
1. Introduction

A function of various calibration laboratories,
measurement standards organizations, national metrol-
ogy institutes (NMIs), and international organizations
such as the International Bureau of Weights and
Measures (BIPM), the International Organization for
Standardization (ISO), the International Organization
of Legal Metrology (OIML), and the International
Electro-technical Commission (IEC) is to ensure that
the differences are insignificant between different
measured values for the same measurand determined
in various places, at various times, and by various
measurement procedures. Without this assurance, the
world’s commerce, trade, manufacturing, engineering,
and scientific research would be chaotic.

The old-time thinking concerning the uncertainty in
measurement based on statistical error analysis are
inappropriate for the rapidly advancing science and

technology of measurement. Therefore the world’s
leading authorities in metrology developed a new con-
cept of uncertainty in measurement. This concept is
described in the Guide to the Expression of Uncertainty
in Measurement (GUM) [1] and extended in the
International Vocabulary of Metrology, third edition
(VIM3) [2]. In accordance with the GUM and the
VIM3, a result of measurement is generally expressed
as a pair of values: a measured quantity value and its
associated standard uncertainty. The measured value
and the standard uncertainty together represent a
range of values being attributed to the measurand
[2, Sec. 2.9]. Suppose [x1 , u(x1)], …, [xn, u(xn)] are n
different results of measurement for a common
measurand believed to be sufficiently stable, where
x1, …, xn are the measured values and u(x1), …, u(xn)
are the corresponding standard uncertainties. In the
GUM concept of uncertainty, a measured value xi

and its associated standard uncertainty u(xi) are
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regarded, respectively, as the expected value and the
standard deviation of an incompletely determined state-
of-knowledge probability density function (pdf) attrib-
uted to the common measurand, for i = 1, 2, …, n [1].

Since the era of error analysis, metrologists have used
the Birge chi-square test of statistical consistency to
decide whether the differences between two or more
measured values x1, …, xn are insignificant (Fig. 1).
The Birge test is based on regarding the measured
values x1, …, xn as realizations of random variables
drawn from normal (Gaussian) sampling pdfs with
unknown but equal expected values and known
standard deviations [3]. When the measured values are
correlated they are regarded as realizations of a random
vector drawn from a joint n-variate normal distribution
with a known variance-covariance matrix, referred to a
normal consistency model. To assess statistical consis-
tency of a set of measured values x1, …, xn, a common
practice is to pretend that the standard uncertainties
u(x1), …, u(xn) are the known standard deviations of the
presumed normal sampling pdfs of x1, …, xn. It has

previously been pointed out [4] that the Birge test and
the concept of statistical consistency motivated by it do
not apply to the results of measurement based on the
GUM.

Recently, the VIM3 [2] introduced the idea of metro-
logical compatibility, which can be used to assess the
significance of the differences between two or more
results of measurement for the same measurand
(Fig. 2). As noted in [4] the concept of metrological
compatibility fits with the GUM and it can be used to
assess the significance of differences between results
based on the GUM for the same measurand. In Sec. 2,
we discuss the VIM3 definition of metrological com-
patibility and its consequences in more detail than done
in [4]. In this paper we propose an approach for deter-
mining a combined result which is metrologically com-
patible with the contributing results whether or not the
results as available were compatible. When a set of
results for the same measurand turn out to be incom-
patible, the seemingly anomalous results must be
investigated. In Sec. 3, we discuss the importance of
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Fig. 1. Illustration of the classical approach to statistically evaluating and testing consistency of multiple measurements of the same measurand
presuming a randomly disturbed measurement process. Symbols: Y – (joint) measurand, Xi – indicated quantities, ξ – possible values of the
quantities Xi, q1,…,qn – vectors of the repeated observations qij where qi = [qi1, …,qik]

T, gXi (ξ | qi) – pdf for the quantity Xi given the data
qi, hXi (qi) – frequency distribution of the data qi .



documenting information which may be needed in such
investigations. Sometimes multiple evaluations of the
same measurand need to be combined. A legitimate
combined result must be metrologically compatible
with the contributing results. In Sec. 4, we propose an
approach for determining a combined result which is
metrologically compatible with the contributing results.  
In Sec. 5, we illustrate the proposed approach using
published data from an interlaboratory evaluation of the
same measurand. A brief summary is given in Sec. 6.

2. The VIM3 Concept of Metrological
Compatibility

Generally, the measurand (quantity intended to be
measured) is a property of a material or of a phenome-
non. In many scientific, industrial, and commercial
measurements, the measurand is sufficiently stable
between multiple evaluations. Our primary interest is

in such applications. Suppose two or more measure-
ment procedures are used to measure the same measur-
and. The measurement procedures may be (i) applica-
tions of the same method of measurement at different
times or (ii) different implementations of a given
method in different places or (iii) different methods.

A measured quantity value is a number together
with a metrological reference (unit of measurement)
expressing the magnitude of the quantity [2, Secs. 1.19
and 2.10] relative to the reference. A measured value
must be traceable to a recognized metrological refer-
ence for it to be widely communicable. According to
VIM3, two or more results of measurement for the
same measurand are metrologically comparable if they
are metrologically traceable to the same metrological
reference [2, Sec. 2.46]. Metrological comparability
does not imply that the measured values have similar
magnitudes. The VIM3 concept of metrological
compatibility applies only to those results of measure-
ment which are metrologically comparable.
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Fig. 2. Illustration of an uncertainty approach to the metrological evaluation and test of compatibility of two measurements of the same
measurand taking all known influences on the measurement processes into consideration. Symbols: Y – (joint) measurand, Y1, Y2 – measurand
of the measurements, X10, X20, – indicated quantities, q1,q2 – vectors of the repeated observations qij where qi = [qi1, …, qik ]T, X1i, X2i – influence
quantities with state of knowledge distributions. The elements in the grey blocks have been introduced by the GUM.



We assume that all results [x1, u(x1)], …, [xn, u(xn)]
for a common measurand are traceable to the same
metrological reference and hence they are metrologi-
cally comparable. Following the GUM [1], we use the
symbol Xi for a variable with a state-of-knowledge pdf
represented by the result [xi, u(xi)], for i = 1, 2, …, n.
The measured value xi is regarded as the expected value
E(Xi) and the standard uncertainty u(xi) is regarded
as the standard deviation S(Xi) of the pdf of Xi for
i = 1, 2, …, n.  In the mainstream GUM, the pdf of Xi is
incompletely determined; the only thing reliably
known about the pdf of Xi is the expected value
E(Xi) = xi and the standard deviation S(Xi) = u(xi), for
i = 1, 2, …, n.

2.1 Metrological Compatibility of Two Particular
Results

Metrological compatibility is defined for two results
at a time. In the mainstream GUM, the difference
X1 – X2 is a variable with an incompletely determined
state-of-knowledge pdf for the difference between the
values attributed by the two results [x1, u(x1)] and
[x2, u(x2)] to the common measurand. The expected
value and the standard deviation of the pdf of X1 – X2

are, respectively, E(X1 – X2) = x1 – x2 and S(X1 – X2) =
√[u2(x1) + u2(x2) – 2r(x1, x2)u(x1)u(x2)], where r(x1, x2) is
the correlation coefficient between X1 and X2.
Following the GUM, we use the symbol u(x1 – x2) for
the standard deviation S(X1 – X2).

According to the VIM3 [2, Sec. 2.47], two metrolog-
ically comparable results [x1, u(x1)] and [x2, u(x2)] for a
measurand, supposed to be stable, are metrologically
compatible if |x1 – x2| ≤ κ × u(x1 – x2) for a chosen
threshold κ. According to the VIM3 [2, Sec. 2.47, Note
1], if two measurements for a common measurand,
thought to be constant, are not metrologically compati-
ble then there are two possibilities: (i) one or both
of the measurements are incorrect (e.g., one or both
of the measurement uncertainties are assessed as
being too small) or (ii) the measurand changed between
measurements.

We can use the VIM3 concept of metrological com-
patibility as a criterion to assess the significance of the
differences between metrologically comparable results
of measurement for the same measurand.  In the main-
stream GUM, the state-of-knowledge pdf represented
by a result [xi, u(xi)], for i = 1, 2, …, n, is incompletely
determined.  Therefore, we need a quantitative measure
for the difference between two fixed known results
[x1, u(x1)] and [x2, u(x2)], each consisting of a measured

value with standard uncertainty.  Let us define a ζ-func-
tion, denoted by ζ (Δ), as

(1)

The value ζ (Δ) is a measure for the significance of
the difference Δ. Even when a complete state-of-knowl-
edge pdf of Δ is assumed, the metric (1) can be used to
judge on the significance of the difference.  Based on
this metric we can restate the VIM3 definition of
metrological comparability as follows [4]:

Definition: Two metrologically comparable results
[x1, u(x1)] and [x2, u(x2)] for the same measurand are
said to be metrologically compatible if

(2)

for a chosen value of some threshold κ, where

(3)

and r(x1, x2) is the correlation coefficient between the
variables X1 and X2 with state-of-knowledge pdfs repre-
sented by the results [x1, u(x1)] and [x2, u(x2)].

In definition 1, the value of κ is a chosen threshold
for declaring metrological compatibility (lack of signif-
icant difference) of two results. Values for ζ (x1–x2)
larger than κ are regarded as significant. The results are
compatible, when the difference between the measured
values x1 and x2 is insignificant in view of the standard
uncertainties u(x1) and u(x2).

The VIM3 does not discuss how the threshold κ
should be determined. A proper choice of the threshold
κ is to a large extent a matter of agreement because it
requires accepting the economic consequences of that
choice. A conventional value of the threshold κ in
metrology is two.

If one would agree on a larger value for κ then small
differences are not detectable any more. This would be
a disadvantage for applications when detecting small
differences is important. But if we would agree on a
smaller value for κ then a lot of small differences
become significant even though they might be only a
consequence of noisy measurements and the economic
consequences are suffered by the metrological com-
munity trying to provide compatible measurement
systems.

Volume 116, Number 6, November-December 2011
Journal of Research of the National Institute of Standards and Technology

812

( ) =
( )u

ζ Δ
Δ

Δ
.

1 2
1 2

1 2
( ) = ,

( )
x x

x x
u x x

ζ κ
−

− ≤
−

2 2
1 2 1 2 1 2 1 2( )= ( )+ ( ) 2 ( , ) ( ) ( ),− −u x x u x u x r x x u x u x



2.2 Metrological Compatibility of a Set of Results

According to the VIM3 [2, Sec. 2.47], a set of com-
parable results [x1, u(x1)], …, [xn, u(xn)], where n ≥ 2, is
metrologically compatible if every one of the n(n – 1)/2
pairs of results [xi, u(xi)] and [xj, u(xj)], for i, j = 1, 2, …, n
and i < j, is metrologically compatible. We can use
expression (2) in this case by replacing x1 with xi and x2

with xj.
If for all pairs of results the values of ζ (xi – xj) are

smaller than or equal to a chosen threshold κ then the
set of results [x1, u(x1)], [x2, u(x2)], …, [xn, u(xn)] is
metrologically compatible.

We can say that the differences between the meas-
ured values x1, …, xn are insignificant in view of the
uncertainties u(x1), …, u(xn).

Note 1: A conventional idea that if the number n of the
measured values x1, …, xn is large, it is natural to expect
one or more of them to be significantly different from
the rest comes from the theory of sampling from prob-
ability distributions having long tails which extend, for
example, beyond two standard deviations.  If the meas-
urement procedures are properly carried out and the
results of measurement are properly evaluated accord-
ing to the GUM taking into account all important influ-
ence quantities, then a set of results for the same
measurand should be metrologically compatible. When
some results of measurement seem anomalous, they
require explanation rather than acceptance. Often,
anomalous results are consequence of missing
important influence quantities.

2.3 Metrological Compatibility With a Reference
Result

Suppose that in addition to the n measurement
procedures, which yield the comparable results
[x1, u(x1)], [x2, u(x2)], …, [xn, u(xn)], where n ≥ 2, the
same measurand is measured by a higher echelon
measurement procedure (or laboratory) yielding the
reference result [xR, u(xR)], where xR is the reference
value with standard uncertainty u(xR). Alternatively, the
common measurand may be a certified reference
material of reference value xR with standard uncertain-
ty u(xR), which are not revealed before all n results of
measurement are reported. We will use the symbol XR

for a variable with a state-of-knowledge pdf represent-
ed by the result [xR, u(xR)]. In general, the uncertainty
u(xR) associated with the reference value xR is smaller
than the uncertainties u(x1), …, u(xn) associated with
the measured values x1, …, xn.

If for all differences between the results xi and value
xR, the values ζ (xi – xR) are smaller than or equal to a
chosen threshold κ then the set of results [x1, u(x1)],
[x2, u(x2)], …, [xn, u(xn)] is metrologically compatible
with the reference value xR. We can say that the differ-
ences between the measured values x1, …, xn and the
reference value xR are insignificant in view of the
uncertainties u(x1), …, u(xn) and u(xR).

One should not confuse the difference ζ (xi – xR)
between the results [xi, u(xi)] and [xR, u(xR)] with
En-values which do not seem to be uniquely  defined.1

2.4 Metrological Compatibility With a Combined
Result

Sometimes the results [x1, u(x1)], [x2, u(x2)], …,
[xn, u(xn)], where n ≥ 2, need to be combined to deter-
mine a combined result [xC, u(xC)], where xC is the com-
bined value and u(xC) is the standard uncertainty
associated with xC. We will use the symbol XC for a
variable with a state-of-knowledge pdf represented by
[xC, u(xC)]. In accordance with the GUM, the combined
variable XC for a value of the measurand should be
defined as a measurement function of the input
variables X1, …, Xn.  Often, XC is set as a convex linear
combination of X1, …, Xn with non-negative weights
a1, …, an which sum up to one.  Thus often a measure-
ment function for XC is of the form

(4)

where ai ≥ 0 and Σiai = 1, for i = 1, 2, …, n. Since (4) is
a linear function in Xi the expected value E(XC) of XC is
the combined value xC, where

(5)

and the standard deviation S(XC) of XC is the standard
uncertainty u(xC) where 

(6)
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1 One version defines En-value as En = (xi – xR) / √[(2si)
2 + (2sR)2],

where xi and xR are regarded as realizations of random variables with
sampling pdfs and si and sR are the estimated standard deviations of
those sampling pdfs. Thus En-values are realizations of random
variables with sampling pdfs. Some metrologists substitute in the
denominator of the En-value, the expanded standard uncertainties for
2si and 2sR. This is inappropriate uses of the expanded standard
uncertainties.

C ,i ii
X a X= ∑

C ,i ii
X a x= ∑

2 2 2
C( ) ( )

+ 2 ( ) ( ) ( , ) .

i

i j

ii

i j i ji< j

u x a u x

a a u x u x r x x

= ∑
∑



If the individual measurement procedures are all
uncorrelated then the cross-product term in (6) is zero.

If ai = 1/n for i = 1, 2, …, n, then XC reduces to the
arithmetic average XA = (1/n) Σi Xi. The expected value
E(XA) is xA = (1/n) Σi xi and the standard deviation
S(XA) denoted by u(xA) can be determined from (6). If
the pdfs for X1, …, Xn are uncorrelated, then

(7)

If ai = wi /Σi wi, where wi = 1/u2(xi) then XC reduces
to the weighted mean XW = Σi wi Xi /Σi wi with weights
inversely proportional to the variances u2(x1), …, u2(xn).
The expected value E(XW) is xW = Σi wi xi /Σi wi and the
standard deviation S(XW) denoted by u(xW) can be
determined from (6).  If the pdfs for X1, …, Xn are
uncorrelated, then

(8)

If for all differences between the results xi and the
combined value xC, the values ζ (xi – xC) are smaller
than or equal to a chosen threshold κ then the set of
results [x1, u(x1)], [x2, u(x2)], …, [xn, u(xn)] is metro-
logically compatible with the combined value xC. Then
we can say that the differences between the measured
values x1, …, xn and the combined value xC are insignif-
icant in view of the uncertainties u(x1), …, u(xn).

In evaluating u(xi – xC) the correlation coefficient
between Xi and XC must be included because the pdfs of
Xi and XC are always correlated, for i = 1, 2, …, n. For
example, if the pdfs for X1, …, Xn are uncorrelated, then
the variance, V(Xi – XC), denoted by u2(xi – xC) is

(9)

If ai = 1/n, for i = 1, 2, …, n, then xC reduces to the
arithmetic average xA = (1/n) Σi xi and the uncertainty
u(xi – xC) given in (9) reduces to u(xi – xA), where

(10)

If ai = wi /Σi wi, where wi = 1/u2(xi), for i = 1, 2, …, n,
then xC reduces to the weighted mean xW = Σi wi xi /Σi wi

and the uncertainty u(xi – xC) given in (9) reduces to
u(xi – xW), where

(11)

If the uncertainties u(x1), u(x2), …, u(xn) were all
equal to u(x), say, then xW reduces to xA and u2(xW)
reduces to u2(xA) = u2(x) /n. Then both (10) and (11)
reduce to

(12)

Note 2: Sometimes, the standard uncertainties u(x1),
u(x2), …, u(xn) are not all reliably determined. Also,
the standard uncertainties are frequently inappropriate
bases for assigning the weights a1, a2, …, an to the
measured values x1, x2, …, xn to determine a combined
result. Therefore the weighted mean xW may be inappro-
priate for combining the values. Thus, in our view, the
arithmetic mean xA should be regarded as a default
combined value.

3. Information Needed to Determine
Sources of Incompatibility

A purpose of assessing metrological compatibility is
to demonstrate lack of significant difference between
the results of measurement for a common measurand. If
a set of results turns out to be metrologically incom-
patible then the measurement procedures and calcula-
tions underlying the seemingly anomalous results
should be investigated. Every result of measurement
should have supporting documents which include the
measurement function (measurement equation) and
complete uncertainty budget. If the influence quanti-
ties, uncertainty components, and correlation coeffi-
cients identified in the uncertainty budget are reason-
able then in search of the possible sources of incompat-
ibility one must look into potential influence quantities
not included in the uncertainty budget.

Investigations to determine the sources of incompat-
ibility are generally done in retrospect long after com-
pleting the measurements. Therefore investigators need
detailed descriptions of what was actually done during
measurement. Often, metrologists do not have enough
time and resources to document in sufficient detail for
retrospective investigation what was actually done in a 
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particular application of the measurement procedure. In
the absence of such documentation it may be difficult
to determine possible sources of incompatibility.

Note 3: We hope that in the not too distant future,
metrologists and information technology experts would
collaborate to develop tools which make it easier for
metrologists to document in real time the actual meas-
urement procedure while the measurements are being
done. Such documentation should be helpful in identi-
fying all potentially important influence quantities.

4. Determination of a Combined Value
and Its Associated Uncertainty

Even when the common measurand is sufficiently
stable, the results [x1, u(x1)], …, [xn, u(xn)] can exhibit
large variation. Metrological incompatibility occurs
when some or all results (measured values or standard
uncertainties) are improperly determined. Frequently,
improper results are consequence of missing important
influence quantities. For example, in many chemical
measurements, the measurand is the amount of one
component in a sample of multi-component material.
The other components can interfere with the measure-
ments. Frequently, it is impossible to know all potential
interferences. Therefore, it is difficult to be sure that all
significant influence quantities have been accounted for
in determining the measured values and uncertainties.

For a combined result [xC, u(xC)] to be legitimate it
should be metrologically compatible with the contribut-
ing results of measurement [x1, u(x1)], …, [xn, u(xn)].
Therefore we propose the following principle.

Principle for combining multiple results for the same
measurand: Determine the combined result [xC, u(xC)]
from the expressions (5) and (6) as recommended in the
GUM. If the results [x1, u(x1)], [x2, u(x2)], …, [xn, u(xn)]
are metrologically compatible with the combined result
[xC, u(xC)], then u(xC) is a valid expression for the
standard uncertainty associated with xC. If the results
[x1, u(x1)], [x2, u(x2)], …, [xn, u(xn)] are metrologically
incompatible with the combined result [xC, u(xC)], then
the seemingly anomalous results should be investi-
gated. Until the investigation resolves the anomalous
results, in the absence of additional knowledge, all
results in a metrologically incompatible set should be
regarded with suspicion. To determine a legitimate
combined result, we propose that the measured values
x1, …, xn should be sustained and each of the uncertain-
ties u(x1), u(x2), …, u(xn) should be enlarged just enough
to make the results [x1, u(x1)], [x2, u(x2)], …, [xn, u(xn)] 

metrologically compatible with the combined result
[xC, u(xC)].

This approach was first proposed in [5] and has
recently been used in [6]. Thus we define variables
Y1, …, Yn with corrected state-of-knowledge pdfs for
the common measurand as follows

(13)

where δX1, …, δXn are correction variables. Then a
measurement function for the combined variable YC is

(14)

where ai ≥ 0 and Σi ai = 1, for i = 1, 2, …, n, and the
pdfs for the correction variables δX1, …, δXn are
mutually independent and independent of the pdfs for
X1, …, Xn. The pdfs assigned to the correction variables
δX1, …, δXn express the limits of knowledge. Thus, we
assign zero expected values and the same variance
u2(δ) to each of the correction variables δX1, …, δXn.
Thus the expected value E(δXi) is zero and the variance
V(δXi) is u2(δ), for i = 1, 2, …, n. It follows from (13)
that the expected value yi and the variance u2(yi) of the
pdf for Yi are

(15)

and

(16)

for i = 1, 2, …, n.
We propose that the variance u2(δ) should be set just

large enough to make the results [y1, u(y1)], [y2, u(y2)],
…, [yn, u(yn)] compatible with the result [yC, u(yC)].
As discussed in Sec. 2.4, the results [ y1, u( y1)],
[y2, u(y2)], …, [yn, u(yn)] are compatible with [yC, u(yC)]
when

(17)

or equivalently

(18)

for all i = 1, 2, …, n. From (15), we have

(19)

and

(20)
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From the appendix, we have

(21)

Therefore, the criterion of compatibility (18) is
equivalent to

(22)

for all i = 1, 2, …, n. It follows that

(23)
for all i = 1, 2, …, n. Thus, if u2(δ) is chosen as

(24)

then each of the corrected measured values y1, …, yn

would be metrologically compatible with the combined
measured value yC. If the measured values x1, …, xn are
compatible with the combined measured value xC then
each of the n quantities in the curly parenthesis of (24)
are negative and u2(δ) = 0. In that case the measure-
ment function (14) reduces to (5) and the uncertainty
associated with the combined measured value xC is
given by (6).

4.1 Arithmetic Average

If ai = 1/n, for i = 1, 2, …, n, then xC reduces to the
arithmetic average xA and from (24),

(25)

The combined value yC reduces to yA = (1/n) Σi yi = (1/n)
Σi xi = xA. To assure that the measured values y1, …, yn

are compatible with yA one can check that

(26)

where as shown in the appendix

(27)

Expressions for u2(xi – xA) and u2(δ) are given in (10)
and (25), respectively. The uncertainty associated with
yA is from (7)

(28)

If u2(δ) = 0, then (28) reduces to (7).

4.2 Weighted Mean

Since the variance associated with yi is u2(yi) = u2(xi)
+ u2(δ), a weighted mean with weights inversely
proportional to the variances of the results y1, … , yn is
yW = Σi wi yi /Σi wi , where yi = xi, and wi = 1/u2(yi) =
1 / [u2(xi) + u2(δ)] for i = 1, 2, …, n. The measured
values y1, …, yn are compatible with yW if

(29)

for all i = 1, 2, …, n. Analogous to (11)

(30)

where

(31)

The variance u2(δ) is the smallest value which would
make the measured values y1, …, yn compatible with
yW. Such a value for u2(δ) can be iteratively determined
using the value of u2(δ) from (25) as a starting value.
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Note 4: Let us use the symbol Ytrue for a true quantity
value [2, Sec. 2.11] of the common measurand
commensurate with its description. (In the GUM, the
same symbol Y is also used for a quantity with a
state-of-knowledge pdf for the common measurand.) If
the measurand is defined in extensive detail, a true
value Ytrue may be essentially unique. If the measurand
is defined in less detail, then a range of values may be
commensurate with its definition and any one of them
qualifies as a true value Ytrue of the measurand. The
concept of metrological compatibility relates to the
observed differences between the measured values
x1, …, xn rather than to the unobservable differences
between the measured values and a true value Ytrue of
the measurand. Therefore, regardless of whether the
measured values x1, …, xn are compatible or incom-
patible with the combined value xC, the measured
values alone provide no information about the differ-
ence between xC and Ytrue. In particular, metrological
compatibility does not imply that the difference
between xC and Ytrue is not significant. However, there is
no factual knowledge about potential significant
difference between xC and Ytrue. Therefore, a correction
applied to xC for its potential significant difference
between xC and Ytrue and enlargement of the uncertainty
u(xC) determined from (6) as discussed in [7] would be
arbitrary.

5. Combined Result From an
Interlaboratory Evaluation

The Columns 2 and 3 of table 1 reproduce from
[8, Table 3] the measured values, cLab, and the correspon-
ding standard uncertainties, u(cLab), for the amount con-
tent of lead (Pb) in natural river water as determined by
the eight laboratories2 identified in column 1 of
table 1. We will use these data to illustrate calculation of
a combined result. Suppose the arithmetic average cAvg =
62.79 nmol /kg is used as the combined measured value.
The associated standard uncertainty based on the
expression (7) is u(cAvg) = 0.26 nmol /kg. The values of
ζ (cLab – cAvg) between the reported results [cLab, u(cLab)]
and the combined result [cAvg, u(cAvg)] determined by
using the expression (10) for the standard uncertainty
u(cLab – cAvg) are shown in column 4 of table 1. Suppose
the threshold for metrological compatibility is set as
κ = 2. One of the values of ζ (cLab – cAvg) (from LNE)

is larger than 2.00. Therefore not all of the eight report-
ed results [cLab, u(cLab)] are metrologically compatible
with the combined result [cAvg, u(cAvg)]. Until potential
flaws in the deviant result (from LNE or the others) are
determined, all results must be regarded with suspicion.
Therefore, as discussed in Sec. 4, we propose that all
reported measured values should be sustained and each
of the uncertainties should be enlarged by the amount
u2(δ) = 1.130 determined from the expression (25). The
adjusted (enlarged) standard uncertainties u(cLab) based
on the expression (16) are shown in column 5 of table
1. Based on the adjusted uncertainties u(cLab), the stan-
dard uncertainty associated with the arithmetic mean
cAvg determined from the expression (28) is u(cAvg) =
0.46 nmol /kg. The differences ζ (cLab, cAvg) based on
the adjusted uncertainties are shown in column 6 of
table 1. Since none of the values of ζ (cLab – cAvg) is
larger than 2.00, the adjusted results [cLab, u(cLab)] given
in columns 2 and 5 of table 1 are metrologically
compatible with the combined result [cAvg, u(cAvg)].

Figures 3 and 4 display the measured values cLab

(given in column 2 of table 1) and the arithmetic average
cAvg = 62.79 nmol / kg along with the corresponding
expanded uncertainty intervals (for coverage factor k =2).
In Fig. 3, the expanded uncertainty intervals are based on
the standard uncertainties as reported in [8] and
reproduced in column 3 of table 1; in particular, 
the standard uncertainty u(cAvg) associated with cAvg is
u(cAvg) = 0.26 nmol /kg. In Fig. 4, the expanded uncer-
tainty intervals are based on the adjusted (enlarged)
standard uncertainties displayed in  column 5 of table 1;
in particular, the standard uncertainty u(cAvg) associated
with cAvg is u(cAvg) = 0.46 nmol /kg.
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2 Reference [8] is the final report of the CIPM international key
comparison CCQM-K2. In this paper, we have used data from [8] to
illustrate calculation of a combined result. We do not address data
analysis of a key comparison to determine the key comparison
reference value (KCRV) and the degrees of equivalence (DOE).

Table 1. The measured values cLab for the amount content of Pb in
natural river water and their associated standard uncertainties u(cLab)
in nmol / kg units as reported in [8]. Also shown are the differences
ζ (cLab – cAvg) based on the reported uncertainties and the adjusted
(enlarged) uncertainties

Labora- Amount Reported Reported Adjusted Adjusted
tory Content Uncer- ζ-value Uncer- ζ-value
Identifier cLab / tainty tainty

nmol / kg u(cLab ) / u(cLab ) /
nmol / kg nmol / kg

NMi 61.40 1.10 1.40 1.53 0.99
NIMC 62.21 0.30 1.56 1.10 0.54
KRISS 62.30 0.45 1.04 1.15 0.44
LGC 62.34 0.62 0.75 1.23 0.38
NRC 62.60 0.75 0.27 1.30 0.15
IRMM 62.70 0.26 0.25 1.09 0.08
NIST 62.84 0.15 0.19 1.07 0.05
LNE 65.90 1.35 2.60 1.72 2.00



In both Figs. 3 and 4, the expanded uncertainty inter-
vals (for coverage factor k = 2) for the measured values
overlap with the expanded uncertainty interval for the
arithmetic average cAvg. However, not all of the eight
results in Fig. 3 are metrologically compatible with

the combined result [cAvg, u(cAvg)]. This shows that
there is no direct correspondence between the overlap
of the expanded uncertainty intervals (for coverage
factor k = 2) and the VIM3 concept of metrological
compatibility.
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Fig. 3. The measured values cLab and their arithmetic average cAvg for the amount content of lead (Pb)
with the expanded uncertainty intervals (for coverage factor k = 2) determined from the uncertainties
stated in the report [8] and reproduced in column 3 of table 1. The arithmetic average is cAvg = 62.79
nmol / kg with standard uncertainty u(cAvg) = 0.26 nmol / kg.

Fig. 4. The measured values cLab and their arithmetic average cAvg for the amount content of lead (Pb)
with the expanded uncertainty intervals (for coverage factor k = 2) determined from the adjusted
(enlarged) uncertainties given in column 5 of table 1. The arithmetic average is cAvg = 62.79 nmol / kg
with standard uncertainty u(cAvg) = 0.46 nmol / kg. 



6. Summary

The VIM3 [2] concept of metrological compatibility
applies to only those results which are metrologically
comparable; that is, the results must be traceable to the
same reference. Metrological compatibility is a pair-
wise concept. Two metrologically comparable results
for the same measurand are said to be metrologically
compatible if the ζ-value of the difference between
the results is less than or equal to a chosen threshold
(usually 2.0). A set of metrologically comparable
results is metrologically compatible if all of the distinct
pairs of results are metrologically compatible. The
concept of metrological compatibility easily extends to
compatibility of a set of results with a reference result
or a combined result. Metrological compatibility does
not require complete knowledge of the pdfs represent-
ed by the results of measurement.

Often multiple evaluations for the same measurand
must be combined to determine a combined result. For
a combined result to be legitimate it should be metro-
logically compatible with the contributing results of
measurement. When the results are metrologically
incompatible with the combined result, we propose that
the measured values should be sustained and each of
the standard uncertainties should be enlarged just
enough to make the results compatible with the com-
bined result. Then the results can be combined using
the GUM. This approach has been found to be useful in
many practical applications.

7. Appendix

Since δXC = Σi aiδXi , we have expected value E(δXC) = 0
and variance V(δXC) = u2(δ)Σi a 2

i. Thus E(δXi – δXC) = 0
and V(δXi – δXC) = V(δXi ) + V(δXC) – 2C(δXi ,δXC) =
u2(δ)[1+Σi a 2

i. – 2ai ], where the third term is covariance.
Therefore
u2(yi – yC) = V(Yi – YC) = V(Xi – XC) + V(δXi – δXC) =
u2(xi – xC) + u2(δ)[1+Σi a 2

i. – 2ai ].

If ai = 1/n, for i = 1, 2, …, n, then u2(yi – yA) = u2(xi – xA)

Acknowledgment

We thank Javier Bernal, Tyler Estler and two anony-
mous referees for their comments on earlier drafts of
this paper.

8. References

[1] ISO 1995 Guide to the Expression of Uncertainty in
Measurement (GUM), 2nd ed., (Geneva: International
Organization for Standardization).

[2] BIPM/JCGM International Vocabulary of Metrology— Basic
and general concepts and associated terms. 3rd ed., (Sèvres:
Bureau International des Poids et Mesures, Joint Committee for
Guides in Metrology) (2008). (http://www.bipm.org/utils/
common/documents/jcgm/JCGM_200_2008.pdf)

[3] R. N. Kacker, A. B. Forbes, R. Kessel, and K. Sommer,
Classical and Bayesian interpretation of the Birge test of con-
sistency and its generalized version for correlated results from
interlaboratory evaluations, Metrologia 45, 257-264 (2008).

[4] R. N. Kacker, R. Kessel, and K. Sommer, Assessing differ-
ences between results determined according to the Guide to the
Expression of Uncertainty in Measurement, J. Res. Natl. Stand.
Technol. 115, 453-459 (2010).

[5] R. Kessel, M. Bergland, and R.Wellum, Application of consis-
tency checking to evaluation of uncertainty in multiple repli-
cate measurements Accreditation and Quality Assurance:
Journal of Quality, Comparability and Reliability in Chemical
Measurement 13, 293-298 (2008).

[6] R. Wellum, A. Verbruggen, and R. Kessel, A new evaluation
of the half-life of 241Pu, J. Analytical Atomic Spectrometry 24,
801-807 (2009).

[7] R. N. Kacker, R. U. Datla, and A. C. Parr, Statistical analysis
of CIPM key comparisons based on the ISO Guide, Metrologia
41, 340-352 (2004).

[8] I. Papadakis, P. D. P. Taylor, and P. De Bièvre, CCQM-K2 key
comparison: cadmium and lead content in natural water,
Metrologia 38, 543-547 (2001).

About the authors: Raghu Kacker is a researcher in
the Applied and Computational Mathematics Division
(ACMD) of the Information Technology Laboratory
(ITL) of the National Institute of Standards and
Technology (NIST). His current interests include soft-
ware testing and evaluation of the uncertainty in out-
puts of computational models and physical measure-
ments. He has co-authored over 100 refereed papers.
He has a Ph.D. in statistics. He is a Fellow of the
American Statistical Association and a Fellow of the
American Society for Quality. Rüdiger Kessel was a
guest researcher in the Applied and Computational
Mathematics Division (ACMD) of the Information
Technology Laboratory (ITL) of the National Institute
of Standards and Technology (NIST). He is an electron-
ic and data systems engineer and currently a
researcher at Physikalisch Technische Bundesanstalt in

Volume 116, Number 6, November-December 2011
Journal of Research of the National Institute of Standards and Technology

819

21 ( ) .n u
n

δ−+



Germany. He has a Ph.D. in sciences from the
Analytical Chemistry Department of the University of
Antwerp, Belgium and he is the developer of a standard
software tool to evaluate uncertainty of measurement.
His current interests include evaluation of uncertainty
in physical and chemical measurements, modelling of
measurements and software development. The National
Institute of Standards and Technology is an agency of
the U.S. Department of Commerce.

Volume 116, Number 6, November-December 2011
Journal of Research of the National Institute of Standards and Technology

820


