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Abstract

Non-rigid shape matching is one of the most challenging fields in content-based 3D object retrieval. The aim of the
SHREC 2010 - Shape Retrieval Contest of Non-rigid 3D Models is to evaluate and compare the effectiveness of
different methods run on a non-rigid 3D shape benchmark consisting of 200 watertight triangular meshes. Three
groups with six methods have participated in this track and the retrieval performance was evaluated using six
commonly-used metrics.

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Pattern Recognition]: Computer Vision—
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—

1. Introduction

After years of rapid development, 3D shape retrieval has be-
come an important area of research in several fields includ-
ing computer graphics, pattern recognition, machine vision,
and so on. However, previous efforts have been mainly de-
voted to the retrieval of rigid 3D models, and thus how to
efficiently and effectively compare non-rigid shapes is still a
challenging problem in the field of content-based 3D object
retrieval. As we know, non-rigid objects are commonly seen
in our surroundings. Take Figure 1 for an example, a human
being can appear in quite different postures, which might
be identified as different kinds of objects using traditional
rigid-shape analyzing techniques. Up to now, just a few
methods have been reported to address this problem, gen-
erally, they utilized local features (e.g. [SF07] [OOFB08]),
or global isometric-invariant features (e.g. [EK03] [RpSS]),
or the combination of above two features (e.g. [GSCO07])
to generate 3D shape descriptors, that are invariant or ap-
proximately invariant under isometric transformations (e.g.
bending and articulation).

To promote the investigation of non-rigid 3D shape re-
trieval, we organized the SHREC 2010 - Shape Retrieval
Contest of Non-rigid 3D Models. In this track, we provided

a non-rigid shape database, that contains 200 watertight 3D
meshes with randomized name indexes, based on the McGill
Shape Benchmark [ZKCS05]. Each participant was asked to
submit up to five dissimilarity matrices calculated using their
methods in one week. Finally, six matrices were submitted
by three groups, and then the retrieval performance was mea-
sured and compared using six standard evaluation metrics.

Figure 1: Examples of non-rigid models.

The remainder of the paper is organized as follows. Sec-
tion 2 shows the data collection of a non-rigid shape bench-
mark. Section 3 indicates how to measure the retrieval per-
formance based on the benchmark, while participants’ in-
formation is described in Section 4. Afterwards, Section 5
discusses briefly the methods tested in this track and Section
6 demonstrates the evaluation results. Finally, the conclusion
of this paper is provided in Section 7.
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Figure 2: Models of our database that is divided into 10 classes.

2. Data Collection

The database used in this track consists of 200 watertight 3D
triangular meshes, which are selected from the McGill Ar-
ticulated Shape Benchmark database [ZKCS05] [SZM∗08].
Eleven of these original models are modified (or replaced by
new models created by us) to make sure that all meshes in
our database are watertight and they don’t have any topol-
ogy errors. We then equally classify these 200 models into
10 categories based on their semantic meanings, as shown
in Figure 2, each class contains 20 objects with distinct pos-
tures.

3. Evaluation

Participants are asked to apply their methods to calculate
the dissimilarity between every two objects and then gener-
ate corresponding dissimilarity matrices. Since our database
contains 200 objects, the matrix is composed of 200× 200
floating point numbers, where the number at position (i, j)
represents the dissimilarity between models i and j.

Given a dissimilarity matrix, the retrieval performance of
the method can be quantitatively evaluated based on the fol-
lowing statistics: 1) Nearest Neighbor (NN), 2) First Tier
(FT), 3) Second Tier (ST), 4) E-measure (E), and 5) Dis-
counted Cumulative Gain (DCG). In order to give the reader
a more intuitive feeling about the results, precision-recall
curves are also computed for each class as well as the whole
database. More details about these standard evaluation met-
rics can be found in [SMKF04]. In fact, we directly used the
reliable source code provided by the Princeton Shape Bench-
mark [SMKF04] to carry out the evaluation.

4. Participants

There are three groups participating in this track and, totally,
six dissimilarity matrices have been submitted,

1. MR-BF-DSIFT-E and BF-DSIFT-E run by R. Ohbuchi
and T. Furuya, from University of Yamanashi, Japan.

2. DMEVD_run1, DMEVD_run2, and DMEVD_run3 run
by D. Smeets, T. Fabry, J. Hermans, D. Vandermeulen
and P. Suetens, from Katholieke Universiteit Leuven,
Belgium.

3. CF run by S. Wuhrer and C. Shu, from National Research
Council, Canada.

5. Methods

5.1. Bag-of Densely-Sampled Local Visual Features, by
R. Ohbuchi and T. Furuya

The algorithm compares 3D shapes based on their appear-
ances, that are, range images of the object rendered from
multiple viewpoints. The algorithm is designed so that it
could handle (1) a diverse range of shape representations,
including polygon soup, point set, or B-rep solid, and (2)
models having articulation or deformation.

Appearance based comparison gives the algorithm its
ability to handle diverse shape representation. Multiple-
viewpoint rendering of dozens of range images coupled with
(2D) rotation invariant image feature gives the algorithm its
rotation invariance. Invariance to articulation and/or global
deformation is achieved through the use of a set of multi-
scale, local, visual features integrated into a feature vector
per 3D model by using Bag-of-Features (BoF) approach. A
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Figure 3: Flow of the Bag-of-Feature Dense-SIFT with ERC-Tree (BF-DSIFT-E) algorithm.

feature vector per 3D model makes the cost of comparison
among a pair of 3D models much lower than comparing sets
of features, each consisting of thousands of local features.
The algorithm is called Bag-of- Features Dense-SIFT with
Extremely randomized tree (BF-DSIFT-E). Please refer to
the paper by Furuya et al. [FO09] for the details. While most
3D model retrieval algorithms deal with invariance to sim-
ilarity transformation, very few algorithms achieve invari-
ance to articulation while being able to accept 3D models
having diverse set of 3D shape representations.

Figure 3 shows the processing flow of the BF-DSIFT- E
algorithm. After normalizing the model for its position and
scale, dozens of range images of the model are generated by
using multiple virtual cameras looking inward at the model
sitting at the coordinate origin. From each range image, our
algorithm densely and randomly samples a few hundreds
of local, multiscale image feature Scale Invariant Feature
Transform (SIFT) by David Lowe [Low04]. Salient point
detector of the SIFT is disabled for the dense sampling. A
SIFT feature, typically having 128 dimensions, encodes po-
sition, orientation, and scale of gray-scale gradient change
of the image about the sample point.

A 3D model is rendered into 42 depth images, each one
of which then is sampled at 300 or so random locations.
Thus, a 3D model is described by a set of about 12k SIFT
features. The set of thousands of visual features is inte-
grated into a feature vector per model by using BoF (e.g.,
[CDF∗04] [SZ03]). The BoF approach vector quantizes, or
encodes, a SIFT feature into a representative vector, or a
“visual word”, using a previously learned codebook. Visual
words are accumulated into a histogram, which is the fea-
ture vector for the 3D model. The optimal dimension of the
histogram, that is, the dimension of BoF-integrated feature
vector, depends on the database. The dimension of feature

vector is experimentally chosen as about 30k for the non-
rigid model.

To extract this many features quickly, a fast GPU-
based implementation of SIFT algorithm called SiftGPU
by Wu [Wu] is applied. The Extremely Randomized Clus-
tering Tree, or ERC-Tree, by Guerts et al. [GEW06], is
also used for both feature set clustering during codebook
learning and for vector quantization of SIFT features. With
a small penalty in retrieval performance, the ERC-Tree is
much faster than k-means clustering during codebook learn-
ing and naive linear search during VQ.

To derive ranked list of retrieval results given a query,
two methods are employed: simple distance computa-
tion using Kullback-Leibler Divergence (KLD), and a
distance-metric learning approach called Manifold Ranking
(MR) [ZWG∗03] with a small modification. In the retrieval
experiment, the version that used KLD is named BF-DSIFT-
E, while the one used MR is named MR-BF-DSIFT-E. The
KLD below performs well for comparing two histogram-
based feature vectors x and y.

dKLD(x,y) =
n

∑
i=1

(yi− xi)ln
yi

xi

The MR first estimates the distribution of features in a
low-dimensional subspace, or “manifold” approximated by
a mesh. The mesh is created based on the proximity of fea-
ture points, and its edges are weighted based on the distance
among the feature points. It then computes similarity among
the features on the manifold using a process similar to solv-
ing a diffusion equation. A relevance rank is diffused from
the source, that is, the query. At an equilibrium state, the
concentration of the relevance rank at a feature point indi-
cates its closeness to the query. KLD is utilized to form the
manifold mesh on which the diffusion takes place.
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5.2. Inelastic Deformation Invariant Modal
Representation, by D. Smeets, T. Fabry, J.
Hermans, D. Vandermeulen and P. Suetens

In this section, a 3D shape recognition method which is in-
variant for inelastic deformations is proposed, while not re-
quiring explicit point correspondences for shape compari-
son.

5.2.1. Inelastic deformation invariant representations

The 3D shapes are represented by inelastic deformation in-
variant matrices: the geodesic distance matrix (GDM) and
the diffusion distance matrix (DDM). The former contains
the geodesic distance between each pair of points on the sur-
face. This distance is the length of the shortest path on the
object surface between two points on the object. Geodesic
distances are calculated by solving the Eikonal equation,
|∇T (P)| = 1, on the surface, which can be achieved with
a fast marching algorithm for triangulated meshes [PC08].
Isometric deformations, and thus also inelastic deforma-
tions, leave these geodesic distances unchanged.

Figure 4: The geodesic distance matrix as an elastic defor-
mation invariant representation of the object shown left.

The diffusion distance matrix contains the average diffu-
sion distance between each pair of points on the surface. The
average diffusion distance is the probability that a particle,
started in one point, arrives at the other point after a diffusion
process ran for a certain time tD. This distance is calculated
solving the heat equation, ∂tu = α∆X u, on the surface. Prac-
tically this can be achieved by solving the generalized eigen
decomposition problem of the discretized Laplace-Beltrami
operator, LΦ = λAΦ. A is a term proportional to the area of
the triangles in the mesh and L is the laplacian of the sur-
face [BBK∗09].

5.2.2. Sampling order invariant modal representations

Using the elastic deformation invariant distance matrices,
a shape descriptor is needed that is invariant to the sam-
pling order of points on the surfaces represented. It can be
proved that the modal representation of these distance matri-
ces, i.e. the singular value matrix, is invariant to the sampling
order under the condition that each point on one surface
has one corresponding point on the other surface [SFH∗09].
Therefore, the surfaces are resampled such that each surface
has the same number of points assuming a one to one cor-
respondence. However, as the shape descriptor is sampling

Figure 5: The diffusion distance matrix as an elastic de-
formation invariant representation, after a diffusion time of
tD = 200 (left) and tD = 800 (right).

order invariant, this correspondence should not be known.
As such, object recognition reduces to direct comparison of
the shape descriptors without the need to establish explicit
point correspondences. For computational reasons, only the
k largest singular values are calculated. For the GDM, k is
chosen to be 19, for the DDM 11.

5.2.3. Shape descriptor comparison

The modal representations of the GDM and DDM, calcu-
lated for tD = 800, are then compared using the normalized
Euclidean distance and fused together with the product rule.
The method using this fusion named DMEVD_run1, is com-
pared with methods using GDM only (DMEVD_run2) and
DDM only (DMEVD_run3).

5.3. Non-Rigid Shape Retrieval Using Canonical Forms,
by S. Wuhrer and C. Shu

In this section, a method is presented that evaluates the dis-
similarity between two Non-Rigid 3D models S(0) and S(1)

represented by triangular meshes. The method proceeds by
deforming the meshes into pose-invariant canonical forms
X (0) and X (1) and by computing the dissimilarity between
S(0) and S(1) using the Euclidean distance between X (0) and
X (1).

Canonical forms were introduced by Elad and Kim-
mel [EK03]. The canonical form X (i) of a surface S(i) is the
mapping of S(i) to R(d), such that the Euclidean distances
between the mapped vertices approximate the geodesic dis-
tances between the original vertices well. Here, d is the di-
mension of the target space. We set d = 3 in our experiments.
The canonical form is computed via multi-dimensional scal-
ing with the geodesic distances between vertices on the
triangular manifold as dissimilarities. Hence, the canoni-
cal form of a non-rigid body is pose-invariant. The fast
marching [KS98] is first used to compute geodesic distances
on S(i), and then the least-squares multi-dimensional scal-
ing [BG97] is applied to compute the canonical form in R3.
For increased space efficiency, the canonical form is com-
puted using a coarse-to-fine strategy as outlined by Wuhrer
et al. [WSAB07]. The approach by Wuhrer et al. consists
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of two steps. First, n′ vertices of S(i) are used to compute
a canonical form at low resolution. Second, the remaining
vertices of S(i) are added to the canonical form one by one
by minimizing a least-squares energy function. In our exper-
iments, n′ = 500.

To compute the dissimilarity δ, the average distance of
points on X (0) to their nearest neighbors on X (1) is calculated
and vice versa. More precisely, the dissimilarity is computed
as,

δ =
∑p∈X (0) ||NX (1)(p), p||

n(0) +
∑p∈X (1) ||NX (0)(p), p||

n(1)

where n(i) is the number of vertices of X (i), p ∈ X (i)

means that p is a vertex of X (i), NX (i)(p) is the vertex of
X (i) that is closest to p , and ||., .|| denotes the Euclidean
distance between two vertices. Kd-trees is applied to speed
up the nearest neighbor search [AM93].

6. Results

In this section, we present the results of the three
groups that submitted six runs, which are denoted as MR-
BF-DSIFT-E, BF-DSIFT-E, DMEVD_run1, DMEVD_run2,
DMEVD_run3, and CF, respectively, to this track. Given the
six 200× 200 dissimilarity matrices obtained using these
methods, we carry out evaluations not only on the average
performance of the whole database, but also on the result
corresponding to each specific class. The performance mea-
sures adopted here are the five quantitative statistics (i.e. NN,
FT, ST, E, and DCG) and the Precision-recall plot mentioned
in Section 3.

Figure 6: Precision-recall curves of all runs evaluated for
the whole database.

Table 1 and Figure 6 show the retrieval performance of all

six methods evaluated on the whole database. As we can see
from Table 1 where quantitative retrieval statics are reported,
these methods obtain good results on the given database,
probably because they are all specifically designed for non-
rigid 3D shapes. Considering the values of NN and DCG,
Smeets’s DMEVD_run1 give the best results, while if we
based the evaluation on FT, ST, and E-measure, Ohbuchi’s
MR-BF-DSIFT-E would take the first place. Similar obser-
vations can be made from Figure 6, where the precision-
recall curves of the best two runs submitted by Ohbuchi et
al. and Smeets et al. are both very close to the ideal horizon-
tal line (i.e. the perfect result). Yet, it is hard to say clearly
which method obtains the best performance.

Figure 7: Precision-recall curves of the best runs of each
participant evaluated for two classes in the non-rigid
database.

Figure 7 and Figure 8 display the Precision-recall curves
of the best runs (i.e. Ohbuchi’s MR-BF-DSIFT-E, Smeets’s
DMEVD_run1, and Wuhrer’s CF) of each group mea-
sured for every class in the non-rigid database. We observe
that, none of these methods could guarantee better perfor-
mance against others for all kinds of models. For exam-
ple, Wuhrer’s CF obtained the best result when searching
for teddy bears, and Smeets’s DMEVD_run1 clearly out-
performs other methods considering the retrieval of spi-
ders, while Ohbuchi’s MR-BF-DSIFT-E is without doubt the
best for hands, octopuses, and pliers. Generally speaking,
algorithms developed by Ohbuchi et al. and Smeets et al.
work considerably well for every class in this track, as their
precision-recall curves all appear in the top right parts of
these figures.

In addition to the calculation of these performance statis-
tics, we have also created a web interface [NIS], which dis-
plays the retrieved models for all objects and methods, to
analyze the results. Using the web interface, users are able
to examine the responses of the participants’ methods to in-
dividual query models and visually inspect the effectiveness
of the methods for every object in the database. Several re-
trieval examples are shown and compared in Figure 9, where
two queries are provided to search for similar models using
three different methods. We find that, no method always out-
performs others for every query object and they all have their
own strengths as well as weaknesses for particular models.
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Table 1: Retrieval performance of all runs evaluated using five standard measures evaluated for the whole database.

Figure 8: Precision-recall curves of the best runs of each participant evaluated for other eight classes in the non-rigid database.

Base on the criterion of method classification described
in Section 1, the participants’ algorithms can be divided
into two categories, 1) methods using local features: MR-
BF-DSIFT-E and BF-DSIFT-E; 2) methods using global
isometric-invariant features: DMEVD and CF. We speculate
that the combination of these two kinds of invariant features
could give better retrieval performance for non-rigid mod-
els. It should also be pointed out that, the MR-BF-DSIFT-E
method apply an unsupervised machine learning algorithm
(i.e. manifold ranking) which can be applied to enhance the
results of any other approaches. However, the time consum-
ing manifold ranking might not well suited for the retrieval
application in large-scale databases.

7. Conclusion

In this paper, we first described the database of non-rigid 3D
shapes and then mentioned how to measure retrieval perfor-
mance for the SHREC 2010 - Shape Retrieval Contest of
Non-rigid 3D Models. Afterwards, we briefly introduced the

six methods used by three groups who participated in this
track. Finally, experimental results were presented to com-
pare the effectiveness of different algorithms.

The non-rigid track organized this year is the first attempt
in the history of SHREC to specifically focus on the per-
formance evaluation of non-rigid 3D shape retrieval algo-
rithms, and it is far from perfect. On the one hand, until re-
cently just a few such kinds of practical methods have been
reported, therefore, we only had three groups taking part in
this track. On the other hand, because both creating and col-
lecting large numbers of articulated watertight models are
not trivial tasks, we had to evaluate the participates’ methods
based on a small database consisting of 200 models. Hope-
fully, there will be more researchers working on non-rigid
3D shape retrieval in the future, and more groups will partic-
ipate in the next SHREC non-rigid track, where a large-scale
database could be available.
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Figure 9: Retrieval examples of three methods using the web interface of the SHREC non-rigid track. The left bottom in the
web interface displays the thumbnail of a query and the right top part shows retrieved models.
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