

Abstract—The Single-query, Bi-directional, Lazy roadmap
(SBL) algorithm successfully builds upon the traditional
Probabilistic Roadmaps (PRM) approach by introducing a
number of related optimizations. While these optimizations are
applicable in the domain of car-like robots, the non-holonomic
constraints of these systems and non-independence of several of
their degrees of freedom pose challenges that will be examined
in this paper. We present several enhancements that improve
the quality of the generated path in comparison with the simple
adaptation of the SBL algorithm. Results demonstrate that this
work provides a planner that quickly and reliably discovers
efficient paths for car-like robots.

I. INTRODUCTION
ore than a decade ago, Probabilistic Roadmap
Planners (PRM) were introduced as a computationally
feasible alternative to complete path planning

algorithms [5, 8], especially in environments with many
degrees of freedom (dof). The idea behind this approach is
that through random sampling of the configuration space, it
is possible to build a roadmap with sufficient coverage for
answering subsequent path planning queries.

Since then, optimizations and modifications have been
suggested. In particular, the single-query, bi-directional, lazy
roadmap (SBL) algorithm proposed by Latombe was shown
to reduce the running time by a factor of 4 to 40 in
comparison with traditional PRM implementations [2].

The majority of this research introduces innovations in the
context of holonomic robots such as robot arms or free-
flying rigid bodies. While the PRM approach has been
successfully applied to solving the path-planning problem
for car-like robots [6], to the best of our knowledge this
work is the first attempt at adapting SBL and demonstrating
that the relative merits of the algorithm are applicable in this
domain. This paper demonstrates that the algorithm reliably
solves the path planning problem in several different scenes,
while producing paths of superior quality when compared to
a simple application of the SBL algorithm. This approach
can therefore be used as a planner with a horizon of several
seconds in a control hierarchy of a car-like robot.

A. The Classical PRM Method
The path planning problem deals with computing a

Manuscript received September 15, 2009.
Stephen Balakirsky is with the National Institute of Standards and

Technology, Gaithersburg, MD 20899 USA (phone: (301) 975-4791; fax:
(301) 990-9688; e-mail: stephen@nist.gov).

Denis Dimitrov is with Georgetown University, Washington, DC 20057
USA. (e-mail: dd322@georgetown.edu).

feasible, collision free motion for an object (robot) from a
given start position qinit to a given goal position qgoal in a
workspace with obstacles. Many path planning algorithms
map the workspace into configuration space C (the space of
all possible placements of the object), with each
configuration space dimension corresponding to one of the
degrees of freedom in the workspace [1].

The computational cost of creating an explicit
representation of the collision-free subset of the
configuration space (free space, or CFree) is prohibitive in
practice for all but the simplest cases, i.e. low-dimensional C
[3]. Instead, the Probabilistic Roadmap Planner (PRM)
approach probes the configuration space at random. The
collision free points (milestones) are added as nodes to a
probabilistic roadmap graph. Pairs of promising, nearby
milestones are connected using a simple and fast local
planner, typically by straight segments in C, and the
collision-free paths (local paths) form the edges of the
roadmap graph. As the number of milestones increases, the
roadmap will eventually provide a sufficient representation
of the connectivity of the free space. This completes the
roadmap construction phase.

During the query phase, the roadmap is used to answer
multiple motion planning queries. For each query, the initial
and goal configurations qinit and qgoal are connected to the
roadmap graph. If the connection succeeds, the problem is
reduced to finding a path in the graph which connects the
two configurations.

B. The SBL Algorithm
PRM is efficient, easy to implement, and applicable in

many domains [1]. It has found application in areas such as
animation, CAD, virtual environments, computer games, and
computational chemistry [7]. It became a popular research
topic, with many suggested modifications (especially in the
three major areas of sampling, node adding, and collision
checking strategies) aimed at improving the success rate and
efficiency of the approach. A number of these techniques are
reviewed and compared in [1].

The SBL algorithm, developed by Latombe et. al [2],
achieved a significant performance improvement through a
combination of techniques in all of the three mentioned
areas. In particular, it utilizes the following optimizations:

 -- Single-query, bi-directional: SBL explores as little
space as necessary to answer a specific single query, rather
than generating a roadmap distributed over the entire free
space for answering multiple different queries. The roadmap

Single-query, Bi-directional, Lazy Roadmap Planner Applied to
Car-like Robots

Stephen Balakirsky, Senior Member, IEEE, and Denis Dimitrov

M

is represented by two trees rooted at the query configurations
and expanded concurrently.

 -- Lazy collision checking: binary collision tests along
the roadmap edges are performed to validate only the
candidate path between the query configurations, which is
found when the two trees are connected. No time is wasted
on unnecessary checking. As soon as a collision is detected,
the failed edge is removed from the roadmap.

 -- Adaptive sampling: SBL takes shorter steps in
cluttered areas than in open spaces. More specifically, when
generating a new milestone for expanding one of the trees,
the candidates are generated from successively smaller
neighborhoods of a pre-selected milestone q. The process
continues until a candidate is tested collision-free, at which
point it is added as a child node of q. The neighborhood of q
is defined as a set of all milestones, for which the distance
between them and q over some pre-defined metrics d is less
than a specified threshold (radius).

II. THEORETICAL IMPLICATIONS

A. Car-like Robots
SBL assumes that the object, such as a robot arm, can

move independently along each of its dofs. As a result, any
two milestones can be connected by simple linear
interpolation in each dof, i.e. a straight segment in
configuration space. Since the range of values of each
dimension is normalized in SBL (between [0, 1]), the length
of this straight segment can be used as the distance between
its endpoint milestones. In the n-D unit cube of the
configuration space, the n-sphere with center q and radius r
geometrically represents the neighborhood of q.

A car-like robot in a 2 dimensional world typically has 2
position and 1 orientation degrees of freedom – (x, y, Θ).
With only 2 control degrees of freedom, acceleration and
steering angle, the robot is non-holonomically constrained. It
can move only forwards or backwards. In addition, the path
curvature is constrained by the robot’s minimum turning
radius rmin.

B. Implications and Design Decisions
1) Connections between milestones: any two milestones

can be connected by a series of several arcs. However,
especially with nearby milestones (due to the turning radius
constraint), the resulting path is likely to be impractical in
terms of frequent changes of steering angle and driving
direction. Moreover, if one chooses to define additional
dimensions, such as speed range, the connection will be even
more problematic.

Based on these considerations, it was decided to limit the
connections between milestones to a single constant
curvature arc. In turn, such a decision restricts the
milestone’s neighborhood to a relatively small subset of the
geometric region to the front and rear of the robot, spatially
bounded by the two outgoing arcs of rmin radius and whose
heading angle Θ is within a certain tolerance of the angle of
the tangent of the arc connecting the two milestones. A

combination of an arc and a straight segment was also
considered, but eventually deemed unnecessary.

2) Choice of dofs: even without the simplification of using
a single arc between two milestones, a car-like robot cannot
follow an arbitrary path. For example, as it travels along an
arc, its positional dofs (x, y) change non-linearly and non-
independently (x2 + y2 = r2). Similarly, the orientation cannot
be changed independently of the robot’s position. Unlike
holonomic robots, car-like robots cannot compensate for
changes in one dof through changes in other dofs, and each
additional dof further partitions the configuration space and
increases the roadmap size. In this context, the configuration
space is characterized by weaker connectivity, even between
spatially nearby milestones, which neutralizes the benefit of
dealing with fewer dofs compared to typical PRM
applications.

To avoid the computational overhead resulting from the
higher density of milestones and mutual penetration of
milestone trees that are required for a successful connection,
it is necessary to keep the dofs to the minimum. These
concerns lead us to abandon the idea of early creation of
speed profiles by adding a “speed” dof to each milestone and
allowing connections only between milestones with close
speed values. Instead, optimizing speed is more efficiently
accomplished during post processing.

3) Distance metrics and neighborhoods: since relatively
shorter segments have a higher probability of being
collision-free, a metric to utilize during tree growing, tree
connection, and collision checking is desirable. However,
the aforementioned limitations disallow the straightforward
definition of distance metrics between a pair of milestones as
a simple aggregation of changes across individual
dimensions.

Arc length is utilized as a reasonable approximation to the
distance metric that would normally be computed by
equating to distances in the (x, y) coordinate plane. Distance
(absolute difference) between heading angles of two
milestones is strongly correlated to the arc length: for each
particular arc, the difference in tangential angles of the two
milestones increases as they are moved further away from
each other. i.e. the spatial dimensions (x, y) are designated
as primary, whereas any other dimensions are still accounted
for through some sort of heuristics, but excluded from the
formal distance metrics.

Finally, since the dofs are not independent and are not
used in defining an explicit distance metrics, they need not
be normalized. The algorithm can work directly with the
workspace, rather than with the configuration space C.

4) Applicability of SBL: despite these considerations, SBL
is an appropriate choice for car-like robot path planning. As
a single-query model, it is suitable for many applications
such as navigating in a “sliding window” over a large map,
or planning temporary, shorter paths while performing world
exploration. It is also a logical choice to extend milestones
iteratively, rather than to attempt connecting milestones that
were generated without considering the feasibility of such

connections.

III. IMPLEMENTATION

A. Basic Implementation
The implementation presented in this paper is

subsequently referred to as PRM-Ackerman Steering or
PRM-AS. The basic PRM-AS implementation follows SBL
very closely and uses all of its optimizations (description
based on and slightly modified from [2]):
Algorithm PRM-AS (qinit, qgoal)

1. Install qInit and qGoal as roots of TInit and TGoal,
accordingly.

2. Repeat s times, where s is the max number of
milestones

a. EXPAND-TREE
b. Path p = CONNECT-TREES
c. If (p != nil and IS-COLLISION-FREE(p))

then return p
3. Return FAILURE.

1) EXPAND-TREE randomly selects between TInit and
TGoal, from which it randomly picks a milestone q with
probability inverse to the density of milestones around it.
The procedure randomly generates a milestone m from q’s
neighborhood, until it finds a collision-free placement to add
as a child of q and return. The adaptive sampling strategy is
implemented by halving the neighborhood size after each
unsuccessful attempt.

PRM-AS differs from SBL in the specifics of generating
m from q’s neighborhood. Given minimum turning radius
rmin and a maximum neighborhood size (corresponding to
maximum arc length l), PRM-AS first determines the
maximum angular deviation βmax from the straight path, up
to pi/2, that can be achieved. After randomly selecting an
angle βran between –βmax and +βmax and a distance dran
between dmin and l, PRM-AS generates a constant curvature
arc that positions the robot at an angular offset of βran and a
distance of dran relative to its previous path. The value of dmin
is calculated to ensure that the generated arc does not violate
the constraint on minimum turning radius rmin.

2) CONNECT-TREES finds the milestone m’ closest to
the most recently generated milestone m, in the tree not
containing m. If the distance between them is less than a
threshold, then m and m’ are connected by a bridge w and
the path from qInit to qGoal via w is returned.

PRM-AS first prunes the m’ candidates to milestones
within a certain physical distance of m. It generates an arc
from m (using m.x, m.y, m.Θ) to each of the candidates m’
(using m’.x, m’.y, but not m’.Θ). There always exists exactly
one such arc (or straight segment)1. Most of these arcs are
rejected for violating the constraints of minimum turning

1 There is also the complementing arc from the same circle, but the

algorithm always chooses the shorter of the two.

radius rmin, the maximum arc length l, or orientation m’.Θ.
m’.Θ must be within a given tolerance of the arc’s tangent at
point (m’.x, m’.y). If any arcs are retained, the shortest of
them is used as the bridge w in the returned path; else, the
procedure returns nil.
3) IS-COLLISION-FREE checks for collisions in the
candidate path found by CONNECT-TREES. A binary
testing method is applied to each segment: the middle
position (as determined by its arc) is tested first, then the
middle positions of each half, and so on, until either a
collision is found or tested positions become close enough
together for the segment to be considered collision-free2.

Each segment keeps track of this gap, i.e. the current arc
length between its tested positions. This way, it is possible to
break the process into steps, at each step testing the segment
at twice the resolution of the previous step. Rather than
completely testing one path segment before testing another,
the segments are tested one step at a time, each time
choosing the segment with the largest untested gap. Such
process is more likely to reveal a collision earlier. It
continues until either all segments on the path are tested
collision-free or a collision is found.

In the latter case, the colliding segment u is removed from
the roadmap. The roadmap, temporarily joined by the bridge
w during the CONNECT-TREES stage, is split again into
two trees. This results in all the milestones on the path
between u and w, as well as of their children transferring
between the original trees.

Figure 1: Erratic motion produced by the basic PRM-AS
algorithm.

IV. EXTENSIONS
Considering that PRM-AS employs the same

optimizations as SBL and operates on relatively few
dimensions, its performance was not a major concern.

2 The motivation is that the middle position is more likely to produce

collisions. Experimental results in [1] confirm that in each test scene this
method was more efficient than incremental checking.

Instead, the focus of our efforts was on improving the
quality of the generated path. Experiments in open test
scenes show that the implemented modifications also
improve performance in terms of number of generated
milestones by approximately 20 %. Apparently, the
improved version of SBL connects the init and goal trees
faster by reducing the number of milestones that blatantly
deviate from the optimal path.

As expected from a randomized algorithm, the basic
version produces paths such as those shown in Figure 1,
characterized by (1) chaotic changes between forward and
backward movement; (2) excessive backward movement;
and (3) unnecessary deviations from the general driving
direction. The extensions, described below, deal with these
problems by introducing a probabilistic bias in the otherwise
random process of milestone generation, increasing the
likelihood of creating a path with the desired characteristics.

A. Bias for consistent driving direction
To prevent frequent switching between forward and

backward motion, when extending a milestone q, PRM-AS
with higher probability3 generates either a forward or a
backward arc according to the direction of q, and assigns the
corresponding direction to the child milestone m.

Driving direction takes one of the two possible values,
“forward” and “backward”. It is added as a pseudo-dof of
each milestone, in that it is not an explicit part of the
distance metrics and does not preclude connecting
milestones with opposite directions – the connectivity is
determined solely on the basis of their position and
orientation - but still, it in effect influences the shape of a
milestone’s neighborhood in the tree expansion phase. It is a
compromise from adding a full “speed” dimension, as
described earlier.

Further refinements can be made by incorporating
“smarter” change-of-direction decisions, based on analyzing
the surroundings. A simple example would be to switch
directions when facing an obstacle, evident after a number of
unsuccessful attempts to generate a collision-free milestone
in progressively smaller neighborhoods in the current
direction.

B. Bias for forward movement
Because the basic algorithm does not discriminate

between forward and backward movement, it generates
undesirable backward sections with the same probability as
the preferred forward sections. The modified version favors
forward movement when expanding the init tree and
backward movement when expanding the goal tree. The
reason for the latter is that the backward movement in the
goal tree represents forward movement in the final path.

These two corrections work in conjunction with each
other. For example, bias factors of 10 and 3 respectively
mean that at each milestone, the robot maintains the current

3 This probability bias is a configurable parameter that works in
conjunction with the forward movement bias. An example is provided in
subsection B.

direction with 9:1 probability. If this direction is undesired,
there is a 3:1 chance of switching it; else, forward bias is
irrelevant.

C. Bias for straight paths
Depending on configuration, in particular with smaller

ratios of minimum turning radius rmin to maximum arc length
l, the basic version produces widely wavering paths,
including occasional loops. As described earlier, during
milestone generation it determines the maximum angular
deviation βmax from the straight path, up to pi/2, that can be
achieved given rmin and l.

The bias is introduced by reducing βmax proportionally to
the ratio of the maximum arc length for the current attempt
to the maximum allowable arc length. In other words, PRM-
AS is restricted to straighter arcs in longer segments, which
are possible only in open areas, but is allowed to deviate
progressively further from the straight course in tighter
spaces, where it is necessary to avoid obstacles.

The combination of these three configurable parameters
provides a significant degree of control over the generated
path. It is worth noting that caution should be exercised in
determining their appropriate values. Because each of them
distorts the probabilistic distribution of milestones, setting
them too high may lead to a delay or even failure in finding
a solution. For example, strong preference for forward
motion complicates maneuvering in tight spaces, whereas
excessive restriction on turns effectively channels the
generated milestones along several major “highways”
without providing coverage of the entire configuration
space.

Unlike the probabilistic bias approach, the following two
extensions involve path post-processing in some form, rather
than affecting milestone generation:

D. Path smoothing
This technique, finding direct segments between selected

pairs of milestones on the discovered path, is used in most
PRM planners. Due to the specifics of connecting milestones
by constant curvature arcs, bypassing milestones does not
necessarily result in more efficient paths, as is the case with
straight segments in C. Therefore, PRM-AS evaluates the
local improvement on a case by case basis, while attempting
to minimize the total length of the path.

In the test scenes, representative of the actual
environments where PRM-AS is expected to be used, the
number of milestones on the discovered paths is relatively
small – often less than 200. Therefore, despite the quadratic
running time, the implemented path smoother is able to test
each milestone for a potential connection with each of the
subsequent milestones on the path. Most of these pairs are
quickly rejected for lack of possible connecting arc; the
remaining pairs are used for finding the shortest path,
applying the familiar binary approach to test the candidate
arcs for collision.

Path smoothing efficiently remedies winding paths, to
some extent improves erratic forward/backward driving, and

has almost no effect on avoiding backward motion. It is best
used in combination with techniques that tackle each of
these issues.

E. Discovering and comparing multiple paths
 Experiments were performed with a modification that

required the algorithm to generate a pre-determined number
of solutions, usually between 100 and 1000, and return the
best one, as opposed to reporting the first discovered path.
The criterion for comparing path quality was the path’s total
length. We speculated that after finding the first solution,
most of the remaining paths would be produced along this
first path, resulting in a negligible performance hit.

While this appears to be mostly true, the modification did
not provide a significant improvement in path quality. The
probable explanation is that all of the paths under
consideration suffer with a varying degree from the same
issues, and that the shorter, less deviant paths are likely to be
discovered earlier anyway.

V. EXPERIMENTAL RESULTS
PRM-AS is written in Java 1.6 and uses an open source

Java implementation of VClip collision checker, which is
described as “a robust algorithm for computing distances
and checking for collisions between convex polyhedra and
collections of convex polyhedra” 4. PRM-AS comes with a
custom arc generator which provides the flexibility of
incorporating any necessary modifications.

The implementation was put to a test in several scenes
typical for benchmarking probabilistic roadmap planners:
passage (hole), clutter, and corridor (maze). The
environments are configured to match the intended
application of the algorithm as a short-term planner with a
time horizon of several seconds. Parameters such as vehicle
dimensions and turning radius correspond to the parameters
of a small car, assuming meters as environment units (see
Table 1). Scene size is chosen in such a way that travelling
between the start and goal configurations requires at least
several seconds, i.e. as much time as it is necessary for the
algorithm to plan the next path.

Table 1: Configuration used to test both the basic and
optimized version of PRM-AS.

World dimensions 100 x 100
Vehicle dimensions 4 x 2
Vehicle rmin 5
AInit and AGoal dimensions 20 x 20
Max arc length l 7
Factor for consistent driving direction (*) 10
Factor for forward movement bias (*) 3
Factor for straight bias (*) 0.4

(*) when enabled

Figures 2, 3, and 4 present typical (smoothed) paths,

found by PRM-AS in each scene. The black and red lines
represent the forward and backward path arcs, respectively,

4 See http://people.cs.ubc.ca/~lloyd/java/vclip.html

while the rectangle represents milestones, i.e. locations of
vehicle heading changes. The vehicle direction is depicted
by the arrow contained in the vehicle rectangle, which is
drawn to scale relative to the scene dimensions.

Figure 2: PRM-AS path solution in the "hole"
environment (Scene I).

Figure 3: PRM-AS path solution in the "clutter"
environment (Scene II).

In all cases it can be seen that unlike the basic planner, the
optimized version is able to find realistic, efficient paths.
The initial (upper left) and goal (lower right) configuration
are intentionally oriented against the general direction of
movement, to demonstrate that the robot drives backward
only when it is necessary to maneuver from/into these
positions or around obstacles. Several such maneuvers are
required, especially in the corridor scene, and the planner is
able to handle them.

All experiments were performed on a VMWare5 virtual

5 Certain commercial software and tools are identified in this paper in
order to explain our research. Such identification does not imply
recommendation or endorsement by the authors, nor does it imply that the
software tools identified are necessarily the best available for the purpose.

machine/WinXP with 1 dedicated core and 640 MB of
dedicated memory hosted on laptop with Core 2 Duo 2.4
GHz processor/WinXP. Their results are summarized in
Tables 2 and 3. Performance may vary significantly
depending on the type of scene and the configuration
parameters, especially in combination. Either version is able
to reliably solve the problem in an order of several seconds6.
In open scenes, the modified version consistently
outperforms the basic algorithm in the number of generated
milestones7; however, in tight spaces the focus on path
quality puts the modified version to a disadvantage.

Figure 4: PRM-AS path solution in the "corridor
(maze)" environment (Scene III). The magnified area
shows the maneuver undertaken to exit the tight space
while positioning the vehicle for forward movement.

Table 2: Roadmap statistics (number of milestones) and
running times for the basic algorithm. The results are
compiled from 100 consecutive runs of each setup.

Scene Basic version (excl. path smoothing)
Num of Milestones Time, seconds
Min Max Avg Min Max Avg

Hole 3755 26983 11869 0.19 0.88 0.36
Clutter 2896 10479 6161 0. 24 1.05 0.55
Corridor 11975 27844 18575 1.8 3.98 2.71

It should be noted that for consistency, the same

optimization parameters were used across all test scenes.
Experiments confirm that tuning the configuration based on
the specifics of each scene significantly improves
performance. For example, after turning off straight path
bias in the corridor scene, the modified version matches the
basic algorithm performance-wise while still generating

6 In order to demonstrate the planner's capability to handle more

complex problems, the scale of the presented configuration is on the longer
end of the intended planning horizon. During additional experiments with
closer initial placement in the same scenes, running time was also shorter
than the expected driving time, confirming that the algorithm is suitable for
planning in real time.

7 The basic version has better running time because path smoothing is
not applied.

better paths. In fact, implementing an adaptive planner, self-
configurable depending on observed scene properties is a
promising direction for future work.

Table 3: Roadmap statistics (number of milestones) and
running times for the modified algorithm. The results are
compiled from 100 consecutive runs of each setup.

Scene Optimized version (incl. path smoothing)
Num of milestones Time, seconds
Min Max Avg Min Max Avg

Hole 2716 29608 8338 0.22 1.25 0.47
Clutter 1486 8295 5034 0.31 1.53 0.8
Corridor 12758 52687 27786 3.31 11.8 6.77

VI. CONCLUSION AND FUTURE WORK
In this paper, we present an adaptation of the SBL

algorithm that solves the planning problem in the context of
non-holonomic constraints of car-like robots. We discuss the
implications of these constraints and work around them,
leading to an implementation that benefits from all the
original optimizations of SBL. We then propose several
extensions that significantly improve the quality of the
generated path, on par with paths that could be selected by a
human operator.

Being a first attempt, this work leaves room for many
additional improvements. One prospective direction is
experimenting with more complex arcs and consequently,
smooth transitions between them. Another area is bridging
the gap between the single-query and multiple-query PRM
approaches, where the planner could selectively retain parts
of the roadmap constructed while answering single queries
in the process of world exploration. Finally, an important
step in our future efforts is a thorough discussion of how the
proposed algorithm satisfies non-holonomic constraints for
car-like robots.

REFERENCES
[1] R. Geraerts and M. Overmars, “A Comparative Study of Probabilistic

Roadmap Planners”, in Proc. Workshop on the Algorithmic
Foundations of Robotics (WAFR'02), 2002, pp. 43-57.

[2] G. Sanchez and J.-C. Latombe, “A Single-Query Bi-Directional
Probabilistic Roadmap Planner with Lazy Collision Checking”, in Int.
Symp. Robotics Research, 2001, pp. 403-417.

[3] M. Strandberg, “Robot Path Planning: An Object-Oriented
Approach”, 2004, ISBN 91-7283-868-X.

[4] G. Song, N. Amato, “Randomized Motion Planning for Car-like
Robots using C-PRM” in IEEE Int. Conf. on Intelligent Robots and
Systems, 2001, pp. 37-42.

[5] P. Svestka and M. H. Overmars, “Coordinated motion planning for
multiple car-like robots using probabilistic roadmaps“, in IEEE
International Conference on Robotics and Automation, volume 2,
pages 1631–1636, Nagoya, Japan, May 1995.

[6] P. Svestka and M. Overmars, “Motion Planning for Car-like Robots
using a Probabilistic Learning Approach”, Technical Report UU-CS-
1994-33, Dept. Comp. Sci., Utrecht Univ., Utrecht, the Netherlands,
1994

[7] R. Geraerts and M. Overmars, “Sampling Techniques for Probabilistic
Roadmap Planners”, 2003

[8] L. E. Kavraki and J.-C. Latombe, “Randomized preprocessing of
configuration space for fast path planning”, in IEEE International
Conference on Robotics and Automation, volume 3, 1994, pp. 2138–
2145.

