7+£ 0.2%

4.3 Influence of the training data

In the third experiment, we analyze the influence of
the training data size and training source on retrieval
performance.

Training data size. Figure 10 shows the curves
depicting the relation between DCG values and the
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Fig. 11. Influence of the training data source on the retrieval results.
(a) and (b) compare the DCG values of our CM-BOF methods,
corresponding to four different training data sources, run on the NSB
and PSB databases, respectively.

number of feature vectors in the training set. It can be
seen that the size of the training data has very little
impact on the retrieval performance. No matter how
large or how small the training set is, the corresponding
retrieval performance remains stable, even when the
size of the training data is just a little bit larger than
the codebook (e.g. N,, = 1500 and N, = 1578).
The experimental results provide an additional support
to the aforementioned conclusion that clustering is not
necessary for our method.

Training data source. It is worthy of investigating
whether it is necessary to create the training set by
sampling the feature vectors in the database to be
searched. In other words, we want to study the influence
of the source database from which the local descriptors
are randomly sampled to form the training set. Here,
retrieval performance is evaluated on the NSB and PSB
databases for the CM-BOF methods corresponding to
four training sets generated from the PSB, NSB, ESB,
and McGill databases, respectively. Figure 11 shows the
results. Apparently, as we expected, the NSB training
data gives the best result on the NSB database and
the PSB training data gives the best result on the PSB
database. Moveover, we also observe that better results
could be obtained if more similar training data source,
compared to the target database, is utilized.

4.4 Influence of the distance function

In the forth experiment, we compare the performance
of our methods, which use different metrics to calculate
the distance between two views.

Here we test four distance functions denoted as
Darazriss Dyinmis, Davgris, and Dpy, respectively.
Assume that view k is described by the word histogram
H, = {H;()l7 = 0,1,...,N, — 1}, given two
histograms H, Ho, the distance between them can be
calculated by the following four metrics, the first three
of which are modified from the histogram intersection
distance presented in [44].
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Fig. 12. Influence of the dissimilarity measure on retrieval results.
(a) and (b) compare the DCG values of our CM-BOF methods,
corresponding to four different distance functions, evaluated on two
benchmarks. The metrics DpjarHiss DaminHiss DAvgHis, and
Dy, are denoted as Max, Min, Avg, and LI, respectively.

1). Maximum dissimilarity histogram intersection dis-
tance.

S min(Hy (), Ha () |
max (3 Hy(5), S0 Ha()))

2). Minimum dissimilarity histogram intersection dis-
tance.

DMazHis =1-

>y min(Hy (). Ha (7))
min(Y 0 Hi (), Sy Ha(5))

3). Average dissimilarity histogram intersection dis-
tance.

1—

Diarinmis =

SN min(Hy (), Ha(5)

)
D pvgris =1 — =0 e
Avott (SN T H () + SN Ha(4)/2

4). Normalized L1 distance.
Ny—1 . .
Dy = Hl(]) H2(])
L1 = Z No—1 H (i - Ny, —1 .
Zj:o 1(7) Zj:o Hs ()

=0
As it can be seen from Figure 12, Dpsq.5is Outper-
forms other three metrics.

4.5 Comparison of local and global methods

In this section, results of our fifth experiment are
presented to discuss the advantages and disadvantages of
two methods (CM-BOF and GSMD [9]), which utilize
local and global features, respectively, to describe views.

These two methods both capture 66 views and apply
the same shape matching scheme, the only difference
is that the local-based method (CM-BOF) uses a word
histogram of local features to describe a view while the
global-based method (GSMD [9]) represents the view by
a global feature vector with 47 elements including 35
Zernike moments, 10 Fourier coefficients, eccentricity
and compactness. The comparison is performed using
the precision-recall curve on each class of the NSB
database. Inspecting the comparison results shown in
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Precision-recall curves for specific object types on the NSB database. In this Figure, Local denotes the local feature based method

(CM-BOF) while the global feature based method (GSMD) is denoted as Global.

Figure 13, we could classify them into the following
three categories and suggest several possible reasons.
Four examples of the first category are displayed in
row 1, where the local-based method significantly out-
performs the global-based method. 62.5% objects in
the NSB database belong to this category. We specu-
late that, this is because, for these models in a same
class, they have different global appearances but look
similar when focusing on local regions, or their local
descriptors provide more details than the global features.
For instance, cabinet, telephone, and biplane, etc. can
be better retrieved using the local-based method. Four
examples of the second category are demonstrated in
row 2, where the global-based method obtains much
better results than the local-based one. Only 12.5%
models belong to this category. Possible explanations
are twofold, on the one hand, local salient features are
extracted from unimportant but locally different subparts
of these models (e.g. sword’s handle); on the other
hand, overall appearances of these models (e.g. missile,
glasses, and ant) in the same class are similar but not
their local regions. The last row shows the third category,
where the local-based and global-based methods get
almost the same performance. 25.0% objects, such as
sofa, monitor, hand gun, guitar and so on, belong to this
category. To sum up, the local-based method (CM-BOF)
is generally superior to the global-base method (GSMD)
(the result comparisons for entire databases are shown
in Figure 14), however, the global-base method may
outperform the local-based method when searching for
certain kinds of models. Furthermore, these two methods
represent a depth-buffer view in quite different manners.
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Therefore, to some extent, they are complementary and
it is possible to create a more discriminative descriptor
by using the combination of local feature and global
feature to represent the depth-buffer views.

4.6 Comparison with the state-of-the-art

In our last experiment, we compare the performance
of our algorithms and other state-of-the-art methods.

Figure 14 demonstrates the precision-recall curves
on aforementioned four benchmarks for seven methods
listed as follows,

D2: A method describing a 3D object as a his-
togram of distances between pairs of points on
the surface [14]. The number of histogram bins is
chosen as 64.

SHD: A method describing a 3D object as a feature
vector consisting of spherical harmonic coefficients
extracted from three spherical functions giving the
maximal distance from center of mass as a function
of spherical angle. See [15] [9] for details.

LFD: A well-known visual similarity based method
proposed in [19]. See Section 2 for details. The
length of the feature vector is 4700.

GSMD: See Section 4.5 for details. The number
of viewpoints is selected as 66.

BF-SIFT: A method representing a 3D object as
a word histogram by vector quantizing the visual
salient SIFT descriptors [11]. Here, the depth-buffer
views are capture on the vertices of a unit geodesic
sphere. The number of views is selected as 66 and
the length of the feature vector is 1500.



73

—&— Hybrid
—%— CM-BOF
—8&— BF-SIFT
—&— GSMD
—»—LFD
—s%— SHD

D2

09

0.8

0.7 1

0.6

05

Precision

0.4

03+

02+

01

L L L L |
0.6 0.7 0.8 0.9 1

0.‘5
Recall
(a) NSB

L
0.3 0.4

—&— Hybrid
—— CM-BOF
—&— BF-SIFT
—&— GSMD
—»— LFD
—s%— SHD

D2

0.6

Precision

05

04}

03+

02+

01 L L L
01 0.2 03

I
0.5
Recall

L
0.4 0.6 0.7

(c) ESB

Fig. 14. Precision-recall curves of seven methods run on the four benchmarks.

PSB, ESB, and McGill databases, respectively.

¢« CM-BOF: See Section 3 for details. The default
settings are chosen here and thus the average length
of the feature vector is 3320.

Hybrid (CM-BOF+GSMD): A composite method
based on a linear combination of CM-BOF and
GSMD. More specifically, in this method, a view
is expressed by a feature vector consisting of two
different kinds of shape descriptors, which are
used in CM-BOF and GSMD, with pre-specified
weights. We experimentally select the weights as
Wiocar = 7.0 and Wyoper = 1.0 for local and
global features, respectively, by maximizing the
retrieval accuracy on the PSB train set with base
classification. The shape matching scheme and
other parameters are exactly the same as the CM-
BOF algorithm described above.

Several observations can be made from Figure 14. For
the PSB and NSB databases which consist of generic
models, the Hybrid method clearly outperforms other
six methods, among which CM-BOF and BF-SIFT take
the second place and the third place, respectively. For
the ESB database which contains only CAD objects,
although the Hybrid method still performs the best, BF-
SIFT obtains slightly better result than CM-BOF. For
the McGill database which is composed of articulated
models, three methods associated with local features
markedly outperforms the methods only using global
features. Despite applying pose normalization, CM-BOF
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(a), (b), (c), and (d) shows the results evaluated on the NSB,

is still superior to all other methods, probably because
of the salient local feature’s robustness against the small
changes of viewpoints. The Hybrid method merely takes
the third place mainly due to the poor performance of
the global descriptor it combines.

We also compare our Hybrid (CM-BOF+GSMD)
method and CM-BOF method with the state-of-the-
art approaches including PANORAMA [25], MDLA-
DPD [7], GSMD+SHD+R [9], DESIRE [20], and
LFD [19] on the PSB test set with base classification.
As shown in Table 2, our Hybrid method significantly
outperforms other methods compared here, while the
CM-BOF algorithm, whose feature vector is only of
dimension 3320 on average, also obtains superior or
comparable 3D shape retrieval performance. Moreover,
for our CM-BOF method, comparing a pair of 3D
objects takes less than 1.0 millisecond and, with the
GPU-based implementation [45], the feature extraction
of an object can be finished within 5.0 seconds.

5. CONCLUSION

In this paper, we presented a novel visual similarity
based 3D shape retrieval method using Bag-of-Features.
The key idea is to describe a view as a word histogram,
which is obtained by the vector quantization of the
view’s salient local features, and apply a multi-view
shape matching to calculate the dissimilarity between



TABLE 2

COMPARING RETRIEVAL RESULTS OF OUR METHODS (FIRST TWO
ROWS) WITH OTHER STATE-OF-THE-ART APPROACHES ON THE PSB

TEST SET WITH BASE CLASSIFICATION.

[ NN I-Tier 2Tier DCG
CM-BOF+GSMD || 754% 509% 640% 74.6%
CM-BOF 73.1% 4705 59.8%  72.0%

PANORAMA || 753% 479% 603% -
GSMD+SHD+R || 73.1%  47.2%  602%  72.1%
MDLA-DPD 68.8%  43.65 5425  67.8%
DESIRE 66.5%  403% 512%  66.3%
LFD 65.7%  38.0% 4875  64.3%

two objects. A set of experiments were carried out to in-
vestigate several critical issues of our CM-BOF method,
including the impact of the number of views, codebook,
training data, and distance function on the performance
of 3D shape retrieval. It can be seen that clustering
is not necessary for the method, and our local feature
based method is somehow complementary with respect
to the global feature based method (GSMD [9]). The
experimental results also demonstrated that our methods
(the composite method and the CM-BOF algorithm) are
superior or comparable to the state-of-the-art.
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