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ABSTRACT

We consider the effects of finite spectral bandwidth and numerical aperture in scatterometry measurements and
discuss efficient integration methods based upon Gaussian quadrature in one dimension (for spectral bandwidth
averaging) and two dimensions inside a circle (for numerical aperture averaging). Provided the wavelength is
not near a Wood’s anomaly for the grating, we find that the resulting methods converge very quickly to a level
suitable for most measurement applications. In the vicinity of a Wood’s anomaly, however, the methods provide
rather poor behavior. We also describe a method that can be used to extract the effective spectral bandwidth
and numerical aperture for a scatterometry tool. We find that accounting for spectral bandwidth and numerical
aperture is necessary to obtain satisfactory results in scatterometry.
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1. INTRODUCTION

Optical scatterometry, sometimes referred to as optical critical dimension (OCD) metrology, has become an
attractive tool for dimensional metrology in the semiconductor industry, due in large part to its potential for
providing in-line feedback information necessary for tight process control. In order to make the technique
quantitative and traceable to the International System (SI) of units, a full uncertainty analysis is required, and
the effects of various instrumental artifacts need to be understood, if not accounted for.1 The simplest analysis
of scatterometry data compares the measured data with the results of electromagnetic simulations, often from
rigorous coupled wave (RCW) calculations, using the known wavelengths and incident angles.2 However, in
all real instruments, data for each recorded wavelength contains contributions from a span of wavelengths and
incident directions.

In this paper, we investigate the effects of finite bandwidth and numerical aperture on the theoretical simu-
lations. Since performing these averages necessitates an increase in computation time, and since scatterometry
measurements are computationally intensive, we seek to find methods that are computationally efficient. We
begin by describing a computationally efficient technique for performing wavelength and angle averages, which
are parameterized by an order for which convergence can be tested. We then perform some simulations on a
long period (period large compared to wavelength) and a short period (period small compared to wavelength)
grating in order to determine how quickly convergence is obtained as the order is increased. We then suggest a
method for determining the bandwidth and the numerical aperture that can be used for subsequent scatterometry
simulations.

2. NUMERICAL METHODS

When taking into account spectral bandwidth and numerical aperture in modeling optical signatures, one gen-
erally needs to find an efficient method by which to average the optical signature over wavelength or incident
direction. For a single dimension, such as for spectral bandwidth, we need to evaluate the mean,

f̄(λ) =
∫

w(x)f(λ + x) dx, (1)
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where λ is the wavelength, f(λ) is the function we are integrating, and w(x) is a spectral bandwidth function.
For this discussion, the function w(x) is normalized as∫

w(x) dx = 1. (2)

In order to program Eq. (1) in a computer, we must approximate it as the sum

f̄(λ) ≈
n∑

i=1

wif(λ + xi), (3)

where the xi and wi are chosen appropriately. There are a number of ways that this choice can be made. The
trapezoid and Simpson’s rules,3, 4 for example, are common when the function f(λ+x) is relatively inexpensive to
compute. However, in our application, each computation of f(λ+x) requires a time consuming RCW simulation.
Thus, we must choose the xi and wi judiciously.

Often, we can assume the function f(λ + x) is relatively smooth. In this case, Gaussian quadrature offers
an extremely efficient and accurate approximation for the integral.3, 4 If gj(x) for j = 1, ..., n are approximation
functions, then, for some set of xi, we can solve the linear set of equations

n∑
i=1

wigj(xi) =
∫

w(x)gj(x) dx (4)

for each j for the wi, and then, the weighted average of any linear combination of the functions will be solved
exactly. When the functions are chosen to be orthogonal polynomials, so that∫

w(x)pi(x)pj(x) dx =
{

i = j : 1
i �= j : 0 , (5)

and if xi are chosen to be the zeros of the pn+1, then it can be shown that the approximation, Eq. (3), is not
only exact for any linear combination of the first n polynomials, but for first 2n + 1 polynomials. Therefore, for
example, if the function f(λ) is well approximated by a cubic polynomial, then only two evaluations of f(λ) are
required to obtain an accurate mean value f̄(λ). If w(x) is rectangular [that is, w(x) is constant within a specific
domain, and zero otherwise], then the Legendre polynomials provide the appropriate set of polynomials. If the
w(x) is Gaussian, then the Hermite polynomials are the appropriate set of polynomials. For a general w(x), we
can generate polynomials by a recursive relationship.3

Table I gives a summary of the parameters xi and wi for rectangular, Gaussian, and triangular weighting
functions for the first five and the ninth non-trivial orders. The values are tabulated in a manner that scale the
xi by the standard deviation σλ of w(x). These values differ from other tabulations,4 which are often given for
non-normalized weighting functions w(x) with different standard deviations and normalizations different than
Eq. (2).

Integration over a circular aperture can also be performed using Gaussian quadrature. In this case, we make
use of the Zernike polynomials,

Zl
m(r, φ) =

{
m ≥ 0 : Rl

m(r) cos(mφ)
m < 0 : Rl

m(r) sin(mφ) , (6)

defined on the interior of the unit circle. The radial function Rl
m(r) is zero when m − l is odd. We choose the

coordinates ri for sampling by choosing the zeros of R0
m(r) when m is even and R1

m(r) when m is odd. The
φi are chosen evenly spaced, such that there are 2m sampled points azimuthally. Like Gaussian quadrature in
one dimension, that in two dimensions yields exact results when the function is well approximated by Zernike
polynomials having order less than twice the order used to determine the coordinates. Table II gives suitable
values for ri, φi, and wi. The 1st, 2nd, and 4th orders can be found in Ref. [4, Sec. 25.4.61.]. Again, the results
are normalized to obtain a mean.

When we perform the averages over either wavelength or numerical aperture, we perform them on the entire
Mueller matrix evaluated by RCW. In the case of numerical aperture averaging, we must ensure that we maintain
the correct polarization basis when we consider directions outside of the central cone direction.5
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Table 1. Parameters for averaging bandwidth.

Rectangular Gaussian Triangular

n
2

xi/σλ wi

±1.00000000 0.50000000
xi/σλ wi

±1.00000000 0.50000000
xi/σλ wi

±1.00000000 0.50000000
n
3

xi/σλ wi

0.00000000 0.44444444
±1.34164079 0.27777778

xi/σλ wi

0.00000000 0.66666667
±1.73205081 0.16666667

xi/σλ wi

0.00000000 0.58333333
±1.54919334 0.20833333

n
4

xi/σλ wi

±0.58886444 0.32607258
±1.49153184 0.17392742

xi/σλ wi

±0.74196378 0.45412415
±2.33441422 0.04587585

xi/σλ wi

±0.64232931 0.40113370
±1.83938344 0.09886630

n
5

xi/σλ wi

0.00000000 0.37393165
±0.93265620 0.31460345
±1.56954953 0.15573245

xi/σλ wi

0.00000000 0.53333333
±1.35562618 0.22207592
±2.85697001 0.01125741

xi/σλ wi

0.00000000 0.41773700
±1.10207529 0.23947324
±2.01211032 0.05165826

n
6

xi/σλ wi

±0.41330055 0.23395697
±1.14524825 0.18038079
±1.61508458 0.08566225

xi/σλ wi

±0.61670659 0.40882847
±1.88917588 0.08861575
±3.32425743 0.00255578

xi/σλ wi

±0.47584688 0.32302220
±1.41241206 0.14748123
±2.12061707 0.02949656

...
...

...
n
10

xi/σλ wi

±0.25785792 0.147762112
±0.75066284 0.13463336
±1.17677189 0.109543181
±1.49833370 0.074725675
±1.68685559 0.033335672

xi/σλ wi

±0.48493571 0.34464233
±1.46598909 0.13548370
±2.48432584 0.01911158
±3.58182348 0.00075807
±4.85946283 0.00000431

xi/σλ wi

±0.31493991 0.22945000
±0.95126258 0.15383706
±1.52795328 0.08123062
±1.99401518 0.03011326
±2.31027638 0.00536906

3. EXAMPLE PROFILES AND TOOL

In this article, we use two virtual samples and a single virtual tool to illustrate the effects of finite bandwidth
and finite numerical aperture. The target grating profiles have vertical-walled silicon lines of height 250 nm on
top of a silicon substrate. The width and pitch of the large pitch sample are 100 nm and 800 nm, respectively,
while the width and pitch of the small pitch sample are 45 nm and 90 nm, respectively.

The scatterometry tool is a rotating compensator spectroscopic ellipsometer operating from 250 nm to
1000 nm. The incident angle is 65◦. The standard deviation of the bandwidth is assumed to be fixed at
σλ = 5 nm across the spectrum. The numerical aperture, given by the sine of the cone halfangle, is assumed
to be NA = 0.05. The incident light was linearly polarized at 45◦. The results are presented in terms of the
parameters N , S, and C, which are defined by the elements of the normalized reflected Stokes vector, (1, N, S, C).
The tool parameters were chosen to be similar to those of a physically existing tool, upon which measurements
were performed and which is described later in the text.

4. SIMULATION RESULTS

Figure 1 shows the results for the averaging over bandwidth for the 800 nm and 90 nm gratings. The N , S,
and C spectra (as a function of photon energy E = hc/λ, where h is Planck’s constant and c is the speed of
light) are shown in the lower graphs and are evaluated for the n = 10 approximation, assuming a rectangular
distribution. The differences between the n = 1 approximation (single wavelength) and the n = 10 approximation
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Table 2. Parameters for performing integrals on a circle.

m = 2 m = 3 m = 4

i = 1, ..., 4
r1−4 = 0.70710678

φi = πi/2
w1−4 = 0.25000000

i = 1, ..., 7
r1 = 0.00000000

r2−7 = 0.81649658
φi = πi/3

w1 = 0.25000000
w2−7 = 0.12500000

i = 1, ..., 16
r1−8 = 0.45970084
r9−16 = 0.88807383

φi = πi/4
w1−16 = 0.06250000

m = 5 m = 6 m = 7

i = 1, ..., 21
r1 = 0.00000000

r2−11 = 0.59586158
r12−21 = 0.91921106

φi = πi/5
w1 = 0.11111111

w2−11 = 0.05124858
w12−21 = 0.03764031

i = 1, ..., 36
r1−12 = 0.33571069
r13−24 = 0.70710678
r25−36 = 0.94196514

φi = πi/6
w1−12 = 0.02314814
w13−24 = 0.03703704
w25−36 = 0.02314815

i = 1, ..., 43
r1 = 0.00000000

r2−15 = 0.46080423
r16−29 = 0.76846154
r30−43 = 0.95467902

φi = πi/7
w1 = 0.06250000

w2−15 = 0.02348888
w16−29 = 0.02772810
w30−43 = 0.01574730

(ΔN = N1 −N10, ΔS = S1 − S10, and ΔS = S1 − S10) are given in the upper graphs of Fig. 1. The differences,
while small in some parts of the spectra, approach and exceed 10% in a number of areas for the 800 nm grating.
Because we are showing spectral data while considering spectral averaging, it comes as no surprise that the
effects are largest in regions of the spectra where large curvature or structure exists. Some of these locations
correspond to Wood’s anomalies,7 apparent in the 800 nm pitch grating and marked in Fig. 1. When the period
of the grating is Λ and the measurement geometry is conical, Wood’s anomalies occur when

Λ
λ

(sin θi + 1) (7)

is an integer. For the 90 nm pitch grating, no Wood’s anomalies are apparent or expected, but the effects of
spectral averaging appear to exceed 10% in some wavelength regions. Since spectroscopic ellipsometry measure-
ments typically have precisions on the 10−3 level, the effects of bandwidth could cause significant bias in their
interpretation, if not accounted for.
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Figure 1. Spectra for the (left) 800 nm pitch, 100 nm width, and 250 nm high silicon binary grating and
for the (right) 90 nm pitch, 45 nm width, and 250 nm high silicon binary grating: (bottom) the N , S, and C
spectra calculated for a rectangular bandwidth with σλ = 5 nm and n = 6 rectangularly-weighted integration,
and (top) the difference spectra, ΔN , ΔS, and ΔC, between that calculated by the n = 6 rectangularly-
weighted integration and by evaluating at the central wavelength (n = 1). The curves represent (solid) N or
ΔN , (dotted) S or ΔS, and (dashed) C or ΔC. Locations of Wood’s anomalies are marked for the 800 nm
pitch structure.

As the order n increases, we find that convergence occurs very quickly. We can assess the degree to which
the average converges by evaluating the root mean square (rms) difference between the spectra calculated with
the n = 10 approximation and those for n ≤ 6. Figure 2 shows the convergence behavior for the σλ = 5 nm
bandwidth averaging, assuming the rectangular band shape. The convergence behavior with the Gaussian and
triangular bands are very similar, but not shown. For the 90 nm grating, convergence is extremely fast, dropping
to less than 10−3 for n = 3, and perhaps even an acceptable level by n = 2. For the 800 nm grating, convergence
appears to be much slower. There is an initial improvement, to better than 10−2, but then the convergence
appears to flatten out. Inspection of the difference spectra, however, shows that the residual convergence for
large n > 3 is dominated by features very close to the Wood’s anomalies. Outside of these features, convergence
appears to be about as quick as that obtained for the 90 nm grating.

Figure 3 shows similar results for the averaging over the numerical aperture. The lower graphs show the
spectra calculated using the m = 7 approximation, while the upper graphs show the differences calculated for m =
1 (single direction at the center of the aperture). For the numerical aperture chosen in this demonstration, the
effects are smaller than that for bandwidth, but nonetheless are not negligible for a scatterometry measurement.

The convergence behavior for the numerical aperture average, shown in Fig. 4, also shows similar behavior
compared to that for bandwidth. That is, convergence occurs very quickly for the 90 nm grating, such that at
m = 2, the differences are about 10−6, well below any expected measurement precision. Convergence for the
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Figure 2. The rms difference between spectra calculated for σλ = 5 nm as a function of the integration order
n and the n = 10 rectangularly-weighted integration. The points are for (open squares) the 800 nm pitch,
100 nm width, and 250 nm high silicon binary grating and for (solid squares) the 90 nm pitch, 45 nm width,
and 250 nm high silicon binary grating.

800 nm grating in initially quick, but again levels out, dominated by the effects near the Wood’s anomalies.
Convergence away from the Wood’s anomalies is very quick.

5. MEASUREMENT OF BANDWIDTH AND NUMERICAL APERTURE

In an effort to measure the bandwidth and the numerical aperture, we chose to perform a measurement of a
nominally 1000 nm SiO2 thick thermal oxide film on a Si substrate. Choosing as simple a sample as possible (no
grating), but for which there is significant significant structure (thick film), gives us an ability to isolate the effects
of finite bandwidth and numerical aperture from sample-specific artifacts. Our measurement was performed on
a Woollam M-2000F focused spot spectroscopic ellipsometer,∗ which has a rotating incident compensator, a
rotating detection polarizer, and a fixed angle of incidence of approximately 65◦. The instrument measures data
at 478 wavelengths, spanning the range from 247 nm to 1000 nm. The measurements were performed in a manner
that obtained 11 of the 16 Mueller matrix elements. The parameters N , S, and C are determined from the m12,
m43, and m33 elements of the normalized Mueller matrix reflectance, respectively. The measured N , S, and C
spectra are shown in Fig. 5. To fit data to model parameters, we use a Levenberg-Marquardt search algorithm,
which minimizes

χ2
r =

1
3Nλ − M

Nλ∑
i=1

[
(Nmeas

i − N calc
i )2

σ2(Ni)
+

(Smeas
i − Scalc

i )2

σ2(Si)
+

(Cmeas
i − Ccalc

i )2

σ2(Ci)

]
, (8)

where Xmeas
i is a measured value X , Xcalc

i is a corresponding calculated value, and σ(Xi) is the estimate of its
standard deviation. The ellipsometer software supplied with the instrument provides an estimate of the standard
deviation of the measured Mueller matrix elements σ(Xi). The number of data points is Nλ and the number of
fitting parameters is M .

∗Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the ex-
perimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are
necessarily the best available for the purpose.
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Figure 3. Spectra for the (left) 800 nm pitch, 100 nm width, and 250 nm high silicon binary grating and
for the (right) 90 nm pitch, 45 nm width, and 250 nm high silicon binary grating: (bottom) the N , S, and C
spectra calculated for NA = 0.05 with the m = 7 Gauss-Zernike integration, and (top) the difference spectra,
ΔN , ΔS, and ΔC, between that calculated by the m = 7 Gauss-Zernike integration and by evaluating at the
central direction (m = 1). The curves represent (solid) N or ΔN , (dotted) S or ΔS, and (dashed) C or ΔC.
Locations of Wood’s anomalies are marked for the 800 nm pitch structure.

The model we used to describe the film consisted of a SiO2 layer of thickness toxide above an interface layer
of thickness tinter above the Si substrate. The optical properties (index and absorption coefficient) of each layer
were taken from the literature.6 When we fit the data, letting just the thicknesses (toxide and tinter) and the
incident angle θi float, we obtain a minimum value χ2

r = 333, rms = 0.055, and

toxide = 1016.5 nm,

tinter = 5.3 nm,

θi = 64.64◦.

This fit is shown in Fig. 5 as gray curves and is a relatively poor fit to the data, tending to overshoot the
oscillations in the ellipsometric parameters, especially at the higher energies. We then let bandwidth σλ and the
numerical aperture (NA) also be floating parameters, letting the bandwidth function be triangular with n = 5
and using the m = 4 approximation for the numerical aperture. When we include the bandwidth and numerical
aperture, we find a significantly improved fit, with χ2

r = 21.7, rms = 0.0134, and

toxide = 1020.87 nm
tinter = 4.2 nm

θi = 65.17◦
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Figure 4. The rms difference between spectra calculated for NA = 0.05 as a function of the Gauss-Zernike
integration order m and the m = 7 Gauss-Zernike integration. The points are for (open squares) the 800 nm
pitch, 100 nm width, and 250 nm high silicon binary grating and for (solid squares) the 90 nm pitch, 45 nm
width, and 250 nm high silicon binary grating.

σλ = 1.6 nm
NA = 0.065

This fit is shown as the black curves in Fig.5. The value for NA is close to that estimated by geometric
measurement. The value for bandwidth is also very close to experimentally obtained results. In order to check
the instrument’s spectral spread function, we directed the light from a Hg-Ar source of narrow-band spectral lines
into the instrument’s spectrometer, and fit eight of the observed lines to Gaussian profiles. This measurement
yielded an instrument bandwidth of σλ = 1.7 nm.

Finally, the measurement using the Hg-Ar spectral line source revealed a small shift in the wavelength scale
for the instrument of approximately 0.3 nm (the instrument read too high). If we let a wavelength offset Δλ be
an additional floating parameter, we obtained a slightly improved fit, with χ2

r = 19.5, rms = 0.0122, and

toxide = 1020.55 nm
tinter = 3.9 nm

θi = 65.17◦

σλ = 1.5 nm
NA = 0.065
Δλ = −0.28 nm

where the negative Δλ is consistent with the sign of the observed instrument shift. Thus, it appears that we can
effectively measure the spectral bandwidth, the numerical aperture, and any wavelength shift of the instrument
using the method described.

That the fit does not have χ2
r close to unity is not particularly bothersome, since the estimate of the standard

deviations given by the instrument do not reflect all of the errors in the measurement. Furthermore, because
of this, estimates of the errors in these parameters, obtained from the curvature of χ2

r, underestimated the true
errors, which we do not report. As more parameters are added to those being fit, correlations between all the
parameters increase.
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Figure 5. Ellipsometric spectra of a ≈1000 nm film on silicon. The measured data are (triangle) N , (squares)
S, and (squares) C. The simulated data are (solid) N , (dotted) S, and (dashed) C. The fits ignoring finite
bandwidth and numerical aperture are in gray, while the fits including the effects of bandwidth and numerical
aperture are in black.

6. DISCUSSION

The results suggest that suitable averaging can be achieved with as few as three, or, possibly, two, samples in the
spectral domain and as few as four in the directional domain. While averaging over wavelength scales linearly
with the number of points sampled in wavelength, averaging over direction is slightly more complicated, because
conical geometries (those in which the grating vector is in the plane of incidence) typically take about a factor of
four longer to compute than non-conical ones. If the central direction of the incident numerical aperture is non-
conical, then we can make use of symmetry to reduce the computation time. The quickest such sampling would
be to choose two of the points in a non-conical geometry and one in the conical geometry, using symmetry to
deduce the opposing conical geometry. Thus, the computational burden of directional averaging in a non-conical
geometry can be as low as a factor of about six. This yields a total computational burden of 12 if two-point
wavelength averaging is used and 16 if three-point wavelength averaging is used.

One can observe from Table 1 that to the lowest order shown (n = 2), the sampling points and their respective
weights for rectangular, Gaussian, and triangular bandpasses are identical. This finding will, in fact, be true for
any valid, symmetric w(x). Since convergence of the average is very quick, one can conclude that knowing the
precise spectral spread function w(x) is much less important than knowing its standard deviation.

The convergence at wavelengths near the Wood’s anomalies can be poor, because, while the Mueller matrix
elements, and thus the parameters N , S, and C, are continuous across the boundaries, higher order derivatives
are not. That is, there are cusps in the Mueller matrix elements at the Wood’s anomalies. Thus, the assumption
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that the function we are integrating can be approximated by a polynomial does not hold. For those wavelengths
where part of the spectral bandwidth or numerical aperture overlaps a Wood’s anomaly, we need an alternative
method to integrate over bandwidth and numerical aperture. In the case of the bandwidth, we can split the
bandwidth into parts which are above and below, generate the orthogonal polynomials for each side, and solve
for the sampling points and their respective weights. For the numerical aperture integrals, this process may be
much more complicated. In the end, it may be most appropriate and effective to employ a simpler approach,
such as trapezoidal integration, which makes fewer assumptions about the functions being integrated, or to avoid
such problems altogether by limiting the fit to regions of the spectrum where Wood’s anomalies do not affect
the spectra. Since this issue only occurs for large pitch gratings, it may be an issue for only a small number of
applications.

7. CONCLUSIONS

We described methods that account for finite spectral bandwidth and numerical aperture in scatterometry
measurements. Provided the wavelength is not near a Wood’s anomaly, we find that the resulting methods
converge very quickly to a level suitable for most measurement applications. We also described a method that
can be used to extract the effective spectral bandwidth and numerical aperture for a scatterometry tool. We
find that accounting for these effects are necessary to obtain satisfactory results in scatterometry.
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