

Privacy-Preserving DRM

Radia Perlman Charlie Kaufman Ray Perlner
Sun Microsystems Microsoft NIST

radia.perlman@sun.com charliek@microsoft.com ray.perlner@nist.gov

ABSTRACT
This paper describes and contrasts two families of schemes that

enable a user to purchase digital content without revealing to

anyone what item he has purchased. One of the basic schemes is

based on anonymous cash, and the other on blind decryption. In

addition to the basic schemes, we present and compare

enhancements to the schemes for supporting additional features

such as variable costs, enforcement of access restrictions (such as

“over age 21”), and the ability of a user to monitor and prevent

covert privacy-leaking between a content-provider-provided box

and the content provider. As we will show, the different variants

have different properties in terms of amount of privacy leaking,

efficiency, and ability for the content provider to prevent sharing

of encryption keys or authorization credentials.

Categories and Subject Descriptors
C.2.0 [Computer Networks]: General – Security and protection.

K.4.1 [Computers and Society]: Public Policy Issues – privacy.

E.3 [Data]: Encryption

General Terms
Algorithms, Design, Economics, Security, Human Factors.

Keywords
Algorithms, Protocols, Blindable Parameterizable Public key,

pricay, DRM.

1. INTRODUCTION
Most work in the field of Digital Rights Management

(DRM) focuses on the problem of preventing its

circumvention. This paper looks at a different problem:

how to charge for the use of data while allowing the user to

maintain her privacy (in the sense of not revealing to the

content provider what data was purchased by which user).

In some scenarios, privacy is of greater concern to the user

than the payment required. This paper presents and

contrasts two basic approaches, plus variants, of systems in

which content is distributed in encrypted form, and the user

pays to receive a decryption key. The first is based on

Chaum’s anonymous cash [5]. The second is based on blind

decryption [15].

In addition to the basic schemes, we provide various

methods of enhancing these schemes for functionality such

as different costs for different content, ability of a third

party to create content to be distributed by the content

provider, and enforcement of authorization policies.

Additionally, we examine the scenario where for DRM

enforcement reasons, there is a sealed box provided by the

content provider on the user’s premises, communicating

with the content provider to acquire keys, and doing the

actual decryption. We examine the problem of whether the

user can detect or prevent the sealed box from covertly

telling the content provider what content the user is

decrypting. We show that it is impossible, if the user is only

passively monitoring the channel, for the user to know

whether the box is indeed leaking information. We then

show a mechanism in which the user can cooperate with the

box in forming the message to be sent to the content

provider, and be assured there is no collusion going on,

without impacting the ability of the content provider to

enforce DRM.

Although the focus of this paper is not the crypto, we do

introduce a new variant of asymmetric keys; the ability to

have a family of blindable keys, parameterized by an

arbitrary string, which we will use to encode information

such as authorization policies or monetary units. This

functionality can be provided by a somewhat unusual use of

IBE (identity based encryption), but we also introduce two

alternative algorithms, which lack some of the properties of

IBE that are not needed for our application.

We will assume that there are enough items of content

distributed by the content provider that the mere fact that a

user is doing business with the content provider, and the

amount of money the user spends with the content provider,

is not a privacy issue. However, as we will show, privacy

leaking is not absolute, and some of the solution variants

have different tradeoffs.

Encrypted content must be accessed anonymously, though

that is not the focus of the paper. Encrypted content might,

for instance, be broadcast video, or content posted on the

Internet. If the content is broadcast, say from a satellite or

via cable TV, there is no problem with accessing the

encrypted content anonymously. If the encrypted content is

downloaded from the Internet, some sort of anonymization

technique would be required, e.g., [10], [11], [16].

In addition to the encrypted content for an item, there will

be associated metadata. An example of metadata might be

the decryption key for the content, encrypted with the

public key of the content provider, or perhaps also an

authorization policy for accessing that item.

Another aspect of DRM, also not the primary focus of this

paper, is how to prevent a user from copying content and

sharing it with others. There hasn’t been a foolproof

technical solution, especially since the analog output of

video and audio has to be available. For instance, it is not

uncommon for people to carry a camcorder into a theater,

record the movie as it is played, and then sell copies later.

Various proposed solutions for enforcing DRM include

threats of prosecution if caught illegally copying and

distributing, watermarking to discover which copy leaked

[1], [7], [4], [9], and various software and hardware

techniques to prevent copying [14], [12]. Even though there

might never be a foolproof technical solution, it is common

today for digital content to be distributed with some degree

of copy protection, even in software-only systems. This is

evidence that content providers believe that copy protection

deters a sufficient amount of copying that the complexity

(and customer annoyance) of the DRM is of positive value

(to the content provider).

So this paper is not about how to make DRM itself more

secure; it is instead focused on enhancing DRM with

additional functionality.

We consider issues such as avoiding timing clues, enforcing

authorization policies (such as “over 18”, “citizen of US”,

or “citizen of any country except Monaco or Grenada”) that

might restrict access to some content; the comparative

implications on our scheme variants when authorization

policy might be very complex; the ability to do per-item

accounting; and the ability of the user, when

communicating with the content provider through a sealed

box, to be assured that the box is actually preserving the

user’s privacy.

DRM enforcement commonly involves using a sealed box

(e.g., the box that a video satellite provider installs at the

user’s house with a subscription to their service). We

assume in such deployments:

•	 The box’s only means of communication with

anything is through a channel that can be

monitored by the user.

•	 The user can modify messages to/from the box

(the user can place a box between the box and its

only means of communication to anything else).

•	 The user cannot examine the logic inside the box

to determine whether the algorithms inside the

box are indeed designed so as not to divulge the

user’s identity.

This fairly common deployment scenario leads to

interesting functional differences between the schemes.

First we present the basics of the two schemes.

2. First: Basic anonymous-cash-based DRM

2.1 The concept of anonymous cash
Chaum [5] introduced the concept of anonymous cash. The

basic idea is that a data structure with a particular syntax,

signed with the private key of the bank, is worth a fixed

amount of cash. The data structure includes a random

number large enough to assure that independently chosen

values will be unique. The anonymity comes from the

construct of blind signatures, where Alice can get the bank

to sign something without the bank knowing what it is

signing.

Alice chooses a random number R, hashes it, and formats it

according to the rules of valid currency, “blinds” it, and

presents the blinded result to the bank, which signs the

result with its private key. Then Alice applies the blinding

function’s inverse function (“unblind”) to obtain a value we

will refer to as “the bank’s signature on R”.

The bank will not know the values of R that Alice has

purchased, so when R is “spent” the purchase cannot be

traced to Alice, though the bank will know how many

tokens Alice has purchased. Merchants accepting the

anonymous cash can verify it is valid by checking the

bank’s signature. The only problem is assuring that Alice

doesn’t spend the same valid unit of anonymous cash more

than once. If there is only one place accepting the

anonymous cash (in this case the content provider), then

double spending can be prevented by having the content

provider remember all the R’s that have been spent.

Alternately, if the bank that is issuing the anonymous cash

is online, then the cash can be spent with multiple

merchants, provided that the bank remembers all the R

values used, and is consulted by each merchant on each

transaction before the anonymous cash is accepted.

Chaum, Fiat, and Naor extended the notion of electronic

cash to allow for an off-line bank [6]. In this scheme, Alice

might successfully spend digital cash multiple times, but

once the bank collects the transactions (the spent cash), the

culprit’s identity will be revealed.

The latter anonymous cash scheme is more complex and

expensive and our application does not require the off-line

assumption, so we will use the simple notion of random R’s

that have been blindly signed in advance, to indicate that

the holder of the signed R is allowed to trade that R for a

unit of merchandise.

2.2 Using anonymous cash for DRM
In our application there is no reason for there to be a third

party (the bank) providing general purpose tokens that can

be spent with multiple merchants. Alice can directly

purchase tokens from the content provider.

2.2.1 Obtaining cash
This will be done non-anonymously, in a conversation that

must be authenticated and encrypted. The shaded text box

indicates encryption.

Alice must pay for the cash through some mechanism such

as a credit card, or having an account with the content

provider, and having her account debited when she obtains

cash.

Alice	 content provider

Signature on blinded R

Blinded R, proof I’m Alice

2.2.2 Purchasing content
To purchase content, Alice presents the anonymous cash,

together with the metadata for the content she wishes access

to, and the content provider returns the content key. This

interaction must be both anonymous (because the content

provider will know what content is being requested and

must not know who is requesting it), and encrypted (since

otherwise an eavesdropper could steal the cash or the

content key). The cloud in the diagram indicates an

anonymization infrastructure. Note that an anonymization

infrastructure is very expensive, in terms of computation

and bandwidth [10].

Alice

R, signature on R, content ID

K

Content provider

Since the transaction where Alice is requesting a content

key must be anonymous and encrypted, the metadata for an

item could simply be the item’s ID, and the content

provider would keep a table of (content ID, content key)

pairs. (In contrast, as we will see in section 3, in the blind

decryption scheme, the metadata for an item must be {K}P,

i.e., the content key encrypted with the content provider’s

public key.)

However, it might be preferable, even in the anonymous

cash scheme, for the metadata to be {K}P rather than

simply a “content ID” if:

•	 the content is to be prepared by a 3
rd

party;

otherwise, it would be necessary for the 3
rd

party

to securely relay the content key for that content to

the content provider.

•	 it were inconvenient for the content provider to

securely keep a large table of (content ID, key)

pairs.

3.	 Second scheme: Blind decryption
In this second scheme, we use blind decryption instead of

blind signatures. Blind decryption is similar in spirit to

blind signatures, but there are more algorithms that work

for blind decryption than blind signatures because blind

decryption does not require a “public” key. Blind

decryption works with various schemes including RSA keys

(as with blind signatures), Diffie-Hellman keys, and IBE

(identity based encryption).

3.1 Mechanics of Blind Decryption

3.1.1 RSA Keys
With RSA keys, blind decryption is a simple variant of

blind signatures. If the content provider’s public RSA key is

(e,n), with the private key being (d,n), then the encrypted

data key K will consist of K
e

mod n.

To obtain K, Alice blinds K
e

mod n by choosing a random

number R, “encrypting” R with the content provider’s

public key, to obtain R
e

mod n, multiplies the two quantities

together to obtain (K
e

* R
e

mod n), and presents the result

to the content provider, which uses its private key by raising

to d mod n, resulting in K*R mod n, which it returns. Alice

divides by R mod n to obtain K.

3.1.2 Diffie-Hellman Keys
Blind decryption can work with Diffie-Hellman keys, with

any Diffie-Hellman group, including elliptic curves. We

will call the operations “multiplication” and

“exponentiation” although in the literature, elliptic curve

operations are usually called “addition” and

“multiplication”. But we find the description with

multiplication and exponentiation more clear for people

who are familiar with Diffie-Hellman but not with elliptic

curves. That way the formulae work with both mod p

Diffie-Hellman and with elliptic curves. Note: the Diffie-

Hellman blind decryption we are presenting is a

simplification of one presented in [15], and it works for

blind decryption, but would not work as a blind signature

scheme. Also, for brevity, assume the operations are being

done mod p (rather than having us say “mod p” each time).

Assume the content provider’s public Diffie-Hellman key is

g
x
, and the private key is x.

A content key K is of the form g
xy

. If the encryption

algorithm requires a particular form factor for the key, such

as being 128 bits, then some function would be performed

on g
xy

to convert it to the right form factor, such as a

cryptographic hash.

The metadata associated with the item that is encrypted

with key g
xy

includes g
y
.

In other words, g
xy

(or more likely a cryptographic hash of

g
xy

) is used as a symmetric encryption key (for any

symmetric key algorithm such as AES) to encrypt the

content, and the metadata includes g
y
. To decrypt the

content, Alice must obtain g
xy

. If blinding were not

necessary, Alice could send the content provider g
y

and

have the content provider apply its private key (i.e.,

exponentiate by x), and return g
xy

mod p. But we need this

operation to be blinded.

Each item of content distributed by a particular content

provider is encrypted with a different key (a different y was

chosen), but they all use the same secret x. The value y is

independently and randomly chosen for each item.

To blind g
y

mod p so that the content provider cannot know

which key Alice is purchasing, Alice chooses a value z and

computes z
-1

mod q, where q is the order of the cyclic group

generated by g. For mod p groups, q is a large factor of p-1.

She raises g
y

to z to obtain g
yz

, and sends that to the content

provider.

The content provider raises this to its private key (x) and

returns to Alice: g
xyz

.

Alice unblinds g
xyz

by exponentiating by z
-1

to obtain the

content decryption key g
xy

.

3.1.3 IBE (Identity-based encryption)
The Boneh-Franklin (BF) scheme used in IBE [2] can also

be used by our scheme for blind decryption, although we

will be using it in a different way. In IBE, as traditionally

used, there is a master key generator, anyone knowing the

domain parameters can generate a public key from a string,

and the master key generator calculates the corresponding

private key (using the domain secret), and gives the private

key to the rightful owner of the public key.

However, in our schemes, there is only one “rightful public

key owner” -- the content provider. In the way we use the

BF math, the content provider will act as the master key

generator, in the sense of knowing the domain secret, but it

will not give private keys to anyone (other than calculating

its own private key). Clients will never know any private

keys; they will only know the domain parameters in order to

obtain the content provider public key.

In “normal” IBE, there would be a family of public keys,

parameterized with a string “ID”. At this point in the paper,

we only need a single public key (the content provider’s

public key), so we can assume that “ID” is a constant. Later

in the paper (section 6.3.3) we will want to use a string to

create a family of keys, but they will all still be public keys

belonging to the content provider.

To create a blindable public key, we will modify a

simplified version of Boneh-Franklin IBE. Recall that the

BF scheme uses a bilinear map ê(P,Q), (usually a twisted

Weil or Tate pairing) which maps two order q elliptic curve

points to an order q finite field element, and has the

property that ê(P
a
, Q

b
) = ê(P,Q)

ab
, for points P, Q and

integers a, b.) Recall also that the security of BF relies upon

the Bilinear Diffie-Hellman assumption that given P, P
r
, P

s
,

P
t
, it is difficult to find ê(P,P)

rst
.

In the case of the basic IBE scheme, a trusted server, called

the private key generator, chooses a secret integer, s, and an

elliptic curve point P, and it publishes as system parameters

P
s
, P, and a specification of the group that P lives in. The

private key generator can generate a private key

corresponding to any public key, “ID”, by using a special

hash function H to map “ID” to an element of the group

generated by P. We will write H(“ID”) as P
t
, despite the

fact that no party, including the key generator, will be able

to compute t. This notation (P
t
) is simply used here to make

the bilinear Diffie-Hellman problem embedded in the

scheme more transparent. The private key corresponding to

“ID” is H(“ID”)
s
, which may also be written as P

ts
. To

obtain a shared secret key with the holder of the public key,

“ID”, an encryptor chooses a random number r, and

transmits P
r
. The shared secret is then ê(P,P)

rst
which is

calculated as ê(P
s
, H(“ID”))

r
= ê(P

s
, P

t
)

r
by the encryptor,

and ê (P
r
, H(“ID”)

s
) = ê (P

r
, P

ts
) by the holder of the public

key “ID”.

Blinding may be added as follows: suppose a message is

encrypted with ê (P
r
, H(“ID”)

s
), and you know P

r
and “ID”.

Now suppose you want to decrypt the message with the

help of the “ID” holder, but you don’t want him to find out

P
r

which value of was used – since that would

unambiguously identify the message you are trying to

decrypt. You can do this by choosing a random blinding

factor, b, and sending P
rb

to the holder of “ID”. He will
rb rb ts brst

send back ê (P , H(“ID”)
s
) = ê (P , P) = ê (P,P) . You

rst brst -1
can now get ê(P,P) , by raising ê (P,P) to the b (mod q).

3.2 Purchasing Content with Blind Decryption
In the anonymous cash scheme, when Alice is purchasing a

content key, she must do it anonymously, and the

conversation must be encrypted. In our blind decryption

scheme, it is not necessary for the conversation to be

anonymous or encrypted, but it does need to be integrity-

protected (signed by Alice).

There is no need for an anonymizing network. The content

provider will know which user (Alice) is accessing an item,

and it can debit her account at that time, but it will not

know which item Alice is accessing.

The protocol for requesting decryption is for Alice to send

the content provider a message containing Alice’s identity

(so her account can be charged for the decryption), along

with an encrypted blob (consisting of the blinded encrypted

key) that the content provider will “decrypt” with its private

key. (“Decrypt” is in quotes because the result will still be

encrypted with the blinding function). This message must

be signed by Alice, e.g., with a MAC with a secret key

Alice shares with the content provider, or signed with her

private key, because her account will be debited for the cost

of the decryption and we must assure that a third party

cannot request a decryption be charged to Alice. It also

must be resilient against replays, so an eavesdropper cannot

cause Alice to be charged multiple times for the same

decryption.

A simple method of avoiding replays without adding

messages is for Alice to include a timestamp or sequence

number, and have the content provider store the timestamp

(or sequence number) of the previous decryption request

from Alice, and ensure that the timestamps from Alice are

monotonically increasing.

Alice will not be anonymous in this scheme. She will

authenticate to the content provider, and her account will be

debited for each decryption of a content key she requests.

The content provider will know that Alice has purchased

some content, but not which content.

[“Alice”, timestamp, B({K}P)] signed by Alice

Alice Content provider

B(K)

Using blind decryption to obtain a specific encryption key

4. Comparison of the basic schemes

4.1 Efficiency
The blind decryption scheme is dramatically more efficient

because it does not need an anonymization infrastructure.

Also, in the anonymous cash scheme there needs to be two

conversations; a (nonanymous) conversation to purchase

tokens, followed by an anonymous, encrypted conversation

to request (and pay for) a content key. In contrast, with

blind decryption, there need only be a single interaction;

debiting Alice’s account, and having Alice request a content

key is done in the same (nonanonymous) two-message

exchange.

Also, with the blind decryption scheme, the content

provider only requires a single private key operation (to

blindly decrypt {K}P). The anonymous cash scheme

requires one private key operation for the content provider

to blindly sign each token, as well as a private key

operation to establish the server-side-authenticated

encrypted channel required for content key requests.

Additionally, the anonymous cash scheme is likely to

require an additional private key operation to set up the

encrypted conversation in which Alice purchases tokens,

although it could be done with a long-term shared secret

key between Alice and the content provider, and many

tokens can be purchased in the same conversation.

Additionally, although we showed the protocol where the

metadata is the content ID, and retrieving the content key is

a table lookup, that scheme requires the content provider

keeping a large database (keys for all the content items), so

it is likely to be preferable for the metadata to be {K}P, in

which case the anonymous cash scheme would require at

least 3 private key operations for the content provider, vs 1

for the blind decryption scheme.

The main expense of the anonymous cash scheme

(compared to the blind decryption scheme) is the cost of the

anonymization infrastructure, both in bandwidth and

computation, placing computational burdens not just on

Alice and the content provider, but also on the relay nodes.

Although obtaining the encrypted content (in either scheme)

might in some cases require an anonymization network,

there are scenarios (such as acquiring content through

broadcast video) in which the blind decryption scheme

would not need such a channel. However, the anonymous

cash scheme will always require the existence of an

anonymization infrastructure (though in most descriptions

of anonymous cash in the literature, this important detail is

omitted).

4.2 Per-item accounting
The anonymous cash scheme allows the content provider to

know how many people have purchased each item of

content, (although it does not know specifically which

people have purchased which content). In contrast, the

blind decryption scheme does not allow this.

It might be important in some applications for the content

provider to know how many people have purchased each

item, in order to determine the royalty amount for each

content contributor. However, many schemes deployed

today (e.g., premium TV channels that show many movies)

do not have any mechanism for the content provider to

know how many people have watched specific movies.

Payment to receive a premium channel is a flat rate

regardless of how much or which content is accessed within

that channel. So in many applications this per-item

accounting is not required.

5. Some additional features (both schemes)

5.1 Variable Charging
It is possible that some content might cost more than other

content. With the anonymous cash scheme, it is simple to

charge different amounts for different content, since the

content provider knows which key is being requested. So,

the content provider could require n tokens to purchase an

item worth n units.

This straightforward approach doesn’t work in the blind

decryption scheme, since the content provider does not

know which key it is decrypting.

5.1.1 Multiple Keys
In blind decryption, a piece of content that costs n units of

money could require n encryption keys and n decryption

requests. So for instance, the metadata for an item costing n

units could contain, for i = 1 through n, {Ki}P. Alice would

need to decrypt each one of the Ki, and then perhaps ⊕
them or hash them together to obtain the content key.

Note that requiring n decryptions or requiring n blindly

signed tokens to purchase an item worth n units, puts a

burden of n-1 additional private key operations on the

content provider, in either scheme (either it has to blindly

sign n tokens, or do n blind decryptions).

5.1.2 Multiple-value tokens and multiple-value

public keys
Instead of making an item worth n units require n private

key operations, we can make it require, say, log2 n

operations, using either anonymous cash or blind

decryption, by having the content provider have different

public key pairs for different denominations of money.

For instance, with the anonymous cash scheme the content

provider could have a public key, P1, worth 1 unit; P2

worth 10 units; P3 worth 100 units. When Alice purchases

anonymous cash, she can specify the denomination that

she’d like. If she specifies she wants a 100-unit token, the

content provider would debit her account 100 units of

money, and blindly sign with public key P3. To purchase

something worth 14 units, she could present 14 single

tokens, or a 10-unit token plus 4 singles.

This savings can also be done with blind decryption.

Suppose there was an item worth 14 units. (Assuming the

denominations of the content provider’s public key are 1,

10, and 100), the metadata associated with the 14-unit item

would contain 5 wrapped keys; ((unit=10, {K1}P2),

(unit=1, {K2}P1), (unit=1, {K3}P1), (unit=1, {K4}P1),

(unit=1, {K5}P1)). Alice would need to do 5 blind

decryptions, each time specifying the unit, e.g.,

[“Alice”, timestamp, B({K}P2) unit=10] signed

by Alice

And the 5 keys would be cryptographically combined to

form the content key.

Note that if the metadata gives Alice the choice of

unwrapping 14 single-unit keys, or 5 variable-unit keys

(e.g., a ten and 4 ones), then these keys could not be simply

be hashed together to form the content key. Either the

function would have to be ⊕ (where it is easy to make two

different sets yield the same answer), or if a hash was used,

you’d wind up with two different quantities, say K1, and

K2. The real content key C could be stored in the metadata

as {C}K1 and {C}K2, so that C would be retrievable

whether Alice had computed K1 or K2.

5.1.3 Issue: Privacy and large-unit tokens or

decryptions
If all G-rated content cost 1 unit, and all X-rated content

cost 10 units, the variable charging could leak information.

In the anonymous cash scheme, Alice could buy anything

she wants with (lots of) unit tokens, and the content

provider would not know who was purchasing the

expensive content. Or even the fact that she has purchased a

large denomination note does not mean she is intending to

buy a single expensive item, since she could pay for

multiple single-unit purchases in the same transaction with

a single large-denomination note.

With the blind decryption scheme, Alice is not anonymous,

and has to unwrap the content in the same denominations

that it was wrapped. To help protect privacy:

•	 Alice could spread decryptions over time, so the

content provider wouldn’t be able to tell the exact

amount of any item (e.g., for a 14-unit item, she

could request decryption of the 10-unit key at a

different time from requesting the 4 single-unit

keys).

•	 The content provider could provide metadata for a

14-unit item that would allow retrieving the item

using n single-unit decryptions, rather than the

smaller number of decryptions possible using

larger denomination keys. Both types of metadata

could be provided, giving Alice the choice. So, the

content key could be the ⊕ of 14 single-unit

decryptions in the metadata, or the ⊕ of a ten-unit

decryption plus four single-units.

To avoid having users opt for unwrapping content using

single unit keys (putting a computational burden on the

content provider), the content provider could provide a lot

of content (rather than just X-rated content) that is worth

more than one unit, for instance a package of all the Disney

movies together, or entire seasons of “Little House on the

Prairie”. Or, the content provider could provide a discount

for using the larger-unit keys (the metadata for a 14-unit

item could give Alice the choice of unwrapping 14 single-

unit keys, or, say, a 10-unit key and two single-unit keys, so

that the item would cost only 12 units if she uses the larger

denomination key. Or in the case of purchasing anonymous

cash, the content provider might provide discounts for

large-value tokens, e.g., charging 9 units to obtain a 10-unit

token.

5.2 Timing Issues
There might be a piece of popular content that many users

may attempt to access at the time that it is broadcast for the

first time. The fact that someone is asking to access

something at just that time would be a clue that the user is

likely accessing that particular piece of content.

To mitigate this issue, the content provider should provide

the metadata for content well in advance of the broadcast.

Even if the data for the content does not exist, there is no

reason why the key with which that content will be

encrypted could not be chosen well in advance, and posted.

Then users can collect the metadata for that content and

request decryption of the key(s) well in advance of the

existence of the content.

6.	 Authorization Categories
In some cases it is not sufficient to pay for content; one

must be authorized to purchase that particular content. For

example, X-rated content might only be legally purchasable

by someone over age 21. Or some other content might only

be legal to sell to citizens of some countries. The system

must allow anonymous purchase, but only to qualified

individuals.

In this section we discuss three different methods of

providing for authorization, and if/how each of the two

basic schemes can be modified with each of these:

•	 Authorization secrets used as credentials

•	 Authorization secrets used as content key

components

•	 Content provider keys parameterized by

authorization policy

The various approaches have different tradeoffs in terms of

amount of privacy information leaked, efficiency,

functionality, and ability to prevent credential sharing.

The authorization policy for an item must appear in the

metadata in cleartext, so that Alice can tell what types of

authorization she must obtain in order to purchase the item.

We will use the term “ACL” to mean the authorization

policy associated with an item, and assume it can consist of

any Boolean combinations of groups, roles, identities,

attributes, etc.

An obvious concern is that any sort of authorization secret

could be copied, and sent to non-authorized users.

However, this is not a special concern with authorization,

since this is also true of the content keys. The entire system

depends on some sort of DRM enforcement to hinder

sharing of content keys as well as authorization secrets. One

mechanism, which we will explore in greater depth in

section 7, is to use a sealed box like the one that comes with

a subscription to satellite TV or cable. But software-only

DRM schemes are prevalent today, even though they aren’t

100% effective. So, they must be sufficiently effective at

deterring sharing to satisfy the content providers.

Assume for each authorization category (e.g., over 21, or

citizen of country X), there is a server that can determine

whether someone is a member of the relevant group or has

the relevant attribute. If Alice can prove to that server that

she has attribute Z, that server presents her with a secret, SZ.

To prevent an eavesdropper from stealing the secret, the

conversation in which Alice obtains SZ must be encrypted.

To prevent Alice from sharing SZ with unauthorized users,

some sort of DRM scheme must be in place.

To lessen the threat of authorized users sharing

authorization secrets with others, given that a DRM scheme

is likely not to be 100% effective, the authorization secret

can, in some of our schemes, be changed periodically, and

then authorized users will need to get the new value when

their old value becomes invalid. In one of our schemes

(public keys parameterized by ACL), there are no

authorization secrets to share.

6.1 Authorization secrets as credentials
This scheme only works with the anonymous cash scheme.

When Alice is anonymously requesting a decryption, she

presents all the authorization secrets, A1, A2, A3 that prove

she satisfies the ACL for the requested item, along with

anonymous cash. It will be known which authorization

secrets Alice has ever obtained, but not whether she ever

uses them to purchase ACL-restricted content. For

maximum privacy, it might be best for Alice to

automatically request all authorization keys for which she is

eligible so as not to leak any hints about what kinds of

content she might be seeking. An authorization secret

would only need to be obtained once (per user), and that

would enable that user to access any content that requires

that authorization.

Alice

R, signature on R, A1, A2, A3, content ID

K

Content provider

Content provider looks up ACL associated with

“content ID”, and verifies that A1, A2, and A3

are sufficient credentials to satisfy the ACL

It is straightforward to accommodate complicated

authorization policy, e.g., of legal age in the country of

residence. Since the ACL is part of the metadata, the client

can calculate what credential secrets need to be sent to

satisfy the policy. The content provider can know what the

policy for that content is, in one of two ways:

•	 The content provider stores, for each item of

content, (content ID, key, ACL)

•	 To save the content provider from keeping such a

large table, the metadata for the content would be

[{K}P, ACL] signed by content provider.

However, there is a potential for privacy leaking. If there is

a group with a very small number of members, and

someone requests access to something requiring being a

member of that group, there is no way to avoid leaking that

someone from that group accessed that item. Even if all

groups were large, it could be that the intersection of

several groups could be very small. If access to the item is

the AND of a bunch of groups, it is unavoidable (with this

scheme) to divulge that someone who is in the intersection

of all the groups has accessed the item.

The issue is with the OR of several groups. Suppose the

ACL says that you must be accredited as fluent in at least 3

languages, and Alice happens to know Bulgarian, Bengali,

and Navajo. When the anonymous requester presents those

three credentials, it will narrow the potential requesters to a

very small set, even though each of the groups is large, and

even though the ACL would usually allow for satisfaction

while still being part of a very large potential set (e.g., with

English, French, Spanish).

One feature of this scheme (as opposed to the one we will

present in the following section), is that it is relatively easy

to periodically change the authorization secrets, to mitigate

against some stealing of credentials. When an authorization

secret has changed, the user will have to obtain the new

secret.

6.2	 Using authorization keys to encrypt content

This variant works with either anonymous cash or blind

decryption. We assume that Alice obtains a (symmetric)

encryption key for each authorization category that she

qualifies for. As with section 6.1, it will be known which

authorization secrets Alice obtained, but not whether she

ever purchases content requiring them.

This scheme can handle any Boolean combination of

authorization categories. To access an item that requires,

say, authorizations X and Y, Alice would need to have

obtained authorization secret keys KX and KY, in addition to

the K wrapped inside the metadata. So, the metadata might

consist of: ({K}P, {K1}KX, {K2}KY). The decryption key

for the content could be, for instance, h(K,K1,K2). Alice

unwraps {K}P with the help of the content provider, but is

able to unwrap K1 and K2 because she knows KX and KY.

The OR operation would require organizing the metadata to

give the client the choice as to what to unwrap. For

example, if the ACL was “citizen of US OR citizen of

Canada”, the metadata might contain ((“citizen of US”,

{{K}P}KUS) , (“citizen of Canada”, {{K}P}KCANADA)).

If there were an ACL such as “citizen of any country other

than Monaco” this would require a large amount of

metadata, since that would be the OR of hundreds of

countries. In contrast, the authorization claim secrets

scheme (6.1) only requires that Alice present the single

authorization claim secret for some country other than

Monaco (we won’t worry about whether someone who is a

dual citizen is allowed to see content in this case).

In this scheme (using the authorization secret as a

decryption key), it is not as easy to periodically change an

authorization secret as it would be in scheme 6.1. It could

be done, but it would involve preparing new metadata for

all affected content.

6.3	 Authorization category-specific public keys

In this scheme, the content provider has different public

keys, one for each authorization group. In the blind

decryption scheme, this would mean that an encryption key

for an item would be wrapped with a category-specific

public key. In the anonymous cash scheme, it would mean

that the cash token would be signed with a category-specific

public key. In other words, in the blind decryption request,

Alice would specify “blindly unwrap this using your ‘US

citizen’ key”, and in the anonymous cash purchasing

request, Alice would specify “blindly sign this using your

‘US-citizen’ key”.

These could be completely independent keys, or they could

be generated cryptographically through any of the schemes

that we will present in section 6.5.

6.3.1 Boolean combinations with blind decryption

Boolean combinations of authorization categories can be

handled, with blind decryption, the same way as in scheme

6.2. In other words, an item requiring authorizations A1

AND A2 could be encrypted with h(K1 ,K2) and include as

metadata (A1: {K1}PA1) and (A2: {K2}PA2). Alice would

have to unwrap both keys to read the item. The keys would

have to be half the price of the intended cost of the item.

The metadata for A1 OR A2 would be similar, but just have

a single K, such that unwrapping either quantity will work,

as in: ((A1: {K}PA1) OR (A2: {K}PA2)), and either of those

unwrappings would be the actual cost of the item.

6.3.2 Boolean combinations with anonymous cash

With anonymous cash, (assuming the metadata is just the

content ID), it works somewhat like scheme 6.1, in that a

cash token signed with an authorization-specific key works

both as a unit of currency and as proof of authorization. If

Alice has to prove A1 OR A2, she merely presents either a

token signed with the A1-specific public key, or a token

signed with the A2-specific public key. If Alice has to prove

A1 AND A2, during the anonymous content request, she

could present two (half-price) tokens, one signed with A1

and one signed with A2.

6.3.3 ACL-specific keys

An alternative for Boolean combinations is to have a public

key which is specific to the entire ACL, e.g., a specific

public key for “(paid up member of ACM OR IEEE) AND

citizen of US”. In other words, in the blind decryption

scheme, the metadata would consist of {K}PACL-string. In the

anonymous cash scheme, the client would request a cash

token signed with the ACL-specific key PACL-string.

That approach has the disadvantages of

•	 requiring a lot of content provider keys (but in

section 6.5 we will explain how that can be

practical), and

•	 leaking privacy, because although there might be a

lot of items of content requiring each of the

component authorization categories, there might

be very few (or even just a single one) with the

specific combination of those categories in the

ACL.

6.4	 Comparison of 6.3 with 6.1 and 6.2

With authorization-specific content keys, Alice cannot

cheat by stealing authorization secrets, since when she

requests cash tokens, or requests blind decryption, she is

not anonymous, and the content provider checks her

authorizations by looking them up in her profile. However,

it has a serious privacy disadvantage relative to the other

two schemes, that the content provider will know how many

decryptions Alice is asking for, for each ACL.

6.5	 Blindable Parameterizable Keys

In this section, we present a new cryptographic tool;

blindable parameterizable keys, and give several ways of

accomplishing this. Armed with such functions, the content

provider can have a family of keys, parameterized by the

ACL.

6.5.1 Using Identity Based Encryption

The notion of keys parameterized by a string sounds a lot

like IBE [17] [2], and indeed the same math can be used for

parameterizable blind decryption (but not blind signatures),

but we are using IBE in a different way.

We described in section 3.1.3 how to use IBE for blind

decryption, but in section 3.1.3 we were not parameterizing

the single content provider public key. To make the scheme

work with a different public key for every ACL string, we

make it more like IBE in the sense that the public key used

is derived from the ACL string. The rest of the system still

works as it did in section 3.1.3 – the content provider

knows the domain secret, and can convert any public key

into a private key, and the clients never need to know any

private keys; just the domain parameters.

6.5.2 Parameterized Diffie-Hellman

Parameterization can be done with our Diffie-Hellman

variant of blind decryption. Alice would only need to know

“g”, and “p”. The content provider would only need to

know a single secret “x”. The metadata for content for

“over 21”, would consist of (g
y

mod p, “over 21”). The

content key for that data would be calculated by calculating

S=h(x, “over 21”), and then raising the metadata to S to

obtain the content key g
yS

mod p.

Alice blinds g
y

mod p by choosing a random z, calculating

the inverse exponent z
-1

for mod p exponentiation, and

presents that along with the string “over 21”. The content

provider uses the string “over 21” to calculate S, and
yzS	 -1

returns g mod p. Alice exponentiates, mod p, by z to

obtain g
yS

mod p, the content key.

6.5.3 Parameterizable RSA

Note that the schemes we present in sections 6.5.1 and 6.5.2

work for blind decryption but not blind signatures, so

neither of them would work for anonymous cash. A scheme

that might work as a blindable parameterizable public key

scheme is RSA, where the content provider’s public key,

instead of being (e,n), is simply the modulus n. The public

exponent for a given ACL would be the hash of that ACL

string.

RSA is clearly not secure if multiple users use the same

modulus, since knowledge of a key pair allows you to factor

the modulus [3], but we are not proposing that. Instead we

are proposing a single user using modulus n, but using a

family of exponent pairs parameterized with a string.

It is a good idea for all the public exponents to be relatively

prime, (so that Alice can’t convert something raised to e to

something raised to an exponent that she is authorized for).

With exponents being hashes, this threat is unlikely to ever

happen in practice, but it is possible (with some

computational cost) to make all the exponents prime by not

simply hashing the ACL string, but instead, hashing the

ACL string, padding with some number, e.g., 32, of zero

bits, and then finding the first prime greater than that.

6.6	 Multiple Users on the same system

It is common to have multiple users in the same household

sharing the same system. They might have different

authorizations. For instance, the parents might be over 21

and the children might not be.

In such cases, there must be some ability to maintain

multiple distinct accounts, and have some sort of log-in so

that the system knows on which user’s behalf it is acting.

The system should keep a database on behalf of each user,

of items such as authorization secrets, content keys, and

anonymous cash tokens.

When anyone in the household purchases a content key, it

would be a matter of policy whether that key would also be

made available to all the household accounts that would be

authorized to view that content, or whether each account

would need to purchase the content separately. It might be a

privacy concern, for instance, for household members to see

which items have already been purchased by some other

household member.

6.7 Revocation Issues

An authorization secret could be stolen, or Alice might no

longer be authorized in some category (say, her

membership in an organization has lapsed). If

communication to the content provider is done with a

sealed box, or with reasonably trusted DRM software, then

the content provider could keep the authorization secrets in

the client up to date. For instance, if “current member of

ACM” is required for some types of content, the content

provider could communicate with ACM periodically to get

its list of members, and install the “ACM” authorization

secret into the boxes (or software) of all the authorized

users, and remove the secret from boxes (DRM software) of

users who were, but are no longer, members.

Given that even with DRM, authorization secrets might be

stolen by determined attackers, it is an advantage of scheme

6.1 that the secrets can be changed periodically.

In contrast, with multiple content provider public keys

(6.3), revocation is very simple. All that is required is that

the content provider keep track of all of Alice’s

authorizations. If, for instance, her membership in an

organization lapses, that organization would inform the

content provider, which would remove membership in that

organization from Alice’s profile, and no longer allow Alice

to decrypt anything requiring that authorization. With

anonymous cash-based authorization-specific content

provider schemes, once Alice has obtained authorization-

specific cash tokens it will not be possible to take them

back (unless enforced through the DRM

software/hardware).

7. DRM-Enforcement Sealed Box

This section considers the implications on the design in the

common deployment scenario where the content provider

provides a sealed box, and communication between the

“user” and the content provider is actually done between

the box and the content provider. We assume that the user

can communicate with the box, to tell it which content the

user would like to access.

We assume the box is reasonably difficult to tamper with,

and an additional hindrance would be that tampering with it

would be illegal. A plausible deployment of such a “box”

might be a smart card or other sealed module that installs

into the user’s PC.

7.1 Hindering Copying of Authorization Keys

In many of the variants we have presented, a user collects

content keys and authorization keys. So, an obvious

implication is that one person can obtain a key to decrypt a

piece of content, or an authorization key for “over 21”, and

widely distribute it.

However, each box will be known to the content provider.

Either the content provider will know a public key for each

box, or will have a shared secret key with each box.

Communication is between the server and the box, and any

information that must be kept from the user (such as an

authorization key) can either be done through an encrypted

channel (such as SSL) between the box and the server, or

can be returned to the box encrypted with a key known only

to that box. Content and authorization keys, as well as the

private key for a particular box will be stored inside the

box, and the box would be designed to make it be very

difficult to extract keys from the box.

If a determined user does extract keys from a box, all is not

lost. It still would be difficult to insert such keys into other

boxes. In other words, assuming a reasonably competent

job of engineering the boxes to be tamper-resistant, it would

not only take a great deal of ingenuity and lack of fear of

prosecution to extract the keys from one box, but it would

take an equal amount of tampering to insert keys into a box,

since an untampered-with box would only accept such keys

during communication with the content provider.

If the identity key for a particular box were compromised,

that might enable simulating an entire box in software (and

therefore it would not take much effort to deploy clones),

but the compromise of that one box would become known

to the content provider quickly (as, for instance, the owner

of that box would be charged for all content requested by

any clone), and the content provider would revoke the key

for that box. Although the content keys and authorization

keys known to that compromised box might still be publicly

known, it would still be difficult to install these keys into

existing boxes.

7.2 Monitoring Privacy Preservation

The box is provided by the content provider, so even if in

theory the protocol is intended to enable preserving the

user’s privacy, the content provider might be motivated to

cheat.

Communication is between the box and the content

provider, but as we said in the introduction, the user can

monitor what is transmitted.

In the anonymous cash scheme, when decryptions are

requested, this must be done over an encrypted channel,

with a key between the box and the content provider. The

user cannot tell what the box is saying. The box could

easily be (intentionally) leaking its identity when it asks for

a decryption of a particular piece of content.

In the blind decryption scheme, it is also possible for the

box to cheat in a way that the user cannot detect through

passive monitoring. When the box asks for decryption of a

piece of content, the communication is not encrypted, so the

user can indeed verify that what the box transmits is

“[“Alice”, timestamp, B({K}P1)] signed by Alice”.

However, there are several ways for the box to cheat in a

way that would be undetectable by Alice, even though Alice

can see what it is transmitting.

First we will explain how the box can cheat, and then

explain in section 7.3, with a protocol between Alice and

the box, how we can allow Alice to enforce privacy

protection without interfering with the (legitimate) DRM-

enforcing protocol between the box and the content

provider.

7.2.1 Cheating with a weak blinding function

There is no way for the user Alice to know whether the box

is truly choosing a random number for the blinding

function, or whether it is sneakily identifying the content

Alice is purchasing, by using a blinding function

predictable to the content provider.

An example method for the box to cheat and let the content

provider know which item Alice is requesting, without

Alice being able to detect that it is cheating, is as follows:

The random number it could use for the blinding could be a

hash of the secret the box shares with the content provider,

and the time. The granularity of time units must be small

enough so that consecutive decryption requests would have

different blinding quantities, but large enough so that it is

not expensive for the content provider to do a brute force

search on all possible blinding functions derived that way

until it obtains a K with recognizable formatting.

Recognizable format, for instance, might be where K in

{K}P was padded with specific structure, e. g., according to

the PKCS #1 standard [13].

7.2.2 Cheating by using the integrity check

If the integrity check between the box and the content

provider is a shared secret key, the key will not be known to

Alice, because the content provider does not want Alice to

be able to ask for content keys.

In this case, the box can leak, say, the ID of the content that

Alice is requesting, by, say, adding the ID of the content to

the integrity check. For example, if the proper integrity

check for the message

“Alice”, timestamp, B({K}P1)

using the shared secret K is “X”, and the ID of the content

being requested by Alice is n, then instead of sending X as

the integrity check, the box could send X+n. To retrieve

“n”, the content provider computes the correct integrity

check for the message (X), and subtracts it from the

integrity check as sent by the box.

There really is no way to fix this, so the integrity check

must be a public key-based signature, where Alice must

have access to the box’s public key so she can verify that

the box is providing valid signatures.

However, there is still a problem. In many public key

signature schemes, e.g., ElGamal, there is a per-message

random number x, where g
x

mod p is part of the signature.

The box could choose an x that leaks the ID of the content

being requested. For example, the box could try lots of x’s,

until it finds one for which the lower bits of g
x

mod p

reveals the ID of the content. If it were exactly the ID of the

content, Alice would be able to detect this; however, there

are ways for the box to do this undetectably to Alice. For

example, if the box shares a secret S with the content

provider, and if both the box and the content provider

remember the timestamp T of the last request to the content

provider, the box could compute T encrypted with S, take

the bottom n bits of {T}S (where “n” is the number of bits

in a content ID), ⊕ the result with the content ID to obtain

the quantity Q, and find an x such that the bottom n bits of

g
x

mod p is Q.

Thus there really is no way for Alice to passively monitor

the channel and be reassured that the box is indeed

preserving her privacy, in either the anonymous cash

scheme or the blind signature scheme.

However, in the next section we will provide a mechanism

for Alice to interact with the box and be assured that the

box is not colluding with the content provider.

The only way this can work, as we will show in the next

section, is with the blind decryption scheme, and with

public key signatures. We will show how Alice can protect

against both methods of the box cheating (weak blinding

function, and leaky integrity check).

7.2.3 Cheating by using the timestamp, or timing

If the timestamp has sufficient granularity, it would be

possible for the box to leak information in the low order

bits of the timestamp. Also, it might be possible for the box

to covertly signal information to the content provider based

on when it sends requests. Both of these threats are easily

countered, as explained in the next section.

7.3 User-enforced Privacy Protection

With the anonymous cash approach, the user has no

recourse other than trusting that the content provider’s box

is indeed protecting the user’s privacy, because the

conversation between the box and the content provider must

be encrypted. The DRM system will not allow Alice to

monitor the conversation (e.g., by letting the encryption be

between Alice and the content provider rather than the box

and the content provider) because she is not allowed to see

the content key.

However, it is possible, with the blind decryption schemes,

to have a protocol between Alice and the box in which

Alice can be assured that her privacy is being protected.

The basics of the protocol are that the box emits a message

it would like to send to the content provider. Because Alice

sits between the box and the rest of the world, Alice can

choose either to send this message on to the content

provider, or to intercept the message. If she intercepts the

message, she can send it back to the box, together with

instructions for modifying the request. The box then

modifies the message it would have sent, using Alice’s

instructions. Alice will be able to verify that the box

incorporated Alice’s R into the message the box sends to

the content provider.

Box Alice Content Prv

msg

requested modifications

modified msg modified msg

7.3.1 Foiling weak blinding
As we discussed in section 7.2, with the blind decryption

scheme, the box could choose blinding functions that are

predictable by the content provider, and thereby allow the

content provider to discover which content Alice was

accessing. This is unavoidable if Alice is merely passively

monitoring the channel.

However, there is a way (with the blind decryption scheme)

for Alice to enforce that there be no such convert channel

between the box and content provider. The simplest

solution (which doesn’t quite work, but we will fix it) is to

have Alice insert an extra level of blinding in the message

to the content provider, and reverse her level of blinding

before passing the result back to the box.

In other words, what we’d like is that the box would

transmit

•	 “Alice”, timestamp, B({K}P)

to the content provider, but the message would be

intercepted by Alice, who would add an extra level of

blinding, say with function B2, and forward to the content

provider:

•	 “Alice”, timestamp, B2(B({K}P))

The returned message from the content provider will be

•	 B2(B(K))

Alice would then unblind with B2’s inverse, and forward

B(K) to the box.

But this would not work. The problem is, the message

between the box and the content provider needs to be

integrity protected; otherwise, anyone could ask for

decryptions, and Alice’s account would be debited. Even

Alice is not trusted (by the content provider) to generate

messages, since the content provider wants to keep

decrypted content keys inside the closed system (only

accessible by the boxes provided by the content provider).

Since the message from the box to the content provider is

integrity protected, Alice cannot modify it without

invalidating the message.

So, the solution is for Alice to interact with the box in

order to influence what it uses for blinding.

The constraints are:

•	 The box cannot trust Alice to do the complete

blinding (because Alice is not allowed to see the

content key).

•	 The signed message to the content provider must

be generated by the box (since only it is trusted by

the content provider to sign messages).

•	 Alice needs to be able to verify that the box is not

attempting to leak information, and that it really is

applying the extra level of blinding she requests.

So the protocol is to allow Alice to ask the box to apply an

extra level of blinding, with a key that she chooses and

specifies to the box. She will be able to verify that her level

of blinding has been applied, because she can compare the

box’s output before and after her blinding function has been

applied. The box will be able to unblind with both

functions; the blinding function it chose, and the one that

Alice chose. The content provider will act as it did before,

though if it were attempting to collude with the box, it will

notice that the box is no longer colluding with a weak

blinding function (since the content provider will not be

able to unblind the message from the box to discover what

key Alice is attempting to access). If there was no collusion

attempt going on between the box and the content provider,

the double blinding will be undetectable by the content

provider.

7.3.1.1 Using RSA keys

The box originally chooses the blinding function R1, and

K
e

emits the signed message: “Alice”, timestamp, R1
e

*

mod n. Alice intercepts this message, chooses a random

R2, and returns the message to the box saying “please add

an extra level of blinding using R2.”

The box then transmits the signed message:

“Alice”, timestamp, R2
e

* R1
e

* K
e

mod n

Alice examines this by dividing by R2
e

mod n, to ensure

that the result is what the box originally transmitted (R1
e

*

K
e

mod n).

If the answer is correct, she forwards the now doubly

blinded message to the content provider

The content provider applies its private key and returns

R2 * R1 * K mod n

Alice lets the message go to the box, which knows both R1

and R2, and can therefore extract K.

This protocol will work, in the sense that the key will be

properly extracted for the content that Alice requested, and

also, that Alice is assured that the box has not leaked to the

content provider the identity of the content she has

requested.

If the content provider had been attempting to collude with

the box by having it use a predictable blinding function, the

content provider will notice that it is unable to unblind what

it received.

7.3.1.2 Using Diffie-Hellman keys

If instead the content provider had a public Diffie-Hellman

key, say g
x

mod p, then the protocol to extract the

encryption key for a piece of content from the metadata for

that content, say g
y

mod p, would be:

•	 The box would choose a blinding number z1,

exponentiate by z1 mod p, and transmit the signed

message:

o	 “Alice”, g
y*z1

mod p

•	 Alice would intercept this, choose her own

blinding number z2, and say to the box

o	 Add blinding using z2

• The box would then transmit the signed message:
y*z1*z2

o	 “Alice”, g mod p

y*z1*z2
•	 Alice raises g mod p to her number’s inverse

exponent and verifies that the result is the original

one transmitted by the box, i.e., g
y*z1

mod p

•	 Alice lets the message go through to the content

provider, and allows the return message to go

through to the box.

7.3.2 Foiling Leaky Signatures

The other method for the box to cheat and collude with the

content provider is by leaking information in the integrity

check. If the integrity check is a secret key shared between

the box and the content provider, there is nothing Alice can

do.

However, if the integrity check is based on the box’s public

key, then Alice can ensure there is no cheating, as long as

she has access to the box’s public key (and she monitors

that signatures that the box emits are correct).

With RSA keys, and with PKCS #1 v1 padding, there is no

problem.

With signatures involving a per-message random number,

such as ElGamal, it is possible (as we showed in section

7.2.2) for the box to leak information.

As with double blinding, Alice can enforce that the box is

not choosing a bad random number x, by allowing Alice to

contribute to the random number. As with double blinding,

the box first presents to Alice the message it would like to

send, including g
x

mod p. Alice then chooses her own

random number y, and tells the box to include “y” in its

signature. Then she tests whether the box modifies g
x

mod p

to instead be g
xy

mod p, and still sends a valid signature.

7.3.3 Foiling Other attacks

7.3.3.1 Timestamp

The box could, in theory, leak some information in the least

significant bits of the timestamp, assuming the timestamp

had sufficient granularity that it could do that while still

having a timestamp that was plausible to Alice. If it was

using a sequence number, then it could not embed

information, since the sequence number would be

constrained to be one bigger than the last request.

In some cases Alice might not be keeping sufficient state to

be able to monitor the sequence numbers, and therefore it

might be more convenient to use a timestamp.

When she is making the request to modify the message, she

can also request a specific timestamp, close enough to the

actual time so it would still be a valid timestamp, but

without the box being able to control the low order bits.

7.3.3.2 Timing

To foil the box leaking information by when it sends

requests, Alice can delay a message between the box and

the content provider by some amount of time before passing

it on.

7.3.3.3 Box-initiated encrypted communication
There are times when the content provider needs to transmit

encrypted information to the box; e.g., authorization secrets. If

this were done by establishing an encrypted channel between the

box and the content provider, then the box can transmit any

information it wants without Alice being able to monitor it. For

example, it could inform the content provider which items Alice

has recently purchased.

There is no reason for the box to be sending encrypted

information to the content provider (other than the blinded

content key, which we discussed in section 7.3.1.) But the content

provider does need to send encrypted authorization secrets to the

box.

Rather than doing this by establishing an encrypted channel,

authorization secrets can be encrypted by the content provider

with the box’s public key, or with a shared secret key between the

content provider and the box. As long as the information from the

box to the content provider is encrypted, there is no way for the

box to leak information to the content provider.

8. Conclusions

We have examined two families of privacy-preserving

DRM schemes, one based on anonymous cash, and the

other based on blind decryption.

The blind decryption scheme is less expensive, because

purchase of decryptions, and decryption requests, can occur

in the same message. In contrast, the anonymous cash

scheme requires a (non-anonymous) communication to

purchase tokens, and a separate anonymous communication

for purchasing decryptions. Also, the anonymous cash

scheme requires an anonymization network.

We provided a way (in either scheme) to provide

differential costs of items using multiple denomination

content provider public keys.

The anonymous cash scheme allows the content provider to

do accounting of how many accesses there are for each item

of content, which might be important if royalties to the

copyright owners of individual items of content are based

on number of accesses. The blind decryption scheme does

not support this.

We examined several variants for supporting additional

authorization. We concluded that authorization encryption

keys worked equally well with anonymous cash or blind

decryption, and leaked the least privacy information. The

authorization claim secret scheme had the advantage that

authorization keys could be changed inexpensively. The

multiple content provider public key scheme has the

privacy disadvantage that it knows the authorization policy

of the content that Alice is decrypting. However, it does

have the advantage that there are no authorization secrets to

steal from authorized users, and revocation of a user’s

authorization in a category is trivial.

To make it practical to have many content provider public

keys, e.g., based on potentially complex authorization

categories, we provided a scheme, inspired by IBE, wherein

the content provider’s Diffie-Hellman key is derived from

the authorization string. This is not an IBE scheme because

Alice never finds out (or needs to find out), the particular

content provider public key. All she needs is the Diffie-

Hellman parameters (g and p), and the string, (say “citizen

of US AND over 21”).

The most likely deployment scenario for this type of

application is where communication is not directly between

the content provider and an open computer controlled by

the user, but rather by a sealed box approved by the content

provider and provided by the content provider to sit in the

user’s house.

We examined the implications of this design. In particular,

we concluded there is no way in any of the schemes, if the

user can only passively monitor all communication to and

from the box, to see if the box is indeed performing the

privacy protection protocol properly, rather than covertly

leaking to the content provider what the user is accessing.

We concluded that only in the blind decryption scenario

would it be possible to enhance the system with a protocol

between the user (a computer controlled by the user) and

the box, so that the box can continue to enforce the

legitimate interests of the content provider, but the user can

enforce that the box not covertly leak privacy-

compromising information to the content provider. We

discussed several ways in which the box could covertly pass

information to the content provider that would be

undetectable to Alice, if she were only passively monitoring

the communication, and we presented methods for Alice to

be assured no such covert channel is going on, by allowing

Alice to influence the messages between the box and the

content provider.

9. Acknowledgements

We would like to thank John Kelsey, Dave Molnar and

Hilarie Orman for their helpful comments and advice.

10. REFERENCES
[1]	 Bender, W., Gruhl, D., Norimoto, N., “Techniques for

data hiding”, Proc. of SPIE, 1995.

[2]	 Boneh, D., Franklin, M., “Identity-Based Encryption

from the Weil Pairing” Advances in Cryptology

Proceedings of CRYPTO 2001.

[3]	 Boneh, D., “Twenty years of attacks on the RSA

cryptosystem”, Notices of the AMS, 1999.

[4]	 Boneh, D., Shaw, J., “Collusion-secure fingerprinting

for digital data”, CRYPTO 1995.

[5]	 Chaum, D., “Blind signatures for Untraceable pay

ments”, Advances in Cryptology - proceedings of

Crypto 82, 1983.

[6]	 Chaum, D., Fiat, A., and Naor, M. “Untraceable

electronic cash”. Proceedings on Advances in

Cryptology (Santa Barbara, California, United States).

1990.

[7]	 Cox., I., Miller, M., Bloom, J., “Digital

Watermarking”, Morgan Kaufmann Publishers Inc.,

2001.

[8]	 Cox, I., Kilian, J., Leighton, T., Shamoon, T., “Secure

Spread Spectrum Watermarking for Multimedia”,

IEEE Transactions on Image Processing, 1997.

[9]	 Craver, S., Memon, N., Yeo, B. L., and Yeung, M. M.

“Resolving rightful ownerships with invisible

watermarking techniques: Limitations, attacks and

implications”. IEEE Journal. Selec. Areas Comm.

1998.

[10] Dingledine, R., Mathewson, N., Syverson, P. “Tor: The

Second-Generation Onion Router”. Usenix Security

Symposium, 2004.

[11] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer

anonymizing network layer. In 9th ACM Conference

on Computer and communication Security, 2002.

[12] Iannella, R., “Digital Rights Management (DRM)

Architectures, D-Lib Magazine, June 2001.

[13] Jonsson, J., Kaliski, B., “Public-Key Cryptography

Standards (PKCS) #1: RSA Cryptography

Specifications Version 2.1”, RFC 3447, February

2003.

[14] Nair, S., Tanenbaum, A., Gheorghe, G., Crispo, B.,

"Enforcing DRM policies across applications",

Proceedings of the 8th ACM workshop on Digital

rights management, 2008.

[15] Perlman, R., “The Ephemerizer: Making Data

Disappear”, Journal of Information System Security,

2005.

[16] Saint-Jean, F., Johnson, A., Boneh, D., Feigenbaum, J.,

"Private Web Search", Proceedings of the 2007 ACM

workshop on Privacy in electronic society", 2007.

[17] Shamir, A., “Identity-Based Cryptosystems and

Signature Schemes”, Advances in Cryptology:

Proceedings of CRYPTO 84.

[18] Shamir, A., “How to Share a Secret”, Communications

of the ACM, v 22 n 11, p 612-613, Nov 1979.

