
Agile test framework for business-to-business interoperability

Jungyub Woo & Nenad Ivezic & Hyunbo Cho

Published online: 12 April 2011
Springer Science+Business Media, LLC 2011

Abstract Business-to-business (B2B) applications are tested
routinely for conformance and interoperability against a set of
data exchange standards before deployment. However, the
existence of many data exchange standards, planned utiliza-
tions, deployment environments, and testing scenarios makes
it difficult to develop reusable testing tools. To address this
challenge, we propose the Agile Test Framework (ATF),
which consists of a test case design and test execution model.
Test case is defined at two levels: abstract and executable. The
abstract level addresses issues related to human understanding
and the executable level addresses issues related to machine
processing. The test execution model addresses issues related
to both reusability and plug-compatibility. The ATF allows the
test engineer to generate test cases for a variety of standards
and scenarios. Thus, it increases reusability, extensibility, and
efficiency compared to other test frameworks.

Keywords Agile Test Framework (ATF) .

Business-to-business (B2B) integration .

Conformance testing . Interoperability testing .

Standards . Test automation . Test case generation

1 Introduction

Business-to-business (B2B) applications continue to have
data exchange problems. One reason is that the number of
data exchange standards and software solutions that purport

to implement those standards continue to grow. Conse-
quently, the same standards are rarely adopted by all B2B
applications. Even when B2B applications do implement
the same standard, exchange problems still occur. They
occur because the B2B standard (1) may contain ambigu-
ous requirements leading to different interpretations, (2)
may contain errors or omissions, (3) may be only partially
implemented, and (4) may be designed to be flexible by
allowing specializations and implementations (Shaw et al.
2000; Moseley et al. 2004; Gosain 2007).

B2B interoperability testing has become a popular means to
discover and correct data exchange problems before applica-
tions get deployed. To maximize the likelihood of discovery,
two types of B2B interoperability testing are typically
performed: conformance and interoperability. Conformance
testing verifies that an application has implemented the
standard correctly (Heckel and Mariani 2005; Site Test Center
2009). Interoperability testing verifies that two or more
conformant applications can exchange information using the
standards correctly (ETSI, 2009). In general, testing will be
repeated several times before all problems have been resolved.
Therefore, efficient facilities (test beds) have been designed
and developed as a practical means to carry out this testing
(Kindrick et al. 1996; Heckel and Mariani 2005).

Test bed designs are usually based on a test framework.
A test framework includes test case specifications and a
testbed architecture. A test case specification—for both
conformance and interoperability testing—enumerates the
set of conditions or parameters that define what it means to
be correct. Testers use them to determine whether an
application is conformant or interoperable (Kindrick et al.
1996; Tsai et al. 2003; Caruso and Umar 2004; Smythe
2006). Generally, the specifications are in machine-readable
formats to support automated testing. Test case developers
follow specific schemas and grammars in developing these
formats. Once the test case schemas and grammars are
defined, a specific test bed is designed to execute the test
cases. That design is based on the test bed architecture.

J. Woo :N. Ivezic (*)
Manufacturing Engineering Laboratory,
National Institute of Standards and Technology,
Gaithersburg, MD, USA
e-mail: nivezic@nist.gov

H. Cho
Department of Industrial and Management Engineering,
Pohang University of Science and Technology,
Pohang, Korea

Inf Syst Front (2012) 14:789–808
DOI 10.1007/s10796-011-9303-3

Traditionally, designing and implementing such test beds
has been very expensive. The reason is that each standard has
different test components, test materials, and test harnesses (i.e.,
configuration specifications). This variability makes test case
development expensive, because the developer must learn a
variety of test case schemas and architectures for each standard.
It also makes test execution process expensive, because
solution providers must develop a variety of supporting test
components and interfaces containing different artifacts for
each standard (Tsai et al. 2003; Caruso and Umar 2004).

In this paper, we propose a new conceptual architecture for
test frameworks, Agile Test Framework (ATF). The ATF
includes (1) a systematic test case design for designing and
generating modular test cases and test metadata, and (2) a
reusable and reconfigurable test execution model that allows
for re-configurability of test beds. We describe both in this
paper and we demonstrate the ATF’s agility using actual use-
case studies in a B2B testing context.

The paper is organized as follows. Section 2 introduces
basic concepts and provides an analysis of the existing test
frameworks for B2B systems. Section 3 describes the
overall Agile Test Framework architecture. Section 4 details
the design of the test case, and Section 5 describes the
design of the execution model. Section 6 uses a specific
B2B example to compare the ATF to an existing frame-
work. Finally, Section 7 concludes the paper.

2 Analysis of existing test frameworks for B2B systems

In this section, we consider the existing test frameworks
and summarize their problems. Initially, however, we
provide basic concepts and terminology for this analysis.

2.1 Basic concepts and terminology

Business-to-business data exchanges may be performed over
any communication channel. They allow enterprise application
systems to support a collection of defined trading partner
protocols; and, they use a composite B2B communication stack
profile. That protocol includes the following types of standards:

□ Messaging infrastructure standards, ranging from
transport level (including HTTP1 and SMTP2) to
higher-level messaging protocols and quality of
service (such as reliability and security) and queries
(such as those defined as SOAP3 extensions).

□ Message choreography standards, sequences of
possible messages including business choreogra-
phies (such as UMM business transaction patterns)

as well as lower level exchange patterns that are
often necessary to establish quality of service.

□ Business document standards, usually industry-
specific (such as UNeDOC,4 UN/CEFACT,5 or
OAG6). These are defined in UML,7 XML-
Schema,8 RDF,9 or OWL10 and include syntactic as
well as semantic specifications.

Conformance and interoperability problems can occur at
any level of this stack. Before describing our proposed
solution, we provide several important definitions.

Test Framework describes the test bed architecture, its
software components, and the ways in which these compo-
nents can be combined using a test harness configuration
script (see below) for B2B testing. The Test Framework
includes not only design of testing tools but also schemas for
test materials like test cases. It also describes the test materials
that may be processed by that architecture, a mark-up
language, formats for representing test requirements, and test
case scripts. The Test Framework also includes the method-
ology and process descriptions used to automate testing use
profiles, test cases, test requirements, and a message store, as
well as other supporting schemas (IIC, 2001; TaMIE 2008;
Zhong Jie Li et al. 2008; Namli et al. 2009).

Test Framework Implementation includes tools and
documents that are implemented based on a test framework.
It consists of test case scripts and test beds (or testing tools)
(IIC, 2001; Zhong Jie Li et al. 2008; Namli et al. 2009). A
Test Item is an information object acquired during testing
activities. Test Items include messages, documents, events,
and statuses obtained during testing.

Test Case Script specifies a set of test inputs, execution
conditions, and expected results. It is used in making an
evaluation of some particular aspect of a target system under
test (SUT). It is composed in compliance with a formalized
format provided by the test framework (Astra Infotech, 2009;
Namli et al. 2009). Test case may, in general, be thought of
as consisting of procedure and verification information. The
procedure information describes how to get the test items
from the SUT during the test. The verification information
determines whether or not the SUT satisfies the test require-
ments by way of processing the test items.

Test bed is an execution environment configured for
testing. It consists of the specific hardware, operating system,
network topology, and configuration of the system under test,

4 UNeDOC, http://www.unece.org/contact/UNECE404.htm
5 UN/CEFACT, http://www.unece.org/cefact/
6 Open Applications Group (OAG), http://www.oagi.org/
7 Unified Modeling Language (UML), http://www.uml.org/
8 XML Schema (XSD), http://www.w3.org/XML/Schema
9 Resource Description Framework (RDF), http://www.w3.org/RDF/
10 Web Ontology Language (OWL), http://www.w3.org/TR/owl-features/

1 Hypertext Transfer Protocol (HTTP), http://www.w3.org/Protocols/
2 SimpleMail Transfer Protocol (SMTP), http://tools.ietf.org/html/rfc5321/
3 Simple Object Access Protocol (SOAP), http://www.w3.org/TR/soap/

790 Inf Syst Front (2012) 14:789–808

http://www.unece.org/contact/UNECE404.htm
http://www.unece.org/cefact/
http://www.oagi.org/
http://www.uml.org/
http://www.w3.org/XML/Schema
http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/
http://www.w3.org/Protocols/
http://tools.ietf.org/html/rfc5321/
http://www.w3.org/TR/soap/

test components, or related documents. It is constructed based
on a formalized architecture provided by the test framework
and using a test harness specification (Astra Infotech, 2009).

Test Harness Configuration Script defines a test harness
specification for a test bed configuration, derived from the
test framework, which meets the test objectives and
requirements (IIC, 2001; Namli et al. 2009). In other
words, for given test objectives and requirements, a test
harness configuration script describes the ways in which a
specific test bed may be configured prior to execution of a
certain test case. That is, the test bed may be automatically
configured by the test harness configuration script before
the test execution for a specific test case.

Test Infrastructure, as a new concept introduced in the
ATF architecture, is a permanent, invariable functional
module that can be reused without modification and for any
standard and Test User environment. Test infrastructure is
designed to allow assembly of arbitrary, pluggable test
components that implement test services. (See Section 5.2
for detailed description of the Test Infrastructure.)

The following roles (i.e., types of participants) are
typically encountered in the process of test bed development:

□ Standard Developer develops a standard specifica-
tion, which is an explicit set of requirements for a
document, component, system, or service. This role
requires the applications and documents used in the
domain to be validated by a test system to promote
and certify conformance and interoperability of the
standard-based solutions.

□ Test User requires a software application to be validated
against a specific standard or quality guideline.

□ Test Case Developer develops test cases to validate
the system under test (SUT) based on the Test User
requirements, which entails use of one or more
standard specifications.

□ Test Bed Architect implements a specific test bed
system to provide test functions to the Test User. The
test bed may be constructed by combining test
services within a test infrastructure. The test bed
interprets and executes test cases to give the Test
User a test report including potential problems and
performance metrics for the SUT.

In addition, within the new ATF architecture, the role of
Test Bed Architect is broken down into essentially three
distinct new roles (as discussed later in the paper):

□ Test Bed Builder is primarily responsible for assembly
of a new test bed. He or she searches and selects the
pluggable test components and generates the test
harness configuration script, which specifies the con-
figuration of the test components within the test bed.

□ Test Service Provider implements a test service, which
may be utilized within a specific test bed. For
example, a verification engine or a messaging handler
may be offered as a test service. Once such a test
service is designed, it is registered within a test service
registry, allowing the Service Provider to advertise the
service. A Test Bed Architect may search such a test
service registry to identify test services that may be
deployed for a specific testing need.

□ Test Framework Provider manages, maintains, and
supports the use of the test framework, including its
components, such as the test case schema, interface
specification for pluggable test components, and test
infrastructure specification. The role of the Test
Framework Provider is to implement and support the
test infrastructure, which is readily reusable in a test
bed.

2.2 Problems with existing test frameworks

A number of test frameworks exist. Examples include (1) the
IIC test framework for testing ebMS (ebXML Messaging
Specification) implementations (IIC, 2001), (2) the Rossetta-
Net self-test toolkit for testing conformance to RossettaNet
PIP systems (RosettaNet, 2004), and (3) the WS-I tool which
checks the data integrity of Web Service request/response
messages (Foster et al. 2003; Bertolino et al. 2006; WS-I,
2009; Durand 2007a). These frameworks, like most others,
are limited in terms of reuse because their purpose is to meet
testing requirements for a specific standard and a specific Test
User’s usage only. Therefore, their scope is too narrow to
reuse their functionality for other, even similar, testing
requirements. For example, the IIC framework requires
significant changes before other related messaging standards,
such as WS messaging, can be tested. A few test frameworks,
such as TTCN (TTCN-3, 2009; Baker et al. 2001) and eTSM
(TaMIE, 2008; Durand 2007b), have been developed to
overcome such a narrow scope of application. But, even they
lack the modularity and extensibility needed to easily reuse
them for other purposes (Caruso and Umar 2004).

Figure 1 shows the typical usage of existing test
frameworks—from test requirements to test bed execution.
The Test User first introduces specific requirements for the
intended usage of the standard specification of interest.
Typically, this consists of a specific business process or
pattern of usage. Then, the Test Case Developer composes
test cases based on the grammar and structure of test case
scripts designed for that particular test framework. The
figure indicates this situation by situating the ‘Compose
Executable Test Case’ and ‘Implement Test Bed’ activities
within the Implementation Phase, supported by the Plat-
form Specific Model (PSM). On the other hand, as shown

Inf Syst Front (2012) 14:789–808 791

on the right side of Fig. 1, the Test Bed Architect
implements a specific test bed based on extracted test bed
functional requirements from the Test User’s test require-
ments. At the Execution Phase, the Specific Test Bed uses
the Executable Test Cases and verifies the system under
test.

Test frameworks designed in this way have three specific
problems that limit their reusability.

□ Problem I. Test case dependency on the test bed
and test requirements: The existing frameworks
promote test case designs that depend on specific
test bed design decisions. For example, an IIC test
case cannot represent SUT activities during a test
because the test cases do not utilize information from
the SUTactivities. This obviously prevents reuse even
in the simple case where the test bed role changes (say,
from a customer to a supplier). Also, most test case
designs depend on the specific test items’ require-
ments, such as a standard specification. For example,
the WS-I test bed is designed only for XML-based
web service testing. Therefore, it cannot be used to test
other, even the XML-based, standards. Obviously,
these two dependencies make test case develop-
ment a time-consuming, costly, and one-of-a-kind
process.

□ Problem II. Low configurability of test beds: Most
test bed designs only consider a specific testing
purpose and take into account only specific test bed
design decisions. It is, therefore, difficult to adapt
one test bed to another, even similar, testing
situation. Such test beds cannot be re-configured
and do not allow new components to be introduced
in a plug-compatible manner to address new func-
tional requirements.

□ Problem III. Low modularity and extensibility of
test cases: Most test cases contain both procedure
and verification instructions for the data. However,
the existing test framework designs do not treat the
two types of information separately. In other words,
the existing test cases mix the test procedure
information and test verification information. Con-
sequently, it is difficult to extract verification data
from a test case in order to reuse a specific part of
the test case in a related, even similar, testing
situation.

3 Agile test framework

The agile test framework is designed for agility to generate
test cases and to implement test bed. To achive agility, it is

Analyze Test
Requirements

Standard
Specification

Usage
Specification

Executable Test Case

Test bed Implementation
Specification

Standard
Developer

Test User Test bed
Architect

Test Case
Developer

Conceptual Phase
(CIM)

Implementation Phase
(PSM)Compose Executable

Test Case

System Under
Test

Specific Test bed

Execute Test
Case

Test Results

Execution Phase

Implement Test bed

Test Case Schema

Analyze Functional
Requirements

Fig. 1 Conceptual activity diagram for standards-based testing in existing test frameworks

792 Inf Syst Front (2012) 14:789–808

important to efficiently reuse existing test scripts and
components.

3.1 Overall approach

To address the identified problems, we introduce specific
design decisions within a proposed test framework. To
resolve Problem I, we remove the dependency of the test
cases by introducing a two-layer test case design consisting
of abstract and executable test case definitions.

□ ATF Design Decision I. Two-level test case design:
The ATF test case structure consists of an abstract test
case and an executable test case. The abstract test case is
a human-readable, high level description of a test case.
To enhance reusability, an abstract test case does not
contain specific, implementation-level information. On
the other hand, an executable test case is a machine-
readable, low-level description of a test case. An
executable test case can be derived from an abstract
test case when additional information is provided such
as a messaging protocol specification, a specific
verification component, and a communication channel
between the SUT and the test bed.

The existing test frameworks include only executable test
cases. The addition of abstract test case descriptions is
expected to have three benefits. First, the abstract test case
can be developed early in the design process, providing a clear
specification of intent. Second, the abstract test case can be
reused easily when similar test requirements arise. Third, the
abstract test case helps the tester to understand the executable
test case, its procedure, and its rules. That is, the abstract test
case provides a kind of three-way bridge between the
Standard Developer, who provides test requirements, the
Testing User who verifies the system under test, and the Test
Case Developer, who interprets the requirements to create the
actual test case.

To resolve Problem II, we propose the use of pluggable
test components and infrastructure designs and event-
driven test execution.

□ ATF Design Decision II. Pluggable test components
and infrastructure designs: Similar to previous re-
search, such as the TestBATN test framework for
eHealth standards testing, the ATF adopts a modular
and reusable design for pluggable test components
(Namli and Dogac 2010). Also, such a modular
design approach is adopted by the Global e-Business
Interoperability Test Bed (GITB) project which
specifically addresses e-business and enterprise
interoperability (GITB, 2010). However the ATF is
distinguished from the existing works by the perma-
nent infrastructure model. The ATF test bed execu-

tion model consists of a test infrastructure that is
independent of any specific standard and/or Test
User’s environment. That is, the infrastructure is
designed to be used for all testing situations without
requiring any modification. In addition, the test
infrastructure is designed to allow assembly of the
arbitrary, pluggable test components that implement
testing services. The objective is for the components
to be provided by any test service provider.

□ ATF Design Decision III. Event-driven Test Execu-
tion design: Since test components are only loosely
coupled to the test infrastructure, direct interfacing
between the test components is not feasible. Conse-
quently, ATF relies on a generic transaction handler
built around an event board. When a component
attempts to interact with another component, it sends
data to this event board instead of the target
component. The event board stores the various types
of interaction data as events so that every component
can inquire and retrieve a specific event. The result is
that all major activities within the ATF are coordi-
nated via events.

When a service provider designs a new testing service,
its design is registered with the Test Service Model
Repository. It then can be discovered, integrated into the
test infrastructure, and reused whenever necessary. These
capabilities will provide three benefits. The test infra-
structure may be consistently reused for many types of
testing. The pluggable test components may be condi-
tionally reused for the same testing requirements.
Automatic configuration makes the test bed more
extensible and reusable.

To address Problem III, we introduce two test case
design decisions: modular and event-centric.

□ ATF Design Decision IV. Modular test case design:
The abstract test case has two design modules:
assertion and procedures. This design makes the
abstract test case easier to read. Also the Test Bed
Builder may use each module separately when the
abstract test case is adapted for different test require-
ments. Additionally, procedure and assertion content
scripts will be separated for the associated executable
test case—making them easier to reuse as well.

□ ATF Design Decision V. Event-centric test case
design: Every type of event—from low-level proto-
col signals to business document receipts—can be
captured by the event board and wrapped into a
standard event envelope. Virtually all testing events
are captured, stored, and may be used to trigger an
arbitrary testing activity or to be fetched and
correlated (past events) by such an activity, e.g. a
data extraction procedure or verification action.

Inf Syst Front (2012) 14:789–808 793

Because every assertion or procedure module in the
test case contains triggering conditions, each module
can be introduced and managed independently.

By introducing a modular and event-centric design for
test cases, we expect two benefits. First, procedure and
assertion modules may be independently reused by another
test case. Second, because the test case module is not affected
by other changes in the module, a Test Case Developer may
easily manage large scale test suites.

3.2 The agile test framework process

The ATF architecture is illustrated in Fig. 2. There are several
important differences between Fig. 2 and 1. First, the design
phase (corresponding to Platform Independent Model (PIM))
is positioned between the conceptual and implementation
phases. Actions in this phase are abstract and independent of
a specific test bed implementation. The previous Test Bed
Architect role now is broken into the three new roles: Test

Service Provider, Test Bed Builder, and Test Framework
Provider. The new roles and their activities reflect the drive
towards greater modularity and re-usability. Each test case has
separate modules for verification rules and procedural data.

The following are descriptions of the key processes
supported by the ATF architecture.

□ Analyze Test Requirements: The Test Case Developer
investigates the requirements given by a standard
specification and the intended use of the standard and
then determines the functions needed to verify the
identified Test User’s SUT (System Under Test).

□ Compose Abstract Test Cases: An abstract test case
consists of usage and assertion scripts. Usage scripts
represent the required scenarios that extract test items
from the SUT. Assertions scripts provide the predi-
cates needed to determine whether the test item is true
or false. Since they are generated without concern for
a specific test harness configuration script, these
scripts are not machine-readable. Therefore, an ab-

Analyze Test
Requirements

Standard
Specification

Usage
Specification

Generate
Assertion Scripts

Executable Test Case

Test Infrastructure
Specification

Design Pluggable Test
Components

Standard
Developer Test User Test bed

Builder
Test Case
Developer

TF
Provider

Conceptual Phase(CIM)

Implementation Phase (PSM)

Test Service
Provider

Analyze Functional Non-
Stationary Requirements

Interface Specification for
Pluggable Test Components

Compose Abstract
Test Case

Generate
Usage Scripts

Register Pluggable Test
Components Design

Search & Select
Relevant Pluggable
Test Components

Generate Harness
Script

Generate
Verification Scripts

Compose Executable
Test Case

Generate
Procedure Scripts

Implement Pluggable
Test Components

Pluggable Test
Components

Assemble Test bed

System Under
Test

Specific Test bed

Design Phase (PIM)

Execute Test
Case

Test Results

Execution Phase

Implement Test bed
Infrastructure

Test bed
Infrastructure

Test Case Schema

Fig. 2 Procedural architecture of the agile test framework

794 Inf Syst Front (2012) 14:789–808

stract test case is independent of a specific test bed
implementation and is a kind of meta-model for an
executable test case.

□ Compose Executable Test Cases: An executable test
case consists of verification and procedural scripts.
These scripts are derived for the corresponding
abstract test case using a specific test harness
configuration script. The test harness configuration
script includes information about test environment
and configuration, the partner(s) and target SUT(s),
the required test components, and, protocols and
schema to be used for business documents, among
other things. Using all of this information, the Test
Case Developer generates a machine-readable exe-
cutable test case from an abstract test case. This test
environment and configuration information is
encoded as a test harness configuration script by
the Test Bed Builder. The generated executable test
case is registered into the test case repository.

□ Analyze Functional Non-stationary Requirements:
The Test Bed Builder investigates functional, non-
stationary requirements based on the test require-
ments. A non-stationary requirement is a specific
test service requirement for a specific testing
situation. That is, the test service is required for the
testing scenario at hand but it may not be used in other
testing situations without additional adaptation.

□ Design and Register Pluggable Test Components:
The pluggable test component provides a specific
test service. A Test Service Provider designs the
pluggable test component according to the standard
specification and the interface specification for the
pluggable test components. Once the pluggable test
component is designed, it should be registered in a
public service registry. At that time, the Test
Service Provider registers the information, such as
technical capabilities, service interface, and index
of service categorization, which are described in
Section 5.4.

□ Search and Select Pluggable Test Components: The
Test Bed Builder searches for the relevant pluggable
test components that are needed for the specific test
bed. The Test Bed Builder decides the optimal set of
pluggable test components among the alternative
components.

□ Generate Test Harness Configuration Script: The
Test Bed Builder composes the test harness config-
uration script, which contains the test environment
and configuration information describing the partner
(s) and target SUT(s), pluggable test components to
be used for the testing, the protocol and schema to
be used for business documents, and other informa-
tion necessary to assemble the required test bed.

□ Implement Pluggable Test Component: The Test
Service Provider implements and customizes a
pluggable test component based on the pluggable
test component design and specific interface require-
ments described in the test harness configuration
script provided by the Test Bed Builder.

□ Assemble Test Bed and Execute Test Case: A test bed
is automatically configured on the basis of informa-
tion contained in the test harness configuration script.
That is, a test bed is assembled from the test
infrastructure and the selected loosely coupled plug-
gable test components. Finally the test bed interprets
and executes the executable test case to verify the
system under test.

4 Test case design for agile testing

The purpose of the ATF test case design is to address the
dependency issues of traditional test case designs that affect
the reusability and manageability of test cases.

4.1 Two-layer design of a test case

Most existing test case designs depend on both a standard
specification and a specific test bed implementation. These
two dependencies make test case development a time-
consuming and costly process because test case developers
must simultaneously consider both of these constraints when
developing test cases. To remove the two dependencies (and
resolve Problem I), we designed a test case architecture
containing two layers: an abstract test case and executable
test case. Figure 3 illustrates the test case design.

An abstract test case is derived, in general, from standard
specifications and the intended usage patterns for the system
under test. Its purpose is to specify the validation rules and
testing procedure at an abstract level. Validation rules are
written using logical conditions; they describe the normative
requirements given under the standard specifications. The
testing procedure describes the usage patterns that are simulated
for the system under test (SUT). As noted above, abstract test
cases are intended for human consumption and may be thought
of as a meta-model for the executable test cases. This implies
that the abstract test case is independent of a specific test bed.
On the other hand, an executable test case is an implementation
of the abstract test case that actually executes the validation
process. Consequently, the executable test case contains
machine-readable content that reflects a specific test bed.

4.2 Modular design of the ATF test case

Typical test case designs embed verification rules as an
integral part of the testing procedure. These verification

Inf Syst Front (2012) 14:789–808 795

rules are used to ascertain whether the test items are true
with respect to the test requirements. In this way, these two
parts of the test case are closely coupled, because the
verification rules will be executed at a specific point in time
within the testing procedure. This approach, however, gives
rise to two types of problems. First, test cases tend to be
monolithic, large, and difficult to maintain. Also, test case
design is difficult to modify when the underlying standards
change. The second problem is low reusability. Since
verification rules are based on the SUT test requirements
and testing is based on the business scenarios in which the
SUT participates, numerous combinations are possible. The

tight coupling means that each such combination will
require significant changes to the test cases.

To overcome these problems (and resolveProblem III) we
propose a modular design for test cases, in which the test
cases consist of procedural content and verification rules. As
Fig. 3 shows, each test case (either the abstract or executable
test case) is composed of two scripts. One script contains
procedural content: a usage script for the abstract test case
and a procedure script for the executable test case. The other
script contains verification content: an assertion for the
abstract test case and a verification script for the executable
test case.

Fig. 3 Data model for the agile test case

796 Inf Syst Front (2012) 14:789–808

The two procedural scripts are distinguished by their intent
and time of specification. The usage script in the abstract test
case represents the testing-related business process, which
includes the partners’ life cycles and actions during testing.
Actions are abstract descriptions and contain no specific
message instances. For example, the usage script might say
“Buyer sends a purchase order message to a Supplier”. The
specific buyer, purchase order, and supplier instances are not
yet specified. On the other hand, the procedural script in the
executable test case represents a business transaction that will
be executed at testing time and contains specific test item
instances. Additionally, both the usage script and procedural
script contain event-driven pre-conditions, meaning that when
the pre-condition is satisfied, the procedure step is executed.
However, if all preconditions in the usage and procedural
scripts only define a fixed time of execution (e.g., next step will
be executed after 5 s of wait time), these scripts would encode
conventional sequence-based testing and test cases.

Verification scripts also contain event-driven conditions,
meaning that an activation condition is defined before the
verification script is activated (triggered). When the activation
condition is satisfied, a test item is verified against an
assertion. These activation conditions render the verification
rule independent of the testing procedure, since the rule is not
activated at a specific step of testing procedure. Consequently,
verification scripts may be readily reused within a new testing
procedure because the verification script is independently
executed in response to the events referenced in the test
procedure. Using this event-driven concept, the verification
script can be also reused without any modification when the
procedural script is changed. Verification scripts are also
distinguished by their intent and time of specification. The
assertion script in the abstract test case is human-, not
machine-, readable because a specific verifier may not be
known at development time. When that verifier is known, the
Test Case Developer can add assertion codes using a specific
executable language. This assertion code is the verification
script in the executable test case.

If the target test item is changed, the verification script
should be re-generated because the assertion script in the
abstract test case is developed on the basis of the standard
specification of the specific test items. However the
procedural script could be partially reused because if it
form follows a reusable procedural pattern (e.g., Query
pattern, Acknowledgement pattern, or Notice) that is inde-
pendent from the specific test items.

The concept of assertion script is similar to the test
assertion concept in the OASIS Test Assertion Guidelines
(TAG) (TAG, 2010). A test assertion is a testable or
measurable expression for evaluating the adherence of a
part of an implementation to a normative statement in a
specification, for which TAG defines a formal form. While
the assertion script has same concepts as the TAG’s test

assertion concept, the assertion script also introduces
additional components that support extension of the
assertion script into the verification script within the
executable test case. One type of component is a “Partner
Information” which will be extended to a specific
pluggable test component or SUT in the verification script.
For example, the partner information in the assertion script
indicates the specific partner like Buyer or Supplier which
produces a target test item to be tested. Then, this
information will be replaced for the verification script
with the specific partner identification like SUT001
(Buyer) for the executable test case generation according
to the test harness configuration script.

4.3 Additional design decisions for agile test case

We made the following additional modifications to the ATF
test case design to increase reusability.

□ XML-based test case design: XML facilitates com-
munication between the various participants in hetero-
geneous systems. Using a single XML-based test case
specification, Test Case Developers can format and
distribute newly formatted test cases with minimal
effort. Using the eXtensible Stylesheet Language
(XSL11), developers can easily separate content from
formatting instructions for various test participants.

□ Self-describing test case design: The test case design
is self-describing, meaning that the test cases carry
sufficient information to describe all activities during
testing. This overcomes s significant limitation of
existing test case designs in which a significant
amount of essential information is omitted or hidden.
For example, the IIC test case does not include how
to generate test items at the SUT side because the test
service defined by the IIC test framework is
embedded in the SUT and generates the test items
automatically. However, such limited information
content makes the IIC test case difficult to under-
stand and to reuse in different testing scenarios.

□ Business process-based test representation: Existing
test cases are represented as related activities
between a testing system (a test bed) and a SUT(s).
The ATF test cases, however, are represented as related
activities between business partners (applications). For
example, the IIC test case will describe the specific
responsibilities of the buyer and supplier applications.
The ATF test case will describe the responsibilities of
buyer and supplier in the business process. A focus on
business processes allows test cases to be reused

11 Extensible Stylesheet Language (XSL), http://www.w3.org/Style/XSL/

Inf Syst Front (2012) 14:789–808 797

http://www.w3.org/Style/XSL/

without modification when the roles of the testing
system (a test bed) and SUT are reversed.

5 The agile execution model

As noted, to resolve Problem II, we are concerned with
two design factors: Pluggable test components & infra-
structure design and event-driven test execution design.
These are described in more detail below.

5.1 Conceptual architecture of the agile execution model

Figure 4 illustrates the proposed agile execution model that
verifies documents and applications implemented in a
variety of e-business standards. The model is based on
concepts from the Implementation Interoperability and
Conformance (IIC) test framework (IIC, 2007). The
primary similarity is between our Test Infrastructure
module and IIC’s test driver. The major difference is the
introduction of Pluggable Test Components. The Test
Infrastructure module is present in any type of testing; its
functionality is invariable and independent of specific
testing requirements. The module is developed in advance
by the Test Framework Provider according to stationary
requirements for B2B testing.

The functionalities of the Pluggable Test Components
may change and require re-implementation as a result of
changes to the specific test requirements. The proposed

ATF provides a bundle of standard interfaces that simplifies
the re-implementation process.

A typical test procedure consists of six steps. First, select
an executable test case and the related test harness
configuration script for processing. Second, process the
test harness configuration script to select and deploy identified
pluggable test components via the Test Configuration Engine
(TCE). Third, process the test case by the Test Sequence
Engine (TSE), which, in turn, calls the appropriate pluggable
test components or test infrastructure. Fourth, send (or
receive) test messages to (or from) the target SUT through
the discovered pluggable component (messaging service) of
the Test Messaging Interface (TMI). Fifth, verify received
messages using the pluggable component (e.g., a reasoning
service) of a Test Verification Interface (TVI). Last, generate a
test report by invoking a reporting component (implementing
a reporting service) of the Outbound Event Interface (OEI).

5.2 Standard interface definition of the pluggable test
components

The agile execution model enables the Test Bed Builder to
assemble relevant pluggable test components on top of the
test infrastructure to provide a specific test bed to the Test
User. This model provides standard interfaces for a Test
Service Provider to design and implement the pluggable test
components. The Test Bed Builder discovers a design model
for a relevant pluggable test component in the Test Service
Model Repository (discussed below) and requests its imple-

Test Bed

Outbound
Event

Interface

Harness
Script

Test
Verification

Interface

Test
Sequence

Engine

Test
Configuration

Engine

Test Infrastructure

Test
Messaging
Interface

Event
Board

Inbound
Event

Interface

Pluggable
TC 1

Interface for
Pluggable Test

component

Pluggable Test
Component

Test
Interface

Configured
Test

Component

Executable
Test Cases

Abstract
Test CaseTest Bed

Builder

Test Case
Developer

TF
ProviderTest

Infrastructure
Design Model of
Pluggable Test

Component

Test Service
Provider

Service Model
Repository

Model

Pluggable
TC 2

Implements

Service Machine

Fig. 4 Conceptual architecture of the agile execution model

798 Inf Syst Front (2012) 14:789–808

mentation from the Test Service Provider. Once the Test
Service Provider implements or customizes the pluggable test
components, the Test Bed Builder composes the test harness
configuration script for a specific test bed with the information
necessary to bind these components into a test bed and to
connect them to specific SUT(s). The test bed is configured
according to the test harness configuration script automatical-
ly by the TCE. The test bed is then ready to verify the system
under test by running selected test cases.

The Test Infrastructure is independent of any specific
standard and/or test environment. It is, in essence, the brain
of a test bed. It controls the whole test process in that it
reads and interprets an executable test case, orchestrates
other test components, and, consequently, drives the
execution of test cases that have an SUT in the loop. It
has two central engines—the Test Configuration Engine
(TCE) and Test Sequence Engine (TSE)—and the Event
Board data store. The TCE is responsible for dynamically
setting up a test bed in accordance with a test harness
configuration script. The TSE drives the testing process by
interpreting a selected executable test case. The Event
Board collects all significant events generated by the
pluggable test components and SUT(s) and supports event
logging, search, and correlation.

The standard interface of a pluggable test component
contains a data model specifying the data exchange between
the test infrastructure and the pluggable test component. The
interface is used to guide the Test Service Provider in
implementing a specific pluggable test component and to
help the Test Bed Builder discover the pluggable components.
The TCE dynamically inserts and invokes these pluggable
components according to the test harness configuration script
and the interface protocols. A test bed may have multiple
pluggable test components for each interface type. These
interface types are described below.

□ The Test Verification Interface (TVI) is the interface of a
verification engine that determines whether a message
from the SUT is valid for a given assertion. The
assertions may be scripted in a variety of languages,
such as XPath, Schematron,12 XQuery, JESS,13 or
OWL,14 thereby necessitating different validation
services at execution time. If an XPath assertion script
is used, for example, TCE must discover and virtually
integrate an XPATH validation service.

□ The Test Messaging Interface (TMI) is the interface for a
messaging engine that delivers messages between a test
bed and the SUT. A messaging engine is implemented
based on a requiredmessaging protocol, such as ebXML,
RosettaNet, or Web Service. At execution time, a

particular messaging engine may be selected according
to the protocol used by the SUT. For example, ebXML-
compliant SUTs need an ebMS-messaging engine.

□ The Outbound Event Interface (OEI) is the interface for
an outbound event handler that provides an event from
a test bed to external entities. The reporting service is
one of the more important outbound event handlers. It
provides a formatted summary of test traces and results
to the Test Users. The format depends on both the
information and the receiver. For example, a messaging
engine developer who seeks to verify message trans-
actions between messaging engines may request a view
of the message transactions record. On the other hand, a
business document developer who performs a content
integrity test may request the list of syntactic errors,
conflicts against canonical semantic models, and
suggested correction guidelines.

□ The Inbound Event Interface (IEI) is the interface for an
inbound event handler that generates an event for
consumption by a test bed during test execution. Triggers
are probably the most important inbound events. They
control general execution flow and timing of test cases.

The Test Framework Provider should provide a single
technical document interface, such as WSDL, for each
standard interface: TVI, MEI, OEI, and IEI. A Test Service
Provider implements a specific pluggable test component
based on this standard interface. At design time, the Test
Bed Builder deploys several relevant test components into
the test infrastructure, as specified in the test harness script.

Figure 5 shows that several different TVI pluggable test
components, which are implemented by Test Service
Providers, may be deployed into the test infrastructure.
Each of the various verifier engines, which may use varied
languages such Jess, Schematron, and XSLT, implement the
same interface to be deployed into the test infrastructure.

We encounter a trade-off problem here, as we need to
decide how to provide a practical interface definition for each
interface type. If the Test Framework Provider designs the
interface by providing very detailed, fixed set of parameters, it
will cause difficulty to the Test Service Providers who
implement pluggable test components based on the single
standard interface as there are likely to be many aspects of
these test components that are incompatible with such a
detailed, fixed interface definition. If the Test Framework
Provider, however, defines the interface by providing very
broad, extensible set of parameters (like a general string type
parameter), no useful structure or semantics of the interface
will be exposed for the collaborative parties to base their
designs and, eventually, achieve pluggable components.
Consequently, reusability of the pluggable test components
in this situation is virtually non-existent, because it is
necessary that the test case script become tightly coupled

12 Schematron, http://www.schematron.com/
13 JESS, http://herzberg.ca.sandia.gov/jess/
14 Web Ontology Language (OWL), http://www.w3.org/2004/OWL

Inf Syst Front (2012) 14:789–808 799

http://www.schematron.com/
http://herzberg.ca.sandia.gov/jess/
http://www.w3.org/2004/OWL

with a specific pluggable test component, which is the
container of the script. So, the tightly coupled pluggable test
components really cannot be reused for the other test cases.

A potentially interesting research direction to enhance
reuse of testing components is to develop a practical basis for
standardization of semantics for testing interfaces. For
example, one property that may be usefully included for
the TVI in this basis is a kind of reasoning language. Another
property of interest in designing TVI is often a kind of test
result format. Once these and other useful properties are
identified, a taxonomy of the Test Verification Interfaces
(TVI) may be created and the classes from this taxonomy
may be associated with specific interface types to provide for
standardization of such interfaces. For example, a specific
Test Service Provider may try to develop own Schematron
verifier which has a specific interface class “TVI/AA”
because the components uses Schematron for the reasoning
language and its result format should include the true/false
result and potential problem’s location. Similar standardiza-
tion may be useful for the other interfaces—the TMI, OEI,
and IEI.

The test harness configuration script defines what plug-
gable test components are combined into each interface.
However, for a specific testing situation, some interfaces may
not have any pluggable test components. For example, if the

test bed does not need to communicate messages with SUT,
the TMI pluggable test component would not need to be
included in the test harness configuration script. For a specific
testing situation, if more than one communication protocol
is used, multiple TMI pluggable test components are
considered in the test harness configuration. That is,
multiple pluggable test components can be specified in
the test harness configuration script to be deployed
using same interface type.

5.3 Event management of the agile execution model

Inbound and outbound events are time-stamped data
objects stored on the Event Board and generated by a
SUT or test component within a test bed. The test bed
uses these events to expedite processing and reporting of
test execution according to a test case. An event may
serve as a triggering mechanism for test cases, as a
synchronization mechanism, or as a proxy for business
messages. When an event takes place, it must be posted
on the Event Board wrapped within an envelope, as
specified in the event schema. The event schema includes
meta-information, such as time, type, owner, and identi-
fication of the event. Listing 1 shows an event schema
using RelaxNG notation

Test Framework Provider

Standard Interface Definition (WSDL) for TVI

D
esign

Test Service Provider A

Test Service Provider B

Test Service Provider C

refer

XSLT Verifier

Schematron Verifier

JESS Verifier

Implement

Implement

Implement

Executable
Test Case

Test
Infrastructure

InterpretTVI
I/F

Deployed

Deployed

XSLT Verifier

Schematron Verifier

call

Fig. 5 An example of TVI pluggable test components deployment using the standard interface definition

800 Inf Syst Front (2012) 14:789–808

5.4 Pluggable test component development, registration,
search, and deployment

The Test Service Provider designs a model of pluggable test
components for specific test requirements. A component
can be implemented in any programming language, but the
model is described in a neutral language, such as WSDL,15

an XML-based language that provides a means for
describing Web services.

Figure 6 illustrates tasks of the Test Service Provider and
Test Bed Builder. The Test Service Provider analyzes the
B2B standards and standard interfaces of pluggable test
components from the ATF, and then designs a model for a
specific component. For example, to implement a Schema-
tron engine for verification of XML documents, the service
provider will select a Test Verification Interface provided
by the ATF framework and design the model for the
Schematron engine. The interface is described in WSDL
and includes input/output message protocol specifications.
The Service Provider registers the model with the Test
Service Model Repository.

Then, the Test Bed Builder searches for, and eventually
discovers, the relevant model required for the specific test bed.
First, the Test Bed Builder analyzes the non-stationary
requirements, and then searches for a relevant model for the
pluggable component within the Test Service Model Repos-

itory. Next, he or she selects a specific model that will be used
in the test bed, and then requests the Test Service Provider to
implement the selected model. Finally, the Test Service
Provider implements the pluggable test component and
provides the service to the Test Bed Builder.

When the necessary pluggable test components are
implemented, the Test Bed Builder composes a test harness
configuration script to configure the specific test bed. The
test bed may be configured according to the test harness
configuration script automatically. Figure 7 illustrates a
specific test bed configured with a number of pluggable test
components and a SUT.

6 Initial evaluation

In this section, we use a simple B2B scenario to compare
the proposed ATF architecture to the previously developed
eTSM test framework (TaMIE, 2008). We will show how
ATF resolves the problems present in the eTSM framework,
as identified in this paper.

6.1 Simple use case: Purchase order scenario

In this scenario, the supplier offers the buyer a purchase
order (PO16) service. The interface to this service is a

15 Web Services Description Language (WSDL) 1.1, http://www.w3.
org/TR/wsdl

16 Example of Purchase Order Scenario (PO), http://sws-challenge.
org/wiki/index.php/Scenario:_Purchase_Order_Mediation_v2

Inf Syst Front (2012) 14:789–808 801

http://dx.doi.org/http://www.w3.org/Protocols/
http://dx.doi.org/http://www.w3.org/Protocols/
http://dx.doi.org/http://www.w3.org/Protocols/
http://dx.doi.org/http://www.w3.org/Protocols/

CRUD (create, retrieve, update, and delete) interface for
POs. The buyer’s client uses this interface to create a new
PO or retrieve (get status), update, or delete (cancel) an
existing PO. When a customer submits a new PO, the
supplier assigns a new, unique order number. The PO order
number can be used to get the status of, update, or cancel
the PO. To create a new PO, the buyer and supplier
exchange messages as follows.

□ Step 1: Buyer client sends a PO message to
Supplier’s service.

□ Step 2: If Buyer does not get a response message
from the supplier within 150 s, then Buyer sends a
PO to Supplier again.

□ Step 3: Sender sends and Buyer receives a PO
Confirmation or Rejection, correlated with the PO,
within 300 s.

The Test Case Developer analyzes the above scenario
and extracts test requirements, which represent constraints
to both buyer and supplier systems. In this case, there are
two such constraints.

□ Total time for steps 1–3 is bounded by an upper limit
of 300 s.

□ The correlation is based on a PO reference number
provided in the payload of the message

Before composing the test cases, the Test Case Developer
defines success conditions and failure conditions to judge
both the buyer and supplier systems. When the test results
satisfy all success conditions and no failure conditions, the
systems under the test are operating normally.

The two success conditions are:

□ S1: Within 300 s, receive either a single PO
Confirmation or Rejection.

□ S2: Both messages are correlated as expected.

The four failure conditions and one warning condition are:

□ F1: An error message is immediately received,
which correlates with the initial message (either a
SOAP Fault or an ebMS Error received on the back-
channel of the PO message).

□ F2: No response is received within 300 s.
□ F3: There were two contradicting response mes-

sages within 300 s (Confirmation AND Rejection).
□ F4: a PO response was received, but its payload

correlation was wrong.
□ W1: a PO response, correlated with the PO, was

received between 150 s and 300 s

6.2 eTSM test case vs. ATF test case

Listing 2 shows an example of the corresponding eTSM
test case script. By inspecting the script, one can see that
steps 3, 5, and 6 are verification steps, while the
remaining steps may be treated as parts of the test
procedure script. In step 1, the test bed sends a PO
message to SUT and waits for 300 s. In step 2, the test
bed attempts to retrieve the PO response message from
the SUT. Between step 1 and step 2, the SUT should
send a PO response message, but there is no description
for this event in the eTSM test case.

Verifier

Report
Generator

Messaging
Engine

Verifier Verifier

Report
Generator

Messaging
Engine
Messaging

Engine

Test Service
 Repository

Verifier

Messaging
Engine

Timer
Trigger
Test User
Interface

Service Provider

Test Service

1. Implement

WSDL
UDDI
Model

Test Service Development

Test Service
Requirements

Test Service

Abstract Test
Cases

Service Discovery
Test Bed Builder

UDDI
Query Model

Test Service Test Service Harness
2. Generate

Harness

Fig. 6 Pluggable test compo-
nent development, registration,
and search

802 Inf Syst Front (2012) 14:789–808

The eTSM test case is intended to be machine-
readable. It describes a sequence of test bed execution
steps during testing. Consequently, if the Test User has
no knowledge of the framework, a correct interpretation
of the eTSM test case is not possible without additional
assistance (Problem I). It is also intended specifically to

verify a supplier service. If we want to verify a buyer–
service, we must modify the verification part of script.
Even though we do not change the test procedure, the
procedure script must be changed also to reflect the
buyer’s perspective. That is, the Test Case Developer
cannot reuse the eTSM test case (Problem III).

Inf Syst Front (2012) 14:789–808 803

Listing 3 shows the corresponding ATF abstract test
case. The usage script describes what the buyer and
supplier should do during the testing process. The assertion
scripts are independent from the usage script; they have
activation conditions that indicate when they are executed.
Using this mechanism, they can be more readily reused for
new usage scripts.

This ATF test case was also composed to allow specific
verification of the supplier service. If the Test Case Developer
wants to verify the buyer’s client system, the usage script
could be reused and he or she must only add new assertion
scripts for the buyer’s test requirements. If the Test Case

Developer wants to modify the usage script, the assertion
scripts can be reused if there is no change to the test
requirements. In this example, the five assertion scripts
(A0001–A0005) are related to the four failure conditions
and the one warning condition listed in Section 6.2.

6.3 Test execution of ATF

To overcome Problem II, the ATF execution model provides
interface definitions for pluggable test components. When the
Test Service Provider implements a pluggable test compo-
nent, the Test Bed Builder may discover and deploy the

804 Inf Syst Front (2012) 14:789–808

component in the test bed. Listing 4 shows the test harness
configuration script, and Fig. 8 illustrates the resulting test
bed configuration for the Purchase Order scenario. Messag-
ing is handled by configuring the test bed to use a WS-I
messaging handler. Had the SUT required ebMS messaging
capability, the ebMS messaging handler would have been
specified in the test harness configuration script and the
ebMS handler would have appeared in the test bed.

In addition, when the assertion scripts in the abstract test
case specification require alternative validation function-
alities, the Test Bed Builder may search for alternative
verification tools that provide such reasoning or verifying
functionalities. Such functionalities are then deployed in the
test bed via the TVI interface. In this manner, the ATF test
execution model addresses the issue of scalability for
configurable components of varied functionalities.

As discussed in Section 4, the ATF architecture
allows generation of executable test cases by the Test
Case Developer once the test harness configuration script
specifies the test bed configuration. Listing 5 illustrates
the ATF executable test case scripts that the Test Case
Developer could generate from the corresponding abstract
test cases for the Purchase Order scenario.

Essentially, the above procedural and verification scripts
can be seen to be based on the concept of Event Condition

Action (ECA). That is, the event part specifies the signal
that triggers the invocation of the rule, and the condition
part is a logical test that, if satisfied or evaluates to true,
causes the action to be carried out. Finally, the action part
consists of updates or invocations on the local data.

This characteristic is a clear distinction with a more
procedural model like eTSM (TaMIE, 2008). There is a
trade-off between the event-driven test case scripting and
the procedural-driven test case scripting. The event-driven

Test Bed

Outbound
Event

Interface

Harness
Script

Test
Verification

Interface

Test
Sequence

Engine

Test
Configuration

Engine

Test Infrastructure

Test
Messaging
Interface

Event
Board

Inbound
Event

Interface

Pluggable
TC 1

Interface for
Pluggable Test

component

Pluggable Test
Component

Test
Interface

Configured
Test

Component

Executable
Test Cases

Abstract
Test CaseTest Bed

Builder

Test Case
Developer

TF
ProviderTest

Infrastructure
Design Model of
Pluggable Test

Component

Test Service
Provider

Pluggable
TC 2

Service Machine

Test
Time Trigger

Message
Capturing

Tool

User
Interaction
Delegator

Content
Verification

Tool

SUT

Test User

Fig. 7 An example of a configured test bed

Inf Syst Front (2012) 14:789–808 805

806 Inf Syst Front (2012) 14:789–808

test case could represent more various testing environments
and needs, but anything that requires some consolidation of
results (e.g. a Service-Level Architecture requirement-
stating that at least 90% of transactions must execute
within 10mn, or a need to calculate average response
time) might be better served by a procedural approach
like eTSM, allowing stateful computations.

7 Conclusion

In this paper, we have described a novel framework for B2B
testing, the Agile Test Framework (ATF). The ATF addresses
core deficiencies found in traditional testing frameworks.
These deficiencies prohibit the reuse of testing facilities based
on these frameworks without major modifications. Just like
these other frameworks, the ATF includes a test case design
and a test execution model; but there are significant differ-
ences. First, traditional test case designs rely on specific test
bed and test case implementation decisions. The ATF
introduces the concept of an abstract test case, which insulates
the test case specifications from the implementation details
and from the specific testing platform requirements.

Second, traditional test execution models rely on specific
testing requirements and do not consider the reuse of testing
modules in similar situations. The ATF introduces three new
concepts: test infrastructure, pluggable test components, and
event-driven execution. The test infrastructure contains
readily reusable core functionalities that allow assembly
pluggable test components into novel implementations of
desired testing services. The ATF uses event-driven execution,
which is based on a generic transaction handler and an event
board. Together, they coordinate and facilitate communication
between the infrastructure and pluggable components.

Third, traditional test case designs do not recognize and
separate procedural and verification aspects of the test case,
which makes test cases impossible to reuse. The ATF

introduces modular and event-centric test case design. The
modular design separates two types of information: asser-
tions and procedural information. The event-centric design
allows assertion and procedure modules in the test case to
contain triggering conditions, which allow each module to
be managed and reused independently.

In this paper, we detail these differences and their impacts
on reuse. We then use a simple B2B scenario to compare the
ATF with the existing eTSM test framework architecture. We
illustrated how the ATF architecture successfully addresses
the reuse issues encountered in the eTSM approach. This
preliminary evaluation indicates the potential benefits of the
proposed ATF in more complicated B2B testing situations.

References

Astra Infotech (2009). Software Testing Glossary: http://www.
astrainfotech.com/software-testing-glossary.html.

Baker, P., Rudolph, E., & Schieferdecker, I. (2001). Graphical test
specification—the graphical format of TTCN-3. Lecture Notes in
Computer Science.

Bertolino, A., Frantzen, L., Polini, A., & Tretmans, J. (2006). Audition of
web services for testing conformance to open specified protocols. In
R. Reussner, J. Stafford &C. Szyperski (Eds.), Architecting Systems
with Trustworthy Components, number 3938 in LNCS.

Caruso, F., &Umar, A. (2004). Architectures to survive technological and
business turbulences. Information Systems Frontiers, 6(1), 9–21.

Durand, J. (2007a). Will your SOA systems work in the real world?
STAR-East, Software Testing Analysis and Review Conference.

Durand, J. (2007b). OASIS ebXML IIC TC., Event-driven Test Scripting
Language. http://kavi.oasis-open.org/committees/download.php/
22445/eTSL-draft-082.pdf.

ETSI (2009). Web Site of European Telecommunications Standards
Institute, http://www.etsi.org.

Foster, H., Uchitel, S., Magee, J., & Kramer, J. (2003). Model-based
Verification of Web Service Compositions, ase, pp.152, 18th
IEEE International Conference on Automated Software Engineering
(ASE’03).

GITB (2010). Global e-Business Interoperability Test Bed project,
http://www.ebusiness-testbed.eu/home/.

Testbed

Interface

Test
Report

Test
Sequence
Engine

Test
Configuration

Engine

Test Driver

Message out

Message in

External Service call
Event
Board

Executable
Test CasesWS-I

Handler

TimeClock

Test User

SUT

Software Vendor

Harness
Script

Procedure
Script

Verification
Script

Test Case
Transformer

Schematron

Fig. 8 Resulting test bed configuration for the purchase order scenario

Inf Syst Front (2012) 14:789–808 807

http://www.astrainfotech.com/software-testing-glossary.html
http://www.astrainfotech.com/software-testing-glossary.html
http://kavi.oasis-open.org/committees/download.php/22445/eTSL-draft-082.pdf
http://kavi.oasis-open.org/committees/download.php/22445/eTSL-draft-082.pdf
http://www.etsi.org
http://www.ebusiness-testbed.eu/home/

Gosain, S. (2007). Realizing the vision for web services: strategies for
dealing with imperfect standards. Information Systems Frontiers,
9(1), 53–67.

Heckel, R., & Mariani, L. (2005). Automatic conformance testing of
web services. In Proc. FASE, Edinburgh, Scotland, Apr., 2–10.

IIC (2001). ebXML IIC Test Framework Version 1.0., OASIS, http://
www.oasis-open.org/committees/download.php/1990/ebXML-
TestFramework-10.zip.

Kindrick, J. D., Sauter, J. A., & Matthews, R. S. (1996). Improving
conformance and interoperability testing. StandardView, 4(1),
61–68.

Namli, T., & Dogac, A. (2010). Testing conformance and interoper-
ability of eHealth applications. Methods of Information in
Medicine, 49(3), 281–289.

Namli, T., Aluc, G., & Dogac, A. (2009). An interoperability test
framework for HL7-based systems. IEEE Transactions on
Information Technology in Biomedicine, 13(3), 389–399.

Moseley, S., Randall, S., & Wiles, A. (2004). In pursuit of
interoperability. International Journal of IT Standards and
Standardization Research, 2(2), 34–48.

TAG (2010). OASIS Test Assertions Guidelines (TAG) TC, http://
www.oasis-open.org/committees/tag/.

RosettaNet. (2004). RosettaNet Ready Self-Test Kit (STK) User’s
Guide Release Version 2.0.7. RosettaNet.

Shaw, M., Blanning, R., Strader, T., & Whinston, A. (2000).
Handbook on electronic commerce. Berlin: Springer.

Site Test Center (2009). Web site of Software Testing Glossary, http://
www.sitetestcenter.com/software_testing_glossary.htm.

Smythe, C. (2006). Initial Investigations into Interoperability Testing
of Web Services from their Specification using the Unified
Modeling Language, Web Services - Modeling and Testing
Proceeding.

TaMIE (2008). OASIS Testing and Monitoring Internet Exchanges
(TaMIE) TC, http://www.oasis-open.org/committees/tamie/.

TTCN-3 (2009). Testing and Test Control Notation Version 3, http://
www.ttcn-3.org.

Tsai, W. T., et al. (2003). Scenario-based web service testing with
distributed agents. IEICE Transaction on Information and
System, E86-D(10), 2130–2144.

WS-I (2009). Web Service Interoperability Organization, http://ws-i.org.
Zhong Jie Li, Z. J., Sun, W., & Du, B. (2008). BPEL4WS unit testing:

framework and implementation. International Journal of Business
Process Integration and Management, 3(2), 131–143.

Jungyub Woo is a researcher at the Software and System Division of
the National Institute of Standards and Technology (NIST), the
technology laboratory of the US Department of Commerce. He
received his B.S. and M.S. degrees in Industrial Engineering from
Postech (Pohang University of Science and Technology) in 2001 and
2003, respectively, and his Ph.D. in Industrial Engineering with a
specialization in Manufacturing Systems Engineering from Postech
(Pohang University of Science and Technology) in 2007. Dr. Woo has
spearheaded development of the Business-to-Business test bed at
NIST, which has been used by a number of industry and standards
development organizations. Also he is researching for the Health
Level Seven International (HL7) Test bed. His areas of expertise
include Supply Chain Management, Manufacturing Management and
Strategy, and Automated Test. He is an active member of OASIS
TaMIE.

Nenad Ivezic is a project manager at the Enterprise Systems Group of
the National Institute of Standards and Technology (NIST), the
technology laboratory of the US Department of Commerce. He
received his MS and PhD degrees from Carnegie Mellon University
and BS degree from University of Belgrade. His interests include
Supply Chain Management, and Enterprise Systems Integration. Dr.
Ivezic has spearheaded development of the Business-to-Business test
bed at NIST, which has been used by a number of industry and
standards-development organizations. Also, he led the effort in
advanced semantic-based interoperability methods development and
evaluation to assess potential impact of these methods in automotive
industry. He is currently working on advanced information systems for
supply chain integration and participates actively in standards testing
for e-business technical specifications.

Hyunbo Cho is a professor of department of industrial and
management engineering at the Pohang University of Science and
Technology. He received his B.S. and M.S. degrees in Industrial
Engineering from Seoul National University in 1986 and 1988,
respectively, and his Ph.D. in Industrial Engineering with a special-
ization in Manufacturing Systems Engineering from Texas A&M
University in 1993. He was a recipient of the SME’s 1997
Outstanding Young Manufacturing Engineer Award. His areas of
expertise include Supply Chain Management, Manufacturing Man-
agement and Strategy, and Open Business Model. He is an active
member of IIE and SME.

808 Inf Syst Front (2012) 14:789–808

http://www.oasis-open.org/committees/download.php/1990/ebXML-TestFramework-10.zip
http://www.oasis-open.org/committees/download.php/1990/ebXML-TestFramework-10.zip
http://www.oasis-open.org/committees/download.php/1990/ebXML-TestFramework-10.zip
http://www.oasis-open.org/committees/tag/
http://www.oasis-open.org/committees/tag/
http://www.sitetestcenter.com/software_testing_glossary.htm
http://www.sitetestcenter.com/software_testing_glossary.htm
http://www.oasis-open.org/committees/tamie/
http://www.ttcn-3.org
http://www.ttcn-3.org
http://ws-i.org

	Agile test framework for business-to-business interoperability
	Abstract
	Introduction
	Analysis of existing test frameworks for B2B systems
	Basic concepts and terminology
	Problems with existing test frameworks

	Agile test framework
	Overall approach
	The agile test framework process

	Test case design for agile testing
	Two-layer design of a test case
	Modular design of the ATF test case
	Additional design decisions for agile test case

	The agile execution model
	Conceptual architecture of the agile execution model
	Standard interface definition of the pluggable test components
	Event management of the agile execution model
	Pluggable test component development, registration, search, and deployment

	Initial evaluation
	Simple use case: Purchase order scenario
	eTSM test case vs. ATF test case
	Test execution of ATF

	Conclusion
	References

