
 

 

 

  

Abstract—The Single-query, Bi-directional, Lazy roadmap 
(SBL) algorithm successfully builds upon the traditional 
Probabilistic Roadmaps (PRM) approach by introducing a 
number of related optimizations. While these optimizations are 
applicable in the domain of car-like robots, the non-holonomic 
constraints of these systems and non-independence of several of 
their degrees of freedom pose challenges that will be examined 
in this paper. We present several enhancements that improve 
the quality of the generated path in comparison with the simple 
adaptation of the SBL algorithm. Results demonstrate that this 
work provides a planner that quickly and reliably discovers 
efficient paths for car-like robots. 

I. INTRODUCTION 
ore than a decade ago, Probabilistic Roadmap 
Planners (PRM) were introduced as a computationally 
feasible alternative to complete path planning 

algorithms [5, 8], especially in environments with many 
degrees of freedom (dof). The idea behind this approach is 
that through random sampling of the configuration space, it 
is possible to build a roadmap with sufficient coverage for 
answering subsequent path planning queries. 

Since then, optimizations and modifications have been 
suggested. In particular, the single-query, bi-directional, lazy 
roadmap (SBL) algorithm proposed by Latombe was shown 
to reduce the running time by a factor of 4 to 40 in 
comparison with traditional PRM implementations [2]. 

The majority of this research introduces innovations in the 
context of holonomic robots such as robot arms or free-
flying rigid bodies. While the PRM approach has been 
successfully applied to solving the path-planning problem 
for car-like robots [6], to the best of our knowledge this 
work is the first attempt at adapting SBL and demonstrating 
that the relative merits of the algorithm are applicable in this 
domain. This paper demonstrates that the algorithm reliably 
solves the path planning problem in several different scenes, 
while producing paths of superior quality when compared to 
a simple application of the SBL algorithm. This approach 
can therefore be used as a planner with a horizon of several 
seconds in a control hierarchy of a car-like robot. 

A. The Classical PRM Method 
The path planning problem deals with computing a 
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feasible, collision free motion for an object (robot) from a 
given start position qinit to a given goal position qgoal in a 
workspace with obstacles. Many path planning algorithms 
map the workspace into configuration space C (the space of 
all possible placements of the object), with each 
configuration space dimension corresponding to one of the 
degrees of freedom in the workspace [1]. 

The computational cost of creating an explicit 
representation of the collision-free subset of the 
configuration space (free space, or CFree) is prohibitive in 
practice for all but the simplest cases, i.e. low-dimensional C 
[3]. Instead, the Probabilistic Roadmap Planner (PRM) 
approach probes the configuration space at random. The 
collision free points (milestones) are added as nodes to a 
probabilistic roadmap graph. Pairs of promising, nearby 
milestones are connected using a simple and fast local 
planner, typically by straight segments in C, and the 
collision-free paths (local paths) form the edges of the 
roadmap graph. As the number of milestones increases, the 
roadmap will eventually provide a sufficient representation 
of the connectivity of the free space. This completes the 
roadmap construction phase. 

During the query phase, the roadmap is used to answer 
multiple motion planning queries. For each query, the initial 
and goal configurations qinit and qgoal are connected to the 
roadmap graph. If the connection succeeds, the problem is 
reduced to finding a path in the graph which connects the 
two configurations. 

B. The SBL Algorithm 
PRM is efficient, easy to implement, and applicable in 

many domains [1]. It has found application in areas such as 
animation, CAD, virtual environments, computer games, and 
computational chemistry [7]. It became a popular research 
topic, with many suggested modifications (especially in the 
three major areas of sampling, node adding, and collision 
checking strategies) aimed at improving the success rate and 
efficiency of the approach. A number of these techniques are 
reviewed and compared in [1]. 

The SBL algorithm, developed by Latombe et. al [2], 
achieved a significant performance improvement through a 
combination of techniques in all of the three mentioned 
areas. In particular, it utilizes the following optimizations: 

 -- Single-query, bi-directional: SBL explores as little 
space as necessary to answer a specific single query, rather 
than generating a roadmap distributed over the entire free 
space for answering multiple different queries. The roadmap 
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is represented by two trees rooted at the query configurations 
and expanded concurrently. 

 -- Lazy collision checking: binary collision tests along 
the roadmap edges are performed to validate only the 
candidate path between the query configurations, which is 
found when the two trees are connected. No time is wasted 
on unnecessary checking. As soon as a collision is detected, 
the failed edge is removed from the roadmap. 

 -- Adaptive sampling: SBL takes shorter steps in 
cluttered areas than in open spaces. More specifically, when 
generating a new milestone for expanding one of the trees, 
the candidates are generated from successively smaller 
neighborhoods of a pre-selected milestone q. The process 
continues until a candidate is tested collision-free, at which 
point it is added as a child node of q. The neighborhood of q 
is defined as a set of all milestones, for which the distance 
between them and q over some pre-defined metrics d is less 
than a specified threshold (radius). 

II. THEORETICAL IMPLICATIONS 

A. Car-like Robots 
SBL assumes that the object, such as a robot arm, can 

move independently along each of its dofs. As a result, any 
two milestones can be connected by simple linear 
interpolation in each dof, i.e. a straight segment in 
configuration space. Since the range of values of each 
dimension is normalized in SBL (between [0, 1]), the length 
of this straight segment can be used as the distance between 
its endpoint milestones. In the n-D unit cube of the 
configuration space, the n-sphere with center q and radius r 
geometrically represents the neighborhood of q. 

A car-like robot in a 2 dimensional world typically has 2 
position and 1 orientation degrees of freedom – (x, y, Θ). 
With only 2 control degrees of freedom, acceleration and 
steering angle, the robot is non-holonomically constrained. It 
can move only forwards or backwards. In addition, the path 
curvature is constrained by the robot’s minimum turning 
radius rmin. 

B. Implications and Design Decisions 
1) Connections between milestones: any two milestones 

can be connected by a series of several arcs. However, 
especially with nearby milestones (due to the turning radius 
constraint), the resulting path is likely to be impractical in 
terms of frequent changes of steering angle and driving 
direction. Moreover, if one chooses to define additional 
dimensions, such as speed range, the connection will be even 
more problematic. 

Based on these considerations, it was decided to limit the 
connections between milestones to a single constant 
curvature arc. In turn, such a decision restricts the 
milestone’s neighborhood to a relatively small subset of the 
geometric region to the front and rear of the robot, spatially 
bounded by the two outgoing arcs of rmin radius and whose 
heading angle Θ is within a certain tolerance of the angle of 
the tangent of the arc connecting the two milestones. A 

combination of an arc and a straight segment was also 
considered, but eventually deemed unnecessary. 

2) Choice of dofs: even without the simplification of using 
a single arc between two milestones, a car-like robot cannot 
follow an arbitrary path. For example, as it travels along an 
arc, its positional dofs (x, y) change non-linearly and non-
independently (x2 + y2 = r2). Similarly, the orientation cannot 
be changed independently of the robot’s position. Unlike 
holonomic robots, car-like robots cannot compensate for 
changes in one dof through changes in other dofs, and each 
additional dof further partitions the configuration space and 
increases the roadmap size. In this context, the configuration 
space is characterized by weaker connectivity, even between 
spatially nearby milestones, which neutralizes the benefit of 
dealing with fewer dofs compared to typical PRM 
applications. 

To avoid the computational overhead resulting from the 
higher density of milestones and mutual penetration of 
milestone trees that are required for a successful connection, 
it is necessary to keep the dofs to the minimum. These 
concerns lead us to abandon the idea of early creation of 
speed profiles by adding a “speed” dof to each milestone and 
allowing connections only between milestones with close 
speed values. Instead, optimizing speed is more efficiently 
accomplished during post processing.  

3) Distance metrics and neighborhoods: since relatively 
shorter segments have a higher probability of being 
collision-free, a metric to utilize during tree growing, tree 
connection, and collision checking is desirable. However, 
the aforementioned limitations disallow the straightforward 
definition of distance metrics between a pair of milestones as 
a simple aggregation of changes across individual 
dimensions.  

Arc length is utilized as a reasonable approximation to the 
distance metric that would normally be computed by 
equating to distances in the (x, y) coordinate plane. Distance 
(absolute difference) between heading angles of two 
milestones is strongly correlated to the arc length: for each 
particular arc, the difference in tangential angles of the two 
milestones increases as they are moved further away from 
each other. i.e. the spatial dimensions (x, y) are designated 
as primary, whereas any other dimensions are still accounted 
for through some sort of heuristics, but excluded from the 
formal distance metrics. 

Finally, since the dofs are not independent and are not 
used in defining an explicit distance metrics, they need not 
be normalized. The algorithm can work directly with the 
workspace, rather than with the configuration space C. 

4) Applicability of SBL: despite these considerations, SBL 
is an appropriate choice for car-like robot path planning. As 
a single-query model, it is suitable for many applications 
such as navigating in a “sliding window” over a large map, 
or planning temporary, shorter paths while performing world 
exploration. It is also a logical choice to extend milestones 
iteratively, rather than to attempt connecting milestones that 
were generated without considering the feasibility of such 



 

 

 

connections. 

III. IMPLEMENTATION 

A. Basic Implementation 
The implementation presented in this paper is 

subsequently referred to as PRM-Ackerman Steering or 
PRM-AS. The basic PRM-AS implementation follows SBL 
very closely and uses all of its optimizations (description 
based on and slightly modified from [2]): 
Algorithm PRM-AS (qinit, qgoal) 

1. Install qInit and qGoal as roots of TInit and TGoal, 
accordingly. 

2. Repeat s times, where s is the max number of 
milestones 

a. EXPAND-TREE 
b. Path p = CONNECT-TREES 
c. If (p != nil and IS-COLLISION-FREE(p) ) 

then return p 
3. Return FAILURE. 

1) EXPAND-TREE randomly selects between TInit and 
TGoal, from which it randomly picks a milestone q with 
probability inverse to the density of milestones around it. 
The procedure randomly generates a milestone m from q’s 
neighborhood, until it finds a collision-free placement to add 
as a child of q and return. The adaptive sampling strategy is 
implemented by halving the neighborhood size after each 
unsuccessful attempt. 

PRM-AS differs from SBL in the specifics of generating 
m from q’s neighborhood. Given minimum turning radius 
rmin and a maximum neighborhood size (corresponding to 
maximum arc length l), PRM-AS first determines the 
maximum angular deviation βmax from the straight path, up 
to pi/2, that can be achieved. After randomly selecting an 
angle βran between     –βmax and +βmax and a distance dran 
between dmin and l, PRM-AS generates a constant curvature 
arc that positions the robot at an angular offset of βran  and a 
distance of dran relative to its previous path. The value of dmin 
is calculated to ensure that the generated arc does not violate 
the constraint on minimum turning radius rmin. 

2) CONNECT-TREES finds the milestone m’ closest to 
the most recently generated milestone m, in the tree not 
containing m. If the distance between them is less than a 
threshold, then m and m’ are connected by a bridge w and 
the path from qInit to qGoal via w is returned. 

PRM-AS first prunes the m’ candidates to milestones 
within a certain physical distance of m. It generates an arc 
from m (using m.x, m.y, m.Θ) to each of the candidates m’ 
(using m’.x, m’.y, but not m’.Θ). There always exists exactly 
one such arc (or straight segment)1. Most of these arcs are 
rejected for violating the constraints of minimum turning 

 
1 There is also the complementing arc from the same circle, but the 

algorithm always chooses the shorter of the two. 

radius rmin, the maximum arc length l, or orientation m’.Θ. 
m’.Θ must be within a given tolerance of the arc’s tangent at 
point (m’.x, m’.y). If any arcs are retained, the shortest of 
them is used as the bridge w in the returned path; else, the 
procedure returns nil. 
3) IS-COLLISION-FREE checks for collisions in the 
candidate path found by CONNECT-TREES. A binary 
testing method is applied to each segment: the middle 
position (as determined by its arc) is tested first, then the 
middle positions of each half, and so on, until either a 
collision is found or tested positions become close enough 
together for the segment to be considered collision-free2.  

Each segment keeps track of this gap, i.e. the current arc 
length between its tested positions. This way, it is possible to 
break the process into steps, at each step testing the segment 
at twice the resolution of the previous step. Rather than 
completely testing one path segment before testing another, 
the segments are tested one step at a time, each time 
choosing the segment with the largest untested gap. Such 
process is more likely to reveal a collision earlier. It 
continues until either all segments on the path are tested 
collision-free or a collision is found. 

In the latter case, the colliding segment u is removed from 
the roadmap. The roadmap, temporarily joined by the bridge 
w during the CONNECT-TREES stage, is split again into 
two trees. This results in all the milestones on the path 
between u and w, as well as of their children transferring 
between the original trees. 

 

 
 

Figure 1: Erratic motion produced by the basic PRM-AS 
algorithm. 

IV. EXTENSIONS 
Considering that PRM-AS employs the same 

optimizations as SBL and operates on relatively few 
dimensions, its performance was not a major concern. 

 
2 The motivation is that the middle position is more likely to produce 

collisions. Experimental results in [1] confirm that in each test scene this 
method was more efficient than incremental checking. 



 

 

 

Instead, the focus of our efforts was on improving the 
quality of the generated path. Experiments in open test 
scenes show that the implemented modifications also 
improve performance in terms of number of generated 
milestones by approximately 20 %. Apparently, the 
improved version of SBL connects the init and goal trees 
faster by reducing the number of milestones that blatantly 
deviate from the optimal path. 

As expected from a randomized algorithm, the basic 
version produces paths such as those shown in Figure 1, 
characterized by (1) chaotic changes between forward and 
backward movement; (2) excessive backward movement; 
and (3) unnecessary deviations from the general driving 
direction. The extensions, described below, deal with these 
problems by introducing a probabilistic bias in the otherwise 
random process of milestone generation, increasing the 
likelihood of creating a path with the desired characteristics. 

A. Bias for consistent driving direction  
To prevent frequent switching between forward and 

backward motion, when extending a milestone q, PRM-AS 
with higher probability3 generates either a forward or a 
backward arc according to the direction of q, and assigns the 
corresponding direction to the child milestone m. 

Driving direction takes one of the two possible values, 
“forward” and “backward”. It is added as a pseudo-dof of 
each milestone, in that it is not an explicit part of the 
distance metrics and does not preclude connecting 
milestones with opposite directions – the connectivity is 
determined solely on the basis of their position and 
orientation - but still, it in effect influences the shape of a 
milestone’s neighborhood in the tree expansion phase. It is a 
compromise from adding a full “speed” dimension, as 
described earlier. 

Further refinements can be made by incorporating 
“smarter” change-of-direction decisions, based on analyzing 
the surroundings. A simple example would be to switch 
directions when facing an obstacle, evident after a number of 
unsuccessful attempts to generate a collision-free milestone 
in progressively smaller neighborhoods in the current 
direction. 

B. Bias for forward movement  
Because the basic algorithm does not discriminate 

between forward and backward movement, it generates 
undesirable backward sections with the same probability as 
the preferred forward sections. The modified version favors 
forward movement when expanding the init tree and 
backward movement when expanding the goal tree. The 
reason for the latter is that the backward movement in the 
goal tree represents forward movement in the final path. 

These two corrections work in conjunction with each 
other. For example, bias factors of 10 and 3 respectively 
mean that at each milestone, the robot maintains the current 
 

3 This probability bias is a configurable parameter that works in 
conjunction with the forward movement bias. An example is provided in 
subsection B. 

direction with 9:1 probability. If this direction is undesired, 
there is a 3:1 chance of switching it; else, forward bias is 
irrelevant. 

C. Bias for straight paths 
Depending on configuration, in particular with smaller 

ratios of minimum turning radius rmin to maximum arc length 
l, the basic version produces widely wavering paths, 
including occasional loops. As described earlier, during 
milestone generation it determines the maximum angular 
deviation βmax from the straight path, up to pi/2, that can be 
achieved given rmin and l. 

The bias is introduced by reducing βmax proportionally to 
the ratio of the maximum arc length for the current attempt 
to the maximum allowable arc length. In other words, PRM-
AS is restricted to straighter arcs in longer segments, which 
are possible only in open areas, but is allowed to deviate 
progressively further from the straight course in tighter 
spaces, where it is necessary to avoid obstacles. 

The combination of these three configurable parameters 
provides a significant degree of control over the generated 
path. It is worth noting that caution should be exercised in 
determining their appropriate values. Because each of them 
distorts the probabilistic distribution of milestones, setting 
them too high may lead to a delay or even failure in finding 
a solution. For example, strong preference for forward 
motion complicates maneuvering in tight spaces, whereas 
excessive restriction on turns effectively channels the 
generated milestones along several major “highways” 
without providing coverage of the entire configuration 
space. 

Unlike the probabilistic bias approach, the following two 
extensions involve path post-processing in some form, rather 
than affecting milestone generation: 

D. Path smoothing  
This technique, finding direct segments between selected 

pairs of milestones on the discovered path, is used in most 
PRM planners. Due to the specifics of connecting milestones 
by constant curvature arcs, bypassing milestones does not 
necessarily result in more efficient paths, as is the case with 
straight segments in C. Therefore, PRM-AS evaluates the 
local improvement on a case by case basis, while attempting 
to minimize the total length of the path. 

In the test scenes, representative of the actual 
environments where PRM-AS is expected to be used, the 
number of milestones on the discovered paths is relatively 
small – often less than 200. Therefore, despite the quadratic 
running time, the implemented path smoother is able to test 
each milestone for a potential connection with each of the 
subsequent milestones on the path. Most of these pairs are 
quickly rejected for lack of possible connecting arc; the 
remaining pairs are used for finding the shortest path, 
applying the familiar binary approach to test the candidate 
arcs for collision. 

Path smoothing efficiently remedies winding paths, to 
some extent improves erratic forward/backward driving, and 



 

 

 

has almost no effect on avoiding backward motion. It is best 
used in combination with techniques that tackle each of 
these issues. 

E. Discovering and comparing multiple paths 
 Experiments were performed with a modification that 

required the algorithm to generate a pre-determined number 
of solutions, usually between 100 and 1000, and return the 
best one, as opposed to reporting the first discovered path. 
The criterion for comparing path quality was the path’s total 
length. We speculated that after finding the first solution, 
most of the remaining paths would be produced along this 
first path, resulting in a negligible performance hit. 

While this appears to be mostly true, the modification did 
not provide a significant improvement in path quality. The 
probable explanation is that all of the paths under 
consideration suffer with a varying degree from the same 
issues, and that the shorter, less deviant paths are likely to be 
discovered earlier anyway. 

V. EXPERIMENTAL RESULTS 
PRM-AS is written in Java 1.6 and uses an open source 

Java implementation of VClip collision checker, which is 
described as “a robust algorithm for computing distances 
and checking for collisions between convex polyhedra and 
collections of convex polyhedra” 4. PRM-AS comes with a 
custom arc generator which provides the flexibility of 
incorporating any necessary modifications. 

The implementation was put to a test in several scenes 
typical for benchmarking probabilistic roadmap planners: 
passage (hole), clutter, and corridor (maze). The 
environments are configured to match the intended 
application of the algorithm as a short-term planner with a 
time horizon of several seconds. Parameters such as vehicle 
dimensions and turning radius correspond to the parameters 
of a small car, assuming meters as environment units (see 
Table 1). Scene size is chosen in such a way that travelling 
between the start and goal configurations requires at least 
several seconds, i.e. as much time as it is necessary for the 
algorithm to plan the next path. 

 
Table 1: Configuration used to test both the basic and 
optimized version of PRM-AS. 

World dimensions 100 x 100 
Vehicle dimensions 4 x 2 
Vehicle rmin 5 
AInit and AGoal dimensions 20 x 20 
Max arc length l 7 
Factor for consistent driving direction (*) 10 
Factor for forward movement bias (*) 3 
Factor for straight bias (*) 0.4 

(*) when enabled 
 
Figures 2, 3, and 4 present typical (smoothed) paths, 

found by PRM-AS in each scene. The black and red lines 
represent the forward and backward path arcs, respectively, 

 
4 See http://people.cs.ubc.ca/~lloyd/java/vclip.html 

while the rectangle represents milestones, i.e. locations of 
vehicle heading changes. The vehicle direction is depicted 
by the arrow contained in the vehicle rectangle, which is 
drawn to scale relative to the scene dimensions. 

 

 
Figure 2: PRM-AS path solution in the "hole" 
environment (Scene I). 
 
 

 
Figure 3: PRM-AS path solution in the "clutter" 
environment (Scene II). 
 

In all cases it can be seen that unlike the basic planner, the 
optimized version is able to find realistic, efficient paths. 
The initial (upper left) and goal (lower right) configuration 
are intentionally oriented against the general direction of 
movement, to demonstrate that the robot drives backward 
only when it is necessary to maneuver from/into these 
positions or around obstacles. Several such maneuvers are 
required, especially in the corridor scene, and the planner is 
able to handle them. 

All experiments were performed on a VMWare5 virtual 
 

5 Certain commercial software and tools are identified in this paper in 
order to explain our research. Such identification does not imply 
recommendation or endorsement by the authors, nor does it imply that the 
software tools identified are necessarily the best available for the purpose. 



 

 

 

machine/WinXP with 1 dedicated core and 640 MB of 
dedicated memory hosted on laptop with Core 2 Duo 2.4 
GHz processor/WinXP. Their results are summarized in 
Tables 2 and 3. Performance may vary significantly 
depending on the type of scene and the configuration 
parameters, especially in combination. Either version is able 
to reliably solve the problem in an order of several seconds6. 
In open scenes, the modified version consistently 
outperforms the basic algorithm in the number of generated 
milestones7; however, in tight spaces the focus on path 
quality puts the modified version to a disadvantage. 
 

 
Figure 4: PRM-AS path solution in the "corridor 
(maze)" environment (Scene III). The magnified area 
shows the maneuver undertaken to exit the tight space 
while positioning the vehicle for forward movement.  
 
Table 2: Roadmap statistics (number of milestones) and 
running times for the basic algorithm. The results are 
compiled from 100 consecutive runs of each setup. 

Scene Basic version (excl. path smoothing) 
Num of Milestones Time, seconds 
Min Max Avg Min Max Avg 

Hole 3755 26983 11869 0.19 0.88 0.36 
Clutter 2896 10479 6161 0. 24 1.05 0.55 
Corridor 11975 27844 18575 1.8 3.98 2.71 

 
It should be noted that for consistency, the same 

optimization parameters were used across all test scenes. 
Experiments confirm that tuning the configuration based on 
the specifics of each scene significantly improves 
performance. For example, after turning off straight path 
bias in the corridor scene, the modified version matches the 
basic algorithm performance-wise while still generating 

 
6 In order to demonstrate the planner's capability to handle more 

complex problems, the scale of the presented configuration is on the longer 
end of the intended planning horizon. During additional experiments with 
closer initial placement in the same scenes, running time was also shorter 
than the expected driving time, confirming that the algorithm is suitable for 
planning in real time. 

7 The basic version has better running time because path smoothing is 
not applied. 

better paths. In fact, implementing an adaptive planner, self-
configurable depending on observed scene properties is a 
promising direction for future work. 
 
Table 3: Roadmap statistics (number of milestones) and 
running times for the modified algorithm. The results are 
compiled from 100 consecutive runs of each setup. 

Scene Optimized version (incl. path smoothing) 
Num of milestones Time, seconds 
Min Max Avg Min Max Avg 

Hole 2716 29608 8338 0.22 1.25 0.47 
Clutter 1486 8295 5034 0.31 1.53 0.8 
Corridor 12758 52687 27786 3.31 11.8 6.77 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we present an adaptation of the SBL 

algorithm that solves the planning problem in the context of 
non-holonomic constraints of car-like robots. We discuss the 
implications of these constraints and work around them, 
leading to an implementation that benefits from all the 
original optimizations of SBL. We then propose several 
extensions that significantly improve the quality of the 
generated path, on  par with paths that could be selected by a 
human operator. 

Being a first attempt, this work leaves room for many 
additional improvements. One prospective direction is 
experimenting with more complex arcs and consequently, 
smooth transitions between them. Another area is bridging 
the gap between the single-query and multiple-query PRM 
approaches, where the planner could selectively retain parts 
of the roadmap constructed while answering single queries 
in the process of world exploration. Finally, an important 
step in our future efforts is a thorough discussion of how the 
proposed algorithm satisfies non-holonomic constraints for 
car-like robots. 
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