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ABSTRACT 

A variety of data smoothing techniques exist to address the issue of noise in 

spectroscopic data.  The vast majority, however, require parameter specification by a 

knowledgeable user, which is typically accomplished by trial and error.  In most situations, 

however, optimal parameters represent a compromise between noise reduction and signal 

preservation.  In this work, we demonstrate a non-parametric regression approach to spectral 

smoothing using a spatially adaptive penalized least squares (SAPLS) approach.  An iterative 

optimization procedure is employed that permits gradual flexibility in the smooth fit when 

statistically significant trends based on multiscale statistics assuming white Gaussian noise are 

detected.  With an estimate of the noise level in the spectrum the procedure is fully automatic 

with a specified confidence level for the statistics.  The potential application to the 

heteroscedastic noise case is also demonstrated.  Performance was assessed in simulations 

using several synthetic spectra by traditional error measures as well as the modality of the 

resulting fits.  For the simulated spectra, a best case comparison with the Savitzky-Golay 

smoothing method via an exhaustive parameter search was performed while the SAPLS method 

was assessed for automated application.  The application to several dissimilar experimentally 

obtained Raman spectra is also presented. 

  



INTRODUCTION 

A diversity of techniques exists to address the issue of discriminating signal from noise 

in spectroscopic data.  The now classic Savitzky-Golay (SG) method1, 2 is one of the most popular 

approaches to smoothing and derivative approximation in spectroscopy and a benchmark 

against which novel techniques are often evaluated3-8.  Most methods require parameter 

specification by a skilled practitioner, which is often optimized by a trial and error approach.  

Automation of this and other data pre-treatment techniques is desirable and many efforts 

towards this end have been reported in a diversity of fields.  A brief literature survey relating to 

spectroscopy reveals automated approaches to smoothing7, 9-12, baseline correction13-18, spike 

noise detection19-22, and noise estimation19 among others.  For smoothing applications, intrinsic 

properties of a given smoothing method (e.g. frequency response) impose limits on achievable 

noise rejection even when optimal parameters are applied, and a compromise between noise 

reduction and signal preservation is unavoidable.   

Of principal interest in this work is the application to Raman spectroscopic data, which 

present challenges to smoothing as they can contain a diversity of broad and narrow spectral 

features compounded by baseline issues and often heteroscedastic noise.   While continuous, 

these spectra can exhibit extreme degrees of spatially inhomogeneous smoothness.  Optimal 

filter characteristics in this case depend on local signal dynamics and adaptive, data-driven 

methods can provide superior performance.  There are many approaches to the general non-

parametric regression problem of specifying a smooth function of unknown form to noisy data 

to potentially address this problem.  The literature is vast and increasing, but a sampling of 

techniques includes traditional smoothing splines23-25, adaptive spline variants using local 



smoothing parameters or knot/basis selection26-31, local polynomials32-34, and wavelets35-38.  

While the utility of many of these methods has been established in terms of error measures, 

another measure of efficacy valuable for spectral interpretation is how well true local extremes 

in the data are preserved while spurious extremes are minimized.  Few methods explicitly 

address local extremes or modality and shortcomings of several popular techniques in this 

regard are clear31, 39.  The taut string functional40-43 is one established method to address this 

issue but produces a piecewise constant function in the original formulation.  A smooth 

extension based on solving a constrained optimization problem has been proposed39.  In our 

experience, knot-selection or free-knot spline procedures also perform well in this regard but, 

for the spectral data under consideration at least, the computational requirements can be 

unreasonable (e.g. hours or even longer for a single spectrum).  

In this work, we demonstrate a non-parametric regression approach to smoothing 

based on penalized least squares44-46 with a locally adaptive difference penalty, which we term 

spatially adaptive penalized least-squares (SAPLS).  In brief, the method is an iterative 

optimization procedure balancing data fidelity and roughness until no significant trends, based 

on multiscale statistics assuming white Gaussian noise, are detected.  We assess the capability 

of the method for automated implementation and demonstrate the potential application to the 

heteroscedastic noise case.  While no explicit constraints on local extremes are incorporated, 

the method was found to be quite effective in this regard using one of the statistics evaluated.  

Performance was evaluated using several synthetic spectra with a range of noise levels and 

several experimentally obtained Raman spectra.  As most of the readers will be familiar with 



the Savitzky-Golay smoothing method, a best-case comparison in terms of error was conducted 

for the simulations while the SAPLS method was assessed for unsupervised application. 

 

THEORY 

Penalized Least Squares.  Given an n-point data series y we wish to determine a smooth series 

z that balances two competing goals of data fidelity and roughness, which are defined here in 

the traditional least-squares sense and by d-order differences between adjacent data points, 

respectively.  Explicitly, for first-order differences, a typical cost function (Q) of the two goals is 

expressed in Eq. 1 with a flexible penalty (λ) placed on the roughness measure. 

 Eq. 1 

The magnitude of the roughness penalty λ regulates the trade-off between smoothness 

and fit to the data.  The objective of penalized least squares is to determine z that minimizes Q.  

Differences of any order may be used; however, increasing order places a limit on the smooth 

approximation.  The limiting solution to z as λ gets very large approaches a polynomial of order 

d – 1.  Penalized least squares smoothing with this approach has been around for some time1 

and is more commonly known as Whittaker/Whittaker-Henderson smoothing or the Hodrick-

Prescott filter depending on the order of differences used.   

Following Eilers45, minimization of the cost function Q is straightforward if matrix 

notation is introduced, with Eq. 1 restated as Eq. 2.  The vector of partial derivatives is given in 

Eq. 3, and minimization of this equation is the least squares solution to the linear system of 

equations in Eq. 4. 



 Eq. 2 

 Eq. 3 

 Eq. 4 

where D is the d-order differencing matrix, |…|2 indicates the vector sum of squares, I is the 

identity matrix, and T represents the matrix transpose.  This smoothing method has a number 

of useful attributes including no boundary constraints, ability to handle missing values and 

adaptability to non-uniform data point spacing.  Taking advantage of the sparsity of the system, 

the computations are very efficient even for large data sets and efficient cross-validation 

methods can be used to optimize λ.  A shortcoming that this technique shares with the SG 

method, unfortunately, is that the optimal λ in most cases represents a compromise between 

noise-reduction and fidelity.  This work represents a method to overcome this limitation by the 

introduction of a locally varying difference penalty, λ j (for j = 1 to n – d).  Introduced into the 

cost function as a diagonal matrix Λ this yields Eq. 5 and the linear system of equations to solve 

becomes Eq. 6. 

 Eq. 5 

 Eq. 6 

Determining “optimal” diagonal elements (λ j) of Λ depends on the nature of the 

underlying model in question.  The approach chosen here, which is presented in the next 

section, is cast in the framework of non-parametric regression based on confidence regions or 

sets assuming white Gaussian noise.  In addition, a simple extension to the case of Poisson 

noise is also discussed. 



An alternative approach to adaptive smoothing via penalized least squares is to 

introduce a variable weight parameter directly on the data points themselves (i.e. the first term 

in Eq. 1) while fixing the difference penalty.  Spatially adaptive weighting in this manner was 

also investigated; however, in nearly all cases examined here the results using adaptive 

difference penalties were comparable or significantly better than adaptive weighting. 

It serves to note here the similarity between Eq. 1 and the typical function minimized in 

the case of smoothing splines.  A difference penalty of order d can be conceptually compared 

with penalizing the d-order derivative of z.  Smoothing splines are continuous piecewise 

polynomial curves with a flexible constraint (smoothing parameter) placed on the derivative.  

Cubic smoothing splines, for example, are piecewise cubic polynomials with constraint placed 

on the integrated square of the second derivative.  In contrast, polynomial basis sets are not 

utilized in penalized least squares.  However, a comparison of the fit obtained by minimizing Eq. 

1 with a global second-order difference penalty yields a very similar solution to a cubic 

smoothing spline given that the smoothing parameters are suitably chosen. 

Multiscale Statistics.  The optimization procedure chosen here is an iterative algorithm based 

on the analysis of residuals and, as such, requires a stochastic model for statistical analysis, 

which we assume as Eq. 7. 

 Eq. 7 

where ε is taken to be standard Gaussian white noise with mean zero and standard deviation σ.   

In this work, two multiscale statistics aimed at detecting and localizing departures from 

Gaussian white noise in the residuals were evaluated.  While thorough treatments of these 

statistics are beyond the current scope, concise presentations are useful to illustrate the 



multiscale methodology and demonstrate how the statistics were used in the optimization 

procedure. 

The first statistic is a nonparametric confidence region for z based on normalized sums 

of residuals over intervals31, 43, 47, which, for a specific interval, is defined in Eq. 8: 

 Eq. 8 

where g is any function, I denotes an interval, and |I | denotes the number of points in the 

interval I.  With σ known (or estimated), a confidence region for z (An) is defined in Eq. 9: 

 Eq. 9 

where In denotes a family of intervals, and τn is specified based on a desired confidence level 

(e.g. α = 0.05 for 95%) of the region.   

Evaluation of this metric over all possible intervals, an O(n2) operation, is 

computationally expensive for even moderately sized data sets and Davies et al.47 propose a 

parameterized multiresolution scheme that provides interval families of O(n) that arbitrarily 

approach the case of all intervals.   A dyadic interval family analogous to that for the Haar 

wavelet consisting of all one point intervals (I = 1,2,3...), two point intervals (I = [1,2],[3,4],...), 

four point intervals (I = [1,2,3,4],[5,6,7,8],...),  and so forth is suggested.  In our experience, this 

interval family is adequate if the signal of interest is sufficiently sampled but denser schemes 

are typically necessary for sparsely sampled signals (e.g. Raman spectra).  Critical τn values are 

determined by simulations and depend on both the interval scheme and number of data points.  

However, exact values for τn are not imperative in practice and the authors recommend values 

from 2.5 to 3.0, which approximately correspond to confidence levels in the 95% to 99% range.  



In this work, simulations were carried out using a range of τn values from 2.0 to 2.75.  To avoid 

concern about selection of a sufficiently dense interval family, the family of all possible intervals 

was used for the results presented here.  Note that similar results to those reported for the 

simulated data were obtained with much coarser interval schemes.  For conciseness we 

designate this statistic in the remainder of this article as MSCR (MultiScale Confidence Region). 

 The second metric evaluated is a multiscale trend detection test statistic based on the 

supremum norm of standardized kernel estimators over different locations and bandwidths48.  

We forego a mathematical treatment of this statistic as it is comparatively more complex and 

refer interested readers to the literature.  The proposed statistic tests a non-parametric 

qualitative hypothesis, such as monotonicity or concavity, against a general smooth alternative 

and identifies intervals where the null hypothesis is rejected at a specified confidence level.  

Several tests for qualitative hypotheses are derived in the cited work48 and their utility was 

evaluated as it pertained to this application.  We found the proposed test with a null hypothesis 

of monotonicity provided the best performance in the current context; however, this was partly 

based on subjective valuations of the resulting curves.  The test signal, representing the kernel 

function in this hypothesis, is presented in the top panel of Figure 1.  The one-sided test based 

on this function is designed to test the qualitative hypothesis of a strictly decreasing function, 

while the two-sided version, which we employ here, tests for a constant function.  It is 

important to note that this qualitative hypothesis does not imply a test of .  Instead, 

the statistic determines minimal intervals over which the null hypothesis can be rejected, i.e., 

where significantly increasing or decreasing trends are observed in the data at the specified 

confidence level. 



 As with the first statistic, estimated critical values (κn,α) corresponding to (1-α) quantiles 

depend on the number of data points and are determined by Monte Carlo simulation.  Exact 

values are not essential in practice and reasonable estimates can be used.  Simulations covering 

n = 100 to 2000 gave 0.50-, 0.90-, and 0.95-quantile ranges of 1.15 to 1.29, 1.95 to 2.01 and 

2.21 to 2.24, respectively.  In the synthetic spectrum simulations values from 1 to 2 were 

investigated.  For residual evaluation purposes, intervals with significant trends were 

accumulated over bandwidth and location.  A graphical example of the accumulated trends (κ = 

2) for a synthetic data example is presented in the bottom panel of Figure 1.  The synthetic 

“spectrum” is composed of step functions (X = 50 and 100), linearly increasing/decreasing 

segments (left endpoints at X = 100, 200 and 325 with widths of 10, 25 and 50 points, 

respectively) and a Gaussian peak (centered at 450, σ = 10) with additive white Gaussian noise 

(σ = 1).  Regions highlighted in grey correspond to points falling within intervals identified with 

significantly increasing or decreasing trends.  No trends are detected within the flat portions of 

the data set at ± 10, which are clearly anomalous considering the white Gaussian noise model.  

While not representative of a residual, per se, the example clearly demonstrates the utility of 

the statistic and highlights a principal distinction compared to the MSCR statistic, where all 

intervals deviating significantly from the Gaussian noise model are identified (i.e. testing the 

 hypthesis).  For conciseness, we will designate this statistic in the remainder of this 

article as MSQH (MultiScale Qualitative Hypothesis). 

Optimization Algorithm.  The proposed optimization procedure is an iterative approach 

motivated by Davies et al.31, 41.  Essentially, the residuals of the current fit are evaluated with 

the chosen statistic and all data points are identified that lie within intervals failing the test 



statistic (i.e. where the null hypothesis is rejected).  The fit is updated by adjusting the 

difference penalties (or weights) corresponding to these sites and the process is repeated.  

While adaptive weight adjustments on the least squares term in Eq. 1 were investigated, in 

nearly every case examined here the results using adaptive difference penalties were 

comparable or significantly better.  For the remainder of this work, therefore, we will restrict 

results and discussion to the adaptive difference penalty method.  The optimization routine 

consists of the following steps: 

        1) Initialize all diagonal elements of Λ to a large value (maximal smoothing) and compute z.  

        2) Evaluate the multiscale statistic (with a specified critical value) and determine data 

points which lie in intervals failing the test statistic. 

        3) Relax difference penalties associated with data points found in (2) by scaling (i.e. λ j,new = 

q * λ j ; 0 < q < 1). 

        4) Compute g with updated Λ and go to (2) until no intervals fail test statistic. 

Several notes regarding these steps are in order.  The initial value of the diagonal elements of Λ 

is not critical given that it is sufficiently large but different starting values can give rise to slight 

disparities in the final fit.  We use the default value of 108.  Updating the fit in step 3 requires a 

mapping of the data points (yi) to difference penalties (λj).  We accomplish this in a 

straightforward manner by updating all λj that include yi as a term, which results in d +1 

difference penalties associated with each data point (less for points at the edge).  The scaling 

factor in step 3 is also flexible but too large a value will needlessly increase computation time, 

while too small a value can lead to over-fitting.  We use q = 0.5 as the default value.                

 



METHODS 

Simulated Spectra.  Simulations were carried out using three synthetic test spectra with 

pseudo-random noise added.  For 2 of the test spectra, simulations were conducted with scaled 

Gaussian white noise added at 4 different levels with 20 replications at each level.  Artificial 

noise was added based on the Poisson model for the 3rd test spectrum, which was replicated 50 

times.  The 3 test spectra are presented in Figure 2 overlaid on noise perturbed examples at the 

highest noise level considered.  Test spectrum 1 is a summation of 12 Gaussian bands of varying 

location and width that were scaled such that each band maximum is approximately 1.  

Simulations were run with additive white Gaussian noise at σ = 1/8 (pictured), 1/16, 1/32, and 

1/64.  Note that for fully resolved bands in the spectrum this corresponds to signal-to-noise 

ratios (SNR) of 8, 16, 32, and 64.  Test spectrum 2 consisted of 26 Lorentzian bands with widths 

(FWHM) ranging from approximately 5 to 11 points covering a wide range of scales.  This 

example was intended to be more representative of a real spectrum and was, in fact, generated 

by fitting Lorentzians to a Raman spectrum of sodium citrate in the 500 cm-1 to 1700 cm-1 

Raman shift range.  The spectrum was scaled to unit maximum and simulations were run with 

additive white Gaussian noise at σ = 1/32 (pictured), 1/64, 1/128, and 1/256.  Direct 

correspondence to SNR is not straightforward due to the broad range of band intensities.  

However, for the example shown in Figure 2 with σ = 1/32, the SNR ranges from 32 to 1.3, 

corresponding to the most and least intense bands (centered at x = ~0.31 and  ~0.65, 

respectively).  Test spectrum 3 was composed of a repeating series of uniform width Gaussian 

bands (FWHM of approximately 7 data points) at 4 scales (peak amplitudes of approximately 

5320, 2660, 1330 and 665) superimposed on a broad Gaussian background (peak amplitude of 



approximately 40000, minimum at right edge of approximately 1150).  Simulations were run 

with additive noise based on the Poisson model (with mean = yi,true) and repeated 50 times.  The 

example in Figure 2 is shown with the background removed to facilitate noise evaluation.  The 

inset in the upper right corner of the figure shows the actual noise-free spectrum.  The inset in 

the upper right corner of the figure shows the actual noise-free spectrum. 

Raman Spectra.  Raman spectra were obtained on a Renishaw S1000 micro-Raman 

spectrometer (Renishaw, Gloucestershire, UK) with excitation at either 632.8 nm or 785 nm.  

The spectrometer consists of a Leica DMLM microscope coupled to a 250 mm focal length 

imaging spectrograph.  The detector is a proprietary deep depletion, thermoelectrically cooled 

(-70° C) CCD.  Holographically ruled 1800 and 1200 groove/mm gratings were used for 632.8 nm 

and 785 nm excitation, respectively, and a slit width of 50 µm was used for all measurements.  

Raman spectra were obtained from samples of naphthalene (Fluka, purum grade, ≥ 98%) with 

785 nm excitation and cyclohexane (Sigma-Aldrich, CHROMASOLV, ≥ 99.7%) with 632.8 nm 

excitation in glass vials using a 10X microscope objective.  Raman spectra of Bacillus cereus 

ATCC 10987 spores were obtained by evaporative deposition of washed and resuspended spore 

preparations49 on an aluminum substrate using a 50X objective with 785 nm excitation.    

Noise Estimation.  As noted above the multiscale statistics require a noise estimate for 

evaluation.  We’ve encountered several similar techniques in common use for estimating 

Gaussian noise based on various differencing schemes that, in general, give comparable results 

in simulations but are all upward biased.  For Gaussian noise estimates we use the value 

defined in the following equation50: 



 Eq. 10  

It is worth noting, however, that the method proposed by Turner et al.19 using 2nd order 

difference spectra followed by filtering to remove spike and/or signal artifacts showed the 

minimum bias from a brief survey of available methods with synthetic spectra.  For the 

simulation with Poisson noise, a simple approach was chosen where the heteroscedastic noise 

was approximated as Gaussian with σi equal to the square-root of a five point moving average 

filter over the data.  Residuals were scaled point-by-point by the corresponding σi estimates to 

approximate a homoscedastic white Gaussian noise model with σ = 1 for statistical analysis.  

Note that the Gaussian approximation to the Poisson distribution is “satisfactory” for count 

rates ≥ ~ 40 but not recommended below this value. 

Comparison Metrics.  For the synthetic noise simulations two metrics were chosen to compare 

the efficacy of the smoothing techniques evaluated here.  Note that while differencing based 

noise estimators are useful for raw signals (assuming independent noise between adjacent 

points) they can greatly underestimate noise levels after smoothing as noise in neighboring 

points typically becomes significantly correlated.  The root mean square error (RMSE) was used 

to quantify differences between the true and estimated (smoothed) signals.  To facilitate 

comparison these values are reported as relative root mean square errors (RRMSE), where 

RRMSE is defined here as the ratio of the RMSE of the added noise (which is approximately the 

noise standard deviation in the homoscedastic case) to the RMSE of the smoothed signal.  

Considering the RMSE or similar error estimates alone can conceal marked differences when 



comparing smoothing algorithms.  A second measure of efficacy assessed was the number of 

local extremes (minima/maxima) in the estimated signals compared to the true value. 

For comparison with SG filters in the simulations we chose not to rely on automated 

data-driven parameter selection criteria (e.g. GOF metrics, generalized cross-validation,…) and 

instead chose the optimal estimate based on the minimum RMSE from an exhaustive grid 

search covering polynomial orders from 0 (i.e. moving average) to 3 and window widths from 

the order dependent minimum to 51 points.  Optimal SG filter parameters were selected 

independently for each set of replicate synthetic spectra at a given noise level. 

Data Analysis.  All algorithms were implemented in Matlab 7 (Release 2008b, The Mathworks, 

Inc., Natick, MA) and all computations in this work were performed using this software.  The 

Matlab implementation of the MSQH statistic was downloaded from the author’s website.  The 

computation platform was a PC running Windows XP with an Intel Core 2 Duo 2.66 GHz PC and 

3GB of ram. 

 

RESULTS & DISCUSSION 

Simulated Spectra.  The compiled RRMSE and local extreme data for the 3 synthetic spectrum 

simulations is presented in Tables 1, 2 and 3.  There are several noteworthy trends within the 

tabulated data.  The RMSE optimal SG filters were, in all cases, 2nd order polynomials with 

window width varying between 5 and 13 points.  As would be expected, window width was 

directly correlated to the noise level in the spectrum.  The SAPLS signal estimates using either 

multiscale test statistic exhibit far fewer local extremes compared with the optimal SG filters.  



However, this improvement is not accompanied by considerable RMSE improvements.  In fact, 

the RMSE optimal SG filter outperforms the SAPLS estimates in several cases, although it 

depends on the particular critical value chosen for each test statistic.  Furthermore, the SAPLS 

estimates using either test statistic exhibit greater variability for replicate runs versus the SG 

filters.  This is not surprising given that the SG filter parameters were fixed for a given 

permutation of test spectrum and noise level.  It serves to note that, to a point, lowering the 

critical values below those reported in the table gave increasingly better RMSEs for the 

synthetic spectra considered here.  However, in addition to a marked increase in variance 

between replicates and an overall number of local extremes, examination of the resulting 

estimates showed a progressively more severe qualitative deterioration manifested primarily as 

sharp, highly localized anomalies. 

 Considering the first test spectrum (see Table 1), the performance of the SAPLS 

algorithm using the two multiscale test statistics is comparable in terms of RMSEs but an 

increasing trend in the number of local extremes is evident for the MSCR based implementation 

as the noise level falls.  This progression becomes particularly acute with the second test 

spectrum (see Table 2) and adjusting the critical threshold value for this statistic (τn) does little 

to alleviate the effect.  It should be noted that this drawback is not an inherent limitation of the 

statistic but, instead, how it is utilized in the optimization procedure.  Presented in Figure 3 is 

an example of test spectrum 1 with additive Gaussian noise (σ = 1/8) and the resulting 

smoothed data using the SAPLS algorithm with each multiscale statistic and the RMSE optimal 

SG filter.  A dramatic improvement in noise rejection is evidenced in both SAPLS estimates 

while signal integrity is preserved to a great extent.  The sharp peaks are attenuated to some 



degree in all three smoothed spectra, but slightly more in the SAPLS smoothed signals.  From a 

qualitative evaluation, however, one might expect a significant improvement in RMSE for the 

SAPLS estimates, which is not observed.  This result becomes clear when examining the 

residuals of the smoothed versus true and noise perturbed signals, which are presented in 

Figure 4.  The residuals between the true and smoothed signals for both SAPLS 

implementations exhibit significantly more deviation than the SG filter result for the two groups 

of moderately narrow bands but similar errors for the sharpest group of bands.  While the 

SAPLS estimates excel at noise rejection for the broad bands, the low frequency deviations from 

the true signal contribute significantly to the RMSE.  The residuals between the smoothed and 

noise perturbed signals of the SAPLS smoothed signals, however, appear quite random with 

some slightly discernible trends.  In view of the noise level (shown at ± 2σ in Figure 4) it is 

certainly not simple to establish the significance of these features. 

This highlights one aspect of the iterative optimization procedure used here.  The SAPLS 

estimate gradually develops greater local flexibility at each pass but stops when the residuals 

just fall within “confidence bounds” at a specified level.  It is easy to recognize that this can 

result in residuals with numerous latent trends within the Gaussian noise model that lie at the 

fringe of statistical significance.  In our experience this mainly impacts sparsely sampled 

features at low signal-to-noise level.  For test spectrum 2 (Table 2) the number of local 

extremes at the highest noise level for the SAPLS-MSQH estimates is well below the true value 

for the spectrum.  The tabulated data is misleading for the MSCR method in this column due to 

the consistent introduction of artificial local extremes near the most intense bands.  At this 

noise level, exactly half of the peaks present in the spectrum were at SNRs between 1.3 than 



2.5.  Many of these peaks were consistently missed in the estimates at the σ = 1/32 level and 

several at the σ = 1/64 level using either metric.  The MSCR method was slightly better in RMSE 

terms for this spectrum at all noise levels but at the expense of introducing artificial extremes in 

the estimate.  The results on test spectrum 3 (Table 3) were comparable between the two 

multiscale statistics.  The tabulated data for local extremes is, again, slightly misleading for the 

MSCR method.  For either statistic, the local minima/maxima associated with the weak bands 

centered at x ≈ 0.44 and x ≈ 0.66 (refer to Figure 2) were consistently missed.  However, these 

features were easily identifiable in simple difference estimates of the first derivative. 

Raman Spectra.  While the simulations above were designed to assess the performance of the 

SAPLS algorithm on synthetic spectra representing a range of characteristics and noise levels, 

real spectra better serve to demonstrate the effectiveness as well as potential limitations of the 

method.  In simulation, the RMSE optimal SG filters were selected to provide a best case 

comparison.  Obviously, this is not possible in practice and parameters are typically optimized 

by the investigator.  However, procedures for automatically selecting filter parameters have 

been offered.  A recent method proposed involves the iterative application of a Savitzky-Golay 

filter (also known as a Kolmogorov-Zurbenko filter) until stopping criteria based on the  

statistic is reached11.  The authors suggest zero-order, three point (i.e. moving average) or 

second-order, five point filters and a threshold for the stopping criteria as the number of data 

points.  The  statistic used is 

 Eq. 12  



where  is the number of points,  are the original data points,  are the smoothed/filtered 

points, and  is the noise level, which must be estimated if not known, of the original data.  We 

used this method was to generate filtered data in an unsupervised manner for comparison. 

For the MSQH statistic the results in Tables 1, 2 and 3 suggest using κ = 1 or even less (α 

≈ 0.5) may be advantageous as it afforded considerable RMSE improvements without 

introducing a significant number of spurious extremes.  For real spectra, however, this is not 

typically the case.  In our experience, a κ value of 2 is effective for approximating data while 

minimizing spurious extremes given that the noise is effectively approximated as Gaussian.  For 

all the Raman spectra here this value was used.  For the MSCR statistic, a value of τ = 2.5 was 

used for real data.   

Presented in Figure 5, panel A is a Raman spectrum of cyclohexane with fairly poor SNR 

collected with 632.8 nm excitation and consisting of 3990 points.  Note that the spectrum 

quality was deliberately diminished by attenuating the excitation laser power for the purpose of 

evaluating the smoothing algorithms.  This noise level, however, is not atypical for many 

samples.  Figure 5, panel B shows the resulting smoothed signals, with the strongest peaks 

clipped to facilitate comparison, from the SAPLS algorithm employing each multiscale statistic 

as well as an automated SG filter.  The 2nd order, 5 point iterative SG filter provided a better 

result in our estimation for this spectrum and that result is shown here.  The  stopping 

criterion was exceeded on the eighth iteration for the SG filter.  Panel C of Figure 5 show the 

residuals with the estimated noise level denoted as dashed-lines at ± 2σn , where Equation 10 

was used for approximation.  As evident in the raw spectrum and residuals, the noise is not 

homoscedastic and differs roughly by a factor of 2 in the baseline region at opposing ends of 



the spectrum.  The iterative SG filter provides moderate noise reduction but significant 

attenuation of the 801 cm-1 band is clearly observed in the residuals (see Panel C).  The SAPLS-

MSQH estimate exhibits excellent noise rejection in the lower wavenumber half of the 

spectrum, but various sharp anomalies, although minor, are observed in the higher 

wavenumber region, particularly above 3000 cm-1.  In this region the noise level is nearly twice 

the homoscedastic estimate provided by Equation 10 and emphasizes the necessity for 

accurate noise estimation.  The SAPLS-MSCR method exhibits inconsistent noise rejection.  The 

noise reduction is very similar to the SG filter near the 801 cm-1 band but improves, to a degree, 

at data points distant from this.  This highlights a considerable shortcoming of the optimization 

procedure using this statistic.  The influence of the strong 801 cm-1 band on the two SAPLS 

methods can be assessed in Panel D of Figure 5, which shows the difference between the 

estimates of the full spectrum and an abridged version with a 50 point segment encompassing 

the 801 cm-1 band removed from the spectrum (grey region).  Care was taken to ensure a 

continuous baseline transition between the joined segments and the noise estimate was 

effectively identical between the two spectra.  In contrast to panel C, the estimated noise level 

is drawn at ± σn.  The impact of this band on the signal estimate in neighboring regions is 

substantial and extends over a very wide window with the MSCR method.  In contrast, 

removing the 801 cm-1 band has significantly less impact on the MSQH estimate.  Considering 

the noise level, the disparities are minor and, with the exception of some slight peak intensity 

differences, are primarily associated with the shape of the baseline.  The inconsistent results 

from the MSCR statistic, at least as utilized in the SAPLS optimization procedure, preclude 

implementation in an unsupervised manner for Raman spectra.  This is unfortunate because 



similar results to those obtained in the simulations were found using much coarser (and 

consequently, much faster) interval schemes.  The problems encountered, however, were 

largely manifest in relation to relatively sharp, intense bands and this method can perform 

quite effectively for other types of spectral data, which has been demonstrated previously31, 41.  

For the remaining examples we restrict the results to those from the SAPLS algorithm using the 

MSQH statistic. 

For unsupervised application, effectiveness on signals of higher S/N is also a necessity.  

Presented in Figure 6 is an example of the SAPLS (MSQH) estimate for a 785 nm Raman 

spectrum of naphthalene.  The residuals (top panel) exhibit no unusual deviations and the 

expanded view of the baseline region (bottom panel) reveals excellent noise rejection while 

preserving weak bands.  For this spectrum, an iterative second order, five point SG filter 

exceeds the stopping criteria after 2 iterations with obvious, though minor, distortion of the 

prominent bands but little noise reduction. 

Finally, we present one more example in Figure 7 to illustrate the potential utility of the 

SAPLS method in the heteroscedastic noise case.  Estimating heteroscedastic noise is not 

straightforward and the simple procedure used in the simulations for a Poisson model would 

typically not be useful in practice.  While we are still evaluating robust methods for variance 

function estimation, here we use a smooth cubic spline fit to the piecewise estimate suggested 

by Turner, et. al.19  The details of this procedure are beyond the current scope and the 

heteroscedastic estimation procedure is not automated.  Presented in the top panel of Figure 7 

is a background subtracted (manually) 785 nm Raman spectrum of Bacillus cereus spores 

deposited on an aluminum substrate with the raw spectrum shown in the inset.   The noise 



level, which is dominated by shot noise associated with autofluorescence, varies by 

approximately an order of magnitude across the spectrum.  Under a homoscedastic noise 

assumption and estimate, the SAPLS result is quite coarse in the high background region where 

noise is under estimated and overly smooth in the low background regions where noise is over 

estimated (data not shown).  The bottom panel of Figure 7 shows the SAPLS (MSQH) estimate 

of the spectrum overlaid on the baseline corrected spectrum using the heteroscedastic 

estimate.  The same baseline was subtracted from the raw and smoothed data.  All clearly 

discernible features in the spectrum have been preserved while affording excellent noise 

rejection across the spectrum.  A similar procedure alleviates the over fitting that is clearly 

noticeable in the high Raman shift region (> 3000 cm-1) for the MSQH estimate in the 

cyclohexane example presented in panel 2 of Figure 5.  In the naphthalene example (Figure 6), 

the estimate is very similar under either method of noise estimation. 

Limitations.  As implemented, the method proposed here requires that noise is normally 

distributed with zero mean.  With properly scaled residuals, the potential to extend this to the 

heteroscedastic case was also demonstrated assuming that the underlying process can be 

approximated by a Gaussian model (e.g. Poisson noise of sufficient counts).  Deviations from 

these assumptions, however, such as spike noise or detector defects, have not been addressed 

here.  There have been several methods proposed for automated spike noise detection, 

however, and these could be used to augment this method19-22.  In addition, implementations 

using non-parametric multiscale statistics (e.g. signed ranks51, 52) are feasible, where explicit 

knowledge of the noise distribution is not required. 



A practical shortcoming to the SAPLS algorithm is computation time.  The MSQH statistic 

is an O(n2) operation, and becomes prohibitively expensive as the number of data points 

increases.  Computation time is a function of both the number of data points and the number 

of iterations required before convergence, which is largely dependent on signal dynamics.  For 

reference, the real Raman spectra presented in Figures 5 through 7 required up to ~ 10 seconds 

to complete on the PC platform used in this work.  One notable advantage of the MSCR statistic 

is the potential use of relatively coarse multiscale interval scheme, which dramatically reduces 

computational burden.  

This algorithm is not intended or appropriate as a general preprocessing smoothing 

technique.  Computational considerations aside, the adaptive nature of the proposed algorithm 

(and adaptive smoothing in general) renders it unsuitable for some post processing procedures, 

e.g. multivariate calibration.  This is not the case for conventional implementations of other 

popular smoothing methods (e.g. Savitzky-Golay, wavelets,…), which are linear transforms and 

have been used quite successfully in this realm.    

 

CONCLUSIONS 

A non-parametric regression approach to spectral smoothing using an iteratively 

optimized spatially adaptive penalized least squares approach was demonstrated.  Given an 

estimate of the noise level in the spectrum the procedure is fully automated with a specified 

confidence level for the statistics.  Existing automated methods for estimating white Gaussian 

noise proved sufficient in the homoscedastic case.  The potential extension of this method to 

heteroscedastic noise case was also demonstrated given that the underlying noise model could 



be approximated as a locally varying Gaussian process.  However, robust variance function 

estimators suitable for unsupervised application are still under evaluation.  In simulation, the 

method offered comparable RMSE measures to best case Savitzky-Golay smoothing.  The 

effectiveness of the method on several dissimilar real Raman spectra was also presented.  The 

modality of the resulting SAPLS smoothed signals using a multiscale qualitative hypothesis 

metric were in very good agreement to the true underlying signal with the notable exception of 

very low SNR features.  This is in stark contrast to many commonly used smoothing approaches 

and could be very useful in automated spectral interpretation applications. 
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FIGURE CAPTIONS 

Figure 1.  Top panel: The test signal used in the multiscale qualitative hypothesis (MSQH) 
statistic.  Bottom panel:  Synthetic data set (dashed line) with additive white Gaussian noise (σ 
= 1) and the accumulated intervals (grey highlighted regions) exhibiting significantly 
increasing/decreasing trends identified with the MSQH with κ = 2.  Note that σ was explicitly 
specified in this example and not estimated.  
  
Figure 2.  The three synthetic test spectra used in the simulations overlaid on noise perturbed 
examples.  For spectra 1 and 2, the examples represent noise at the highest level considered.  
The example for spectrum 3, with additive noise based on the Poisson distribution,  is shown 
with the background subtracted.  The true spectrum is shown in the inset in the upper right 
corner. 
 
Figure 3.  Example of the smoothed signals from the SAPLS method using both test statistics 
and the RMSE optimal SG filter (2nd order, 13 point window).  Values of τ and κ used were 2.5 
and 2 for the MSCR and MSQH statistics, respectively.   The bottom trace shows the true signal 
overlaid on the noise perturbed example used. 
 
Figure 4.  Residual between the smoothed and both the true signal (top trace in each panel) 

and noise perturbed signal (bottom trace in each panel) for the example shown in Figure 3.  

Estimated noise level is designated by dashed lines in the bottom trace of each panel at ± 2σ. 

Figure 5.  Panel A: Raw 632.8 nm Raman spectrum of cyclohexane comprised of 3990 points.  
Panel B: Comparison of smoothed signals generated with the SAPLS method using the MSCR (τ 
= 2.5) and MSQH (κ = 2) statistics and an automated SG filter.  Panel C:  Residual between the 
smoothed signals (see Panel B) and the raw spectrum.  Estimated homoscedastic noise level is 
designated by dashed lines at ± 2σ.  Panel D: Difference between the resulting SAPLS estimates 
from both statistics with and without the 801 cm-1 band present in the spectrum.  Estimated 
homoscedastic noise level is designated by dashed lines at ± 1σ. 
 
Figure 6.  SAPLS smoothed 785 nm Raman spectrum of naphthalene using the MSQH (κ = 2) 
statistic and a homoscedastic noise estimate.  The top panel shows the full intensity scale and 
the bottom panel highlights the baseline. 
 
Figure 7.  Top panel: Raw (inset) and baseline corrected 785 nm Raman spectrum of Bacillus 
cereus spores.  Bottom panel: SAPLS smoothed result using the MSQH (κ = 2) statistic and a 
heteroscedastic noise estimate.  The main figure is an expanded view of the fingerprint region 
while the inset shows the –CH region. 
  



Table 1. Comparison of results for the SAPLS methods using both test statistics at several 
confidence levels and the RMSE optimal SG filter for synthetic test spectrum 1 at various noise 
levels. 
 

Method 
Critical 
Value 

Figure-of-
Merit 

Noise Level (σ)a 

     1/8      1/16      1/32      1/64 

MSQH 

κ = 1.0 
RRMSEb 2.49 (0.19) 2.14 (0.15) 2.02 (0.16) 1.72 (0.09) 

Extremesc,d 24 [22,26] 23 [23,27] 25 [24,28] 25 [24,28] 

κ = 1.5 
RRMSE 2.25 (0.14) 1.97 (0.14) 1.80 (0.13) 1.53 (0.10) 

Extremes 23 [21,26] 23 [23,26] 25 [23,29] 25 [23,29] 

κ = 2.0 
RRMSE 2.07 (0.15) 1.84 (0.14) 1.70 (0.12) 1.40 (0.07) 

Extremes 23 [21,25] 23 [23,26] 25 [23,27] 25 [23,26] 

MSCR 

τ = 2.0 
RRMSE 2.25 (0.14) 1.91 (0.13) 1.82 (0.14) 1.62 (0.11) 

Extremes 26 [21,28] 32 [27,39] 41 [34,47] 46 [39,56] 

τ = 2.5 
RRMSE 2.04 (0.12) 1.74 (0.12) 1.62 (0.11) 1.43 (0.08) 

Extremes 24 [21,27] 30.5 [26,36] 37.5 [34,43] 45 [40,54] 

τ = 2.75 
RRMSE 1.95 (0.12) 1.66 (0.10) 1.55 (0.08) 1.37 (0.06) 

Extremes 23 [21,26] 30 [24,33] 37.5 [34,42] 43 [39,52] 

Savitzky- 
Golay 

N/A 

RRMSE 2.15 (0.09) 1.86 (0.06) 1.69 (0.06) 1.55 (0.04) 

Extremes 
359.5 
[310,390] 

341 
[309,385] 

321.5 
[306,348] 

246 
[227,267] 

Order 2 2 2 2 

Width 13 9 7 7 

a) Data compiled from 20 replications at each noise level. 
b) Table entries correspond to mean (std. dev.). 
c) Table entries correspond to median [min,max]. 
d) The noise free spectrum is characterized by 23 local extremes enumerated here by sign changes in 

the first difference spectrum. 

  

  



Table 2. Comparison of results for the SAPLS methods using both test statistics at several 
confidence levels and the RMSE optimal SG filter for synthetic test spectrum 2 at various noise 
levels. 
 

Method 
Critical 
Value 

Figure-of-
Merit 

Noise Level (σ)a 

     1/32      1/64      1/128      1/256 

MSQH 

κ = 1.0 
RRMSEb 1.93 (0.11) 1.66 (0.10) 1.48 (0.08) 1.27 (0.07) 

Extremesc,d 33 [27,41] 45 [39,52] 55.5 [49,60] 56 [51,61] 

κ = 1.5 
RRMSE 1.78 (0.09) 1.52 (0.08) 1.35 (0.06) 1.17 (0.07) 

Extremes 29 [25,37] 41 [35,49] 54 [49,56] 55 [51,59] 

κ = 2.0 
RRMSE 1.66 (0.08) 1.39 (0.08) 1.25 (0.05) 1.08 (0.05) 

Extremes 27 [25,33] 39 [33,45] 52 [43,54] 54 [52,59] 

MSCR 

τ = 2.0 
RRMSE 1.99 (0.10) 1.71 (0.07) 1.53 (0.07) 1.35 (0.06) 

Extremes 55 [49,69] 99 [90,118] 
134 
[116,159] 

162.5 
[144,184] 

τ = 2.5 
RRMSE 1.86 (0.10) 1.60 (0.07) 1.41 (0.06) 1.26 (0.06) 

Extremes 47 [42,61] 91.5 [74,108] 
125 
[110,147] 

155 [140,166] 

τ = 2.75 
RRMSE 1.80 (0.09) 1.54 (0.07) 1.37 (0.06) 1.22 (0.05) 

Extremes 46 [40,57] 86 [74,105] 
121 
[106,139] 

153 [134,166] 

Savitzky- 
Golay 

N/A 

RRMSE 1.87 (0.04) 1.64 (0.03) 1.48 (0.03) 1.37 (0.03) 

Extremes 
473 
[443,496] 

455.5 
[425,501] 

405 
[384,458] 

423 [400,447] 

Order 2 2 2 2 

Width 9 7 7 5 

a) Data compiled from 20 replications at each noise level. 
b) Table entries correspond to mean (std. dev.). 
c) Table entries correspond to median [min,max]. 
d) The noise free spectrum is characterized by 51 local extremes enumerated here by sign changes in 

the first difference spectrum. 

  

  



Table 3. Comparison of results for the SAPLS methods using both test statistics at several 
confidence levels and the RMSE optimal SG filter for synthetic test spectrum 3 with additive 
Poisson noise. 
 

Method 
Critical 
Value 

Figure-of-Merita 

MSQH 

κ = 1.0 
RRMSEb 1.80 (0.12) 

Extremesc,d 29 [27,31] 

κ = 1.5 
RRMSE 1.65 (0.10) 

Extremes 29 [27,31] 

κ = 2.0 
RRMSE 1.49 (0.09) 

Extremes 27 [27,31] 

MSCR 

τ = 2.0 
RRMSE 1.57 (0.08) 

Extremes 32 [27,37] 

τ = 2.5 
RRMSE 1.45 (0.08) 

Extremes 31 [27,37] 

τ = 2.75 
RRMSE 1.39 (0.07) 

Extremes 29 [27,37] 

Savitzky- 
Golay 

N/A 

RRMSE 1.87 (0.07) 

Extremes 175 [155,202] 

Order 2 

Width 9 

a) Data compiled from 50 replications. 
b) Table entries correspond to mean (std. dev.). 
c) Table entries correspond to median [min,max]. 
d) The noise free spectrum is characterized by 31 local 

extremes enumerated here by sign changes in the first 
difference spectrum. 
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