
ar
X

iv
:1

00
6.

44
02

v1
 [

qu
an

t-
ph

]
 2

3
Ju

n
20

10

Simulating Concordant Computations

Bryan Eastin∗

National Institute of Standards and Technology, Boulder, CO 80305

A quantum state is called concordant if it has zero quantum discord with respect to any part. By
extension, a concordant computation is one such that the state of the computer, at each time step,
is concordant. In this paper, I describe a classical algorithm that, given a product state as input,
permits the efficient simulation of any concordant quantum computation having a conventional form
and composed of gates acting on two or fewer qubits. This shows that such a quantum computation
must generate quantum discord if it is to efficiently solve a problem that requires super-polynomial
time classically. While I employ the restriction to two-qubit gates sparingly, a crucial component of
the simulation algorithm appears not to be extensible to gates acting on higher-dimensional systems.

The search for the origin of the computational power of
quantum mechanics has proven to be a recurring theme in
quantum information theory. Primarily, this search has
focused on identifying the feature of quantum mechan-
ics that permits the efficient1 solution of certain classi-
cally intractable problems. In addition to being useful,
computational speedups of this magnitude are intrigu-
ing since, classically, no such improvement is to be found
over rather basic models of computation, e.g., the Turing
machine.

Among the proposed sources of this quantum advan-
tage, the most widely studied is a kind of non-local corre-
lation known as entanglement [1]. The state of a compos-
ite system is entangled if it cannot be described in terms
of a, possibly uncertain, local assignment of states to in-
dividual subsystems. Classically, non-trivial correlations
indicate imperfect information about the state of the sys-
tem, but entanglement is possible for quantum states of
maximal knowledge, or pure states. At the extreme, an
entangled state of a composite system may be pure while
the marginal state of the component subsystems is max-
imally impure, or maximally mixed. In other words, one
may know everything possible about the state of a com-
posite quantum system without knowing anything about
the state of the component subsystems. As a distinctly
non-classical property and a necessary resource for proto-
cols such as teleportation and quantum error correction,
entanglement is a natural suspect when investigating the
power of quantum computing.

There are two kinds of evidence in favor of entan-
glement as the crucial resource for achieving speedups
that enable the efficient solution of a classically in-
tractable problem, a variety of speedup henceforth la-
beled Promethean. First, there are proofs that pure-state
quantum computations generating only limited amounts
of entanglement can be efficiently simulated classically
and are therefore incapable of solving any problem that

∗Electronic address: beastin@nist.gov
1 The definition of “efficient” is taken from classical computer sci-
ence, where it refers to any computation that requires an amount
of resources (particularly time steps) scaling at most polynomi-
ally with the problem size.

cannot be solved in polynomial time by a classical com-
puter. An early result of this sort was shown by Jozsa
and Linden [2], who described a method for efficiently
simulating any quantum computation whose correlations
are approximately confined to regions of bounded size.
Shortly thereafter, Vidal proposed an efficient simula-
tion algorithm for quantum computations whose maxi-
mum Schmidt rank for any bipartition of the computer
scales at most as a polynomial [3]. These methods of
simulation can each be applied to quantum computations
with either mixed or pure states, but in the former case
classical correlations, in addition to entanglement, are re-
stricted. The second kind of evidence for the importance
of entanglement is its apparent generation by all imple-
mentations of Shor’s quantum factoring algorithm. In
particular, a typical implementation of Shor’s algorithm
has been shown to generate entanglement that precludes
its simulation by either Jozsa and Linden’s or Vidal’s
method [2, 4]. To summarize, entanglement is neces-
sary for obtaining Promethean speedups with pure-state
quantum computing, and there are indications that it
may be required for Shor’s algorithm.

Regarding mixed states, further, and contrary, evi-
dence comes from the DQC1 model of quantum computa-
tion [5], where all but one of the qubits in the computer is
initially prepared in the maximally mixed state. DQC1
is believed to be strictly less powerful than pure-state
quantum computing [5, 6], but it nonetheless seems to be
capable of providing Promethean speedups in, for exam-
ple, trace estimation. Datta, Flammia, and Caves have
shown numerically that trace estimation is possible even
with a vanishing amount of entanglement (as measured
by the negativity of bipartite splittings) [7]. Nevertheless,
Datta and Vidal have shown that the Schmidt rank grows
exponentially for certain bipartitions of a quantum com-
puter performing trace estimation [8], thereby demon-
strating the existence of correlations, though not neces-
sarily entanglement, sufficient to thwart Vidal’s simula-
tion method. Based on these results, it seems probable
that Promethean speedups are possible even in the ab-
sence of entanglement.

But if entanglement is not the source of Promethean
speedups in DQC1 then we are left to ask what is. Among
the proposed alternatives is a measure of non-classical

http://arxiv.org/abs/1006.4402v1
mailto:beastin@nist.gov

2

correlation known as quantum discord [9]. Datta, Shaji,
and Caves have shown that discord is indeed present in
the trace-estimation algorithm [10], but it has never been
proven to be necessary. The work presented in this paper
was motivated by the desire to show that discord is nec-
essary for Promethean speedups in mixed-state quantum
computations. Since, for pure states, discord reduces to
a measure of entanglement, this would amount to an ex-
tension of the result (described above) about the utility
of entanglement in pure-state quantum computing. To
this end, I considered the difficulty of simulating concor-
dant computations, i.e., those that generate no quantum
discord, as suggested by Ref. [11].

Here, I describe an algorithm for efficiently simulat-
ing, using a classical computer, any computation that
does not generate discord and consists of a sequence of
one- and two-qubit unitary gates followed by single-qubit
measurements. Section I briefly introduces some nota-
tion and Sec. II covers discord, concordance, and con-
cordant computations and proves a few results that are
employed later. My simulation algorithm is described for
quantum computations in a conventional form in Sec. III
and extensions to non-conventional forms are discussed
in Sec. IV. The conclusion contains a discussion of open
problems.

I. NOTATION

Unitary operators, projectors, and sets are denoted by
capital roman letters in math-italic, black-board, and cal-
ligraphic font, respectively, e.g., U , P, and A. For more
generic functions on quantum states I use capital Roman
letters in math font. Throughout the paper, quantum
operators and states are given subscripts (which may be
sets) to denote the subsystems they act upon and/or to
index the component corresponding to that subsystem;
all other identifying indices and labels are represented
as superscripts. Thus, the state of a composite system
can be expressed as ρAB, where A and B are disjoint
sets indexing the subsystems, and the marginal density
operator of part B of ρAB is written as ρB = trA(ρAB),
where trA is the trace over part A. Contrary to this
example, I frequently omit the subscript when it would
specify the entire system. Whenever indicated, the time
step is labeled by a superscript. The symbols ∪, ∩, \,
and ⊖ are used to denote the set-theoretic operations of
union, intersection, difference, and symmetric difference,
and I denote the complement of a set G by G\. Vectors
over finite fields are denoted by placing a right arrow over
a symbol, and the subscripting of such vectors by a set
represents the restriction of the vector to the components
indicated by the set, e.g.,~iG = {ik : k ∈ G}. The support
of an operator is taken to mean the set of subsystems
upon which the operator acts nontrivially.

II. CONCORDANCE

The notion of a classical state frequently carries with
it the idea of a preferred basis. In a Stern-Gerlach ex-
periment, for example, the resulting superposition of dif-
ferent spins and locations is rarely considered as simply
representing a novel basis for classical particles. From
this perspective, a classical state is one selected from a
preferred basis of orthogonal states, where the basis for
a composite system arises from the tensor product of the
preferred bases for the component subsystems. When
the state of a system is uncertain, we describe it using
a probability distribution over known, or pure, classical
states.
A concordant state differs from this definition of clas-

sicality only in that no preferred basis is specified; any
set of orthogonal bases for the subsystems may be used
to determine the pure states allowed to the composite
system. I take a concordant computation, in turn, to be
one in which the state of the computer after any step is
concordant. This usage of “concordant” seems to have
been coined by Andrew White, but it has not previously
appeared in publication. In the following subsections, I
explicitly define concordant states and computations as
well as reviewing or proving some results used later in
the paper.

A. Quantum discord

Quantum discord is a measure of non-classical corre-
lations introduced by Zurek [9]. Intuitively, it quantifies
the amount of non-local disturbance caused by measuring
part of a quantum state. For a quantum state ρAB, the
quantum discord with respect to part B can be defined
as

DB(ρAB) = min
{Pi

B}

[

H
(

ρ
{Pi

B}
AB

)

−H
(

ρ
{Pi

B}
B

)]

− [H(ρAB)−H(ρB)]

where {Pi
B} is a complete set of orthogonal one-

dimensional projectors (CSOOP) on part B,

ρ
{Pi

B}
AB =

∑

i

Pi
BρABP

i
B ,

and H(ρ) = −tr(ρ log2 ρ) is the Von Neumann entropy,
the quantum analog of Shannon entropy. This definition
is somewhat less general than that of Zurek, who did
not insist on the minimization, instead making quantum
discord a function of the choice of projectors.
Ollivier and Zurek [12] showed that DB(ρAB) = 0 if

and only if

ρAB =
∑

i

Pi
BρABP

i
B (1)

3

for some CSOOP {Pi
B} on part B, or equivalently,

ρAB =
∑

i

trB(ρABP
i
B)⊗ Pi

B =
∑

i

piρ
P
i
B

A ⊗ Pi
B (2)

where pi = tr(ρABP
i
B), ρ

P
i
B

A = trB(ρ
P
i
B

AB), and

ρ
P
i
B

AB = Pi
BρABP

i
B/tr(ρABP

i
B) . (3)

Lemma 1 shows that the set of projectors satisfying Eq. 1
is unique up to degeneracy in part B of ρAB. The notion
of degeneracy on a part of a larger state is clarified by
Definition 1.

Definition 1. Two states are degenerate on part B of
ρAB if the corresponding projectors PB and QB satisfy
trB(ρABPB) = trB(ρABQB).

Lemma 1. Given two CSOOPs on B, {Pi
B} and {Qj

B},

and a state ρAB =
∑

i P
i
BρABP

i
B, ρAB =

∑

j Q
j
BρABQ

j
B if

and only if trB(ρABP
i
B) = trB(ρABQ

j
B) for all P

i
BQ

j
B 6= 0.

Proof. The forward implication follows from

trB(ρABP
i
BQ

j
B) =

∑

h

trB(P
h
BρABP

h
BP

i
BQ

j
B)

= trB(ρABP
i
BQ

j
BP

i
B) = eijtrB(ρABP

i
B)

=
∑

h

trB(Q
h
BρABQ

h
BP

i
BQ

j
B)

= trB(ρABQ
j
BP

i
BQ

j
B) = eijtrB(ρABQ

j
B)

where eij = trB(P
i
BQ

j
B). The reverse implication follows

from

ρAB =
∑

i

trB(ρABP
i
B)⊗ Pi

B

=
∑

i,j

trB(ρABP
i
B)⊗ (Pi

BQ
j
B)

=
∑

i,j

trB(ρABQ
j
B)⊗ (Pi

BQ
j
B)

=
∑

j

trB(ρABQ
j
B)⊗Q

j
B .

If the quantum discord of ρAB is zero with respect to
both A and B then, by two applications of Eq. 1,

ρAB =
∑

i,j

pijP
i
A ⊗ P

j
B (4)

for some CSOOPs {Pi
A} and {Pj

B}. For fixed {Pi
A},

Lemma 1 shows that the set of projectors {Pj
B} satis-

fying Eq. 4 is unique up to the degeneracy common to

all ρ
P
i
A

B , that is, up to degeneracy appearing in each of
the subblocks of ρ projected out by some Pi

A.

B. Concordant states

The adjective “concordant” is intended to indicate a
lack of quantum discord. Because discord is an asym-
metric, bipartite measure, however, it is not completely
obvious what this restriction ought to mean with regard
to quantum states, especially states of composite systems
composed of more than two subsystems. I choose to label
a state as concordant if it has zero discord with respect
to any part. This is codified in the following definition.

Definition 2. A state ρ is concordant if DA(ρ) = 0 for
any strict subset A of the subsystems of ρ.

In particular, Def. 2 guarantees that Dk(ρ) = 0 for any
k labeling a single subsystem of some concordant state ρ.
By Eq. 1, this implies that, for any concordant state ρ,
there exists a CSOOP {Pi

k} for every subsystem k such
that

ρ =
∑

i

Pi
kρP

i
k . (5)

An equivalent form of the implication that often proves
useful is

ρ =
∑

~i

P
~iρP

~i =
∑

~i

p~iP
~i (6)

where P
~i =

∏

k P
ik
k and {Pik

k } for fixed k is a CSOOP for
the kth subsystem.
The reasoning above shows that Def. 2 implies Eq. 6,

but conversely, any state satisfying Eq. 6 clearly satisfies
Def. 2. Thus, Eq. 6 can be taken as an alternate definition
of a concordant state. In words, a state is concordant if
there exists a product basis, that is, a basis arising from
the tensor product of local orthogonal bases, such that
its density operator is diagonal.

C. Concordant computations

In keeping with standard practice, I adopt a descrip-
tion of quantum computation based on the quantum cir-
cuit model, where the evolution of the state of a system is
described by a sequence of operators. Most generally, the
operations applied can be chosen probabilistically, based,
for example, on the path the computation has taken thus
far, as revealed by measurements. In this model, it is nat-
ural to label a computation as concordant if the state of
the computer is concordant both initially and after each
step of the evolution, a notion formalized below.

Definition 3. A quantum computation described by a
sequence of operators {Gt} acting on some input state ρ0

is concordant if each state ρt = Gt ◦ · · · ◦G2 ◦G1(ρ0) is
concordant for every path of the computation.

Being concordant, each computational state might be
considered classical for some choice of the classical ba-
sis, but a concordant computation is slightly more gen-
eral than a randomized classical computation in that the
product eigenbasis can change from one step to the next.

4

Definition 3 is problematic for questions of computa-
tional complexity since it is possible to obscure the dif-
ficulty of an algorithm by employing very complex oper-
ations or initial states. The specification of an arbitrary
input state ρ0, for example, entails a quantity of real
numbers exponential in the number of subsystems, even
if ρ0 is concordant. (See Ref. [2] for a careful treatment of
the difficulties posed by the use of real numbers.) I avoid
these problems and simplify the following discussion by
initially considering only computations that are conven-
tional, as defined by Def. 4. In Sec. IV I discuss ways in
which the restriction to conventional computations can
be relaxed.

Definition 4. A conventional quantum computation
consists of an input product state diagonal in the stan-
dard basis, ρ0 =

⊗

k ρ
0
k, followed by a sequence of unitary

gates {Gt}, and concluded by single-subsystem measure-
ments determining the outcome of the computation. Each
ρ0k and Gt (when restricted to its support) is required to
be efficiently computable.

The evolution of a concordant computation of the form
given by Def. 4 is particularly simple. Because the spec-
trum of a density operator is invariant under conjugation
by unitary operators, any unitary gate can be considered
simply as a change of eigenbasis for the density opera-
tor. For a concordant computation, there is guaranteed
to exist a product basis, both before and after a gate,
such that the density operator describing the state of the
computer is diagonal. Thus, the effect of any unitary op-
erator can be, at most, to change the product eigenbasis
and permute the associated eigenvalues.

More specifically, Lemma 2 shows that a transforma-
tion between concordant states induced by a unitary gate
with support G is equivalent to a change of product eigen-
basis on G together with a permutation with support G of
the vectors indexing the eigenvalues. In general, the uni-
tary gate will not actually be a permutation followed by
a change of product eigenbasis but merely be equivalent
to one for the given initial state.

Lemma 2. If σ = GρG† where G is a unitary operator

with support G, ρ and σ are concordant, and ρ =
∑

~i p~iP
~i

then σ =
∑

~j q~jP
~j

G\Q
~j
G where q

P ·~i = p~i for some permuta-

tion P with support G.

Proof.

Since σ is concordant there exists {Q
~j} such that

σ =
∑

~jG

Q
~j
GσQ

~j
G ,

where Q
~j
G =

∏

k∈G Q
jk
k and likewise for subsequent simi-

lar projectors. Moreover,

∑

~iG\

P
~i
G\σP

~i
G\ =

∑

~iG\

P
~i
G\GρG†P

~i
G\

= G
∑

~iG\

P
~i
G\ρP

~i
G\G

† = GρG† = σ .

Thus, σ can be written in the form

σ =
∑

~j

P
~j

G\Q
~j
GσQ

~j
GP

~j

G\ =
∑

~j

q~jP
~j

G\Q
~j
G .

To see that the specified permutation exists, consider
a graph Γ where the nodes correspond to the projectors

Q
~j
G and GP

~i
GG

† and two nodes are connected if their as-

sociated projectors are not orthogonal. Since {Q
~j
G} and

{GP
~i
GG

†} project onto two eigenbases for the state

σ
P
~j

G\

G ∝
∑

~jG

q~jQ
~j
G =

∑

~jG

p~jGP
~j
GG

† ,

projectors connected in Γ are associated, by the unique-
ness properties of the spectral decomposition, with the

same eigenvalue of σ
P
~j

G\

G and therefore with the same eigen-
values of σ. Two spectral decompositions of the same
density operator are related by a unitary transformation,
so each connected component of Γ includes an equal num-

ber of projectors from {Q
~j
G} and {GP

~i
GG

†}. Thus, it is

possible to assign q~j = p~i where
~j = P ·~i, P is a permu-

tation such that ~jG\ =~iG\, and {Q
~j
G} and {GP

~i
GG

†} are in
the same connected component of Γ.

III. SIMULATING A CONVENTIONAL

CONCORDANT COMPUTATION

In the previous section I show that the transformation
of one concordant state to another by a unitary oper-
ator with support G is equivalent to a permutation of
eigenvalues together with a change of product eigenbasis
on G. Combined with the fact that a density operator
can be considered as a probabilistic mixture of its eigen-
states, this suggests the following strategy for simulating
a conventional concordant computation: Find a change
of product eigenbasis and permutation of the vectors la-
beling eigenstates (and, therefore, the associated eigen-
values) equivalent to each unitary gate in the computa-
tion, and then generate an output of the computation by
appropriately picking a vector labeling an eigenstate of
the input state, applying the derived permutations to the
chosen vector, and evaluating the final measurement on
the indicated product state.
It is not immediately obvious that the described simu-

lation is feasible because the permutation and change of

5

01 For each subsystem k:

02 Choose ik according to the probability distribution Pr[ik = w] =
〈

w
∣

∣

∣U
0

k

†
ρ0kU

0

k

∣

∣

∣w
〉

.

03 ~j := P ·~i
04 For each measured subsystem k:

05 Choose hk according to the probability distribution Pr[hk = w] = |〈w |Us

k | jk〉|
2
.

06 Output ~h.

FIG. 1: Pseudocode for simulating a conventional concordant computation. U0 and Us are unitary product operators identifying
the initial and final product eigenbases respectively and P is the permutation that acts on ρ0 equivalently to the specified
sequence of unitary operators. Pseudocode for converting a sequence of two-qubit unitary operators in a concordant computation
into an equivalent classical permutation and change of basis is given in Fig. 2.

eigenbasis equivalent to each unitary operator is depen-
dent on the overall state of the computer. Nonetheless,
the following subsections provide detailed descriptions of
the necessary subcomponents of such a simulation for the
special case of two-qubit unitary gates, thereby proving
Theorem 1. Section III A shows how a conventional con-
cordant computation can be simulated given the permu-
tation and eigenbasis change equivalent to each unitary
operator. Section III B proves that it is possible to effi-
ciently determine a permutation and change of eigenbasis
equivalent to a unitary operator from the degeneracy of
the pre-gate state. Finally, Sec. III C explains how the
relevant degeneracy can be found from the previously ap-
plied permutations and an input product state, so long
as the computation contains only one- and two-qubit uni-
tary gates. In addition to the concordant-state condition
given by Eq. 6, I employ an equivalent definition: a state
ρ is concordant if and only if there exists a unitary prod-
uct operator U =

⊗

k Uk such that U †ρU is diagonal in
the standard basis.

Theorem 1. A conventional concordant computation
with unitary operators having support on only one or two
qubits can be efficiently simulated by a classical computer.

A. Simulation given many hints

Consider a conventional concordant computation for
which the sequence of unitary operators employed,
{Gt}, is known to act equivalently to the sequence
{

U tP tU t−1†
}

where each P t is a permutation (that is,

a classical reversible gate) with the same support as Gt

and each U t is a unitary product operator that trans-
forms from the standard basis to the product eigenbasis
at time step t. Given this information, the initial state
ρ0 must be of the form

ρ0 =
∑

~i

p0~iU
0
∣

∣

∣

~i
〉〈

~i
∣

∣

∣
U0† (7)

where each
∣

∣

∣

~i
〉

is an element of the standard basis. (By

definition, U0 is trivial for a conventional computation.)

The state of the computer after one step of the compu-
tation is

ρ1 =
∑

~i

p0~iG
1U0

∣

∣

∣

~i
〉〈

~i
∣

∣

∣
U0†G1†

=
∑

~i

p0~iU
1U1†G1U0

∣

∣

∣

~i
〉〈

~i
∣

∣

∣
U0†G1†U1U1†

=
∑

~i

p0~iU
1P 1

∣

∣

∣

~i
〉〈

~i
∣

∣

∣
P 1†U1†

where P 1 is a permutation that acts identically to

U1†G1U0 on U0†ρ0U0. Iterating this process yields

ρs =
∑

~i

p0~iU
s

(

1
∏

t=s

P t

)

∣

∣

∣

~i
〉〈

~i
∣

∣

∣

(

s
∏

t=1

P t†

)

Us† (8)

where each P t is a permutation that acts identically to

U t†GtU t−1 on U t−1†ρt−1U t−1.
The measurement statistics of a mixed state are iden-

tical to those of a probabilistically chosen state in its
decomposition where the probability is given by the co-
efficient of the term associated with that state. Thus, the
expression for the final pre-measurement state shown in
Eq. 8 suggests the following simple technique for simulat-
ing the computation: Choose a single vector ~i according
to the probability distribution p0~i , which can be done ef-

ficiently since ρ0 is a product state. Apply the permuta-
tion

∏1
t=s P

t to~i to obtain a new vector ~j identifying one
component of the final pre-measurement state. And last,
for each measured subsystem k choose a measurement
outcome hk according to the probability distribution

Pr[hk = w] = |〈w |Us
k | jk〉|

2
.

Fig. 1 presents pseudocode illustrating this method.

B. Updating the product eigenbasis

In the tth step of a conventional concordant compu-
tation, the unitary gate Gt is applied to a concordant
state ρt−1 to yield a concordant state ρt. As explained

6

01 Store the unitary operator defining the initial product eigenbasis in U.

02 P := I (where P is stored as a sequence of two-bit permutations)

03 For each gate G in the circuit:

04 If G has support on only one qubit:

05 U := GU
06 Else if G has support on some pair of qubits G = {k, l}:
07 For each permutation Q which exchanges two states of the standard basis of part G:
08 If P †QP commutes with the initial density operator:

09 The states exchanged by Q are degenerate. Store this fact.

10 Solve for V , and thus the new product eigenbasis, using the known degeneracy and the constraint

that the post-gate state be diagonal in that basis.

11 Pick a permutation R such that V RU† and G transform the state identically.

12 P := RP
13 U := V

14 Output P and U.

FIG. 2: Pseudocode for converting the sequence of unitary gates in a conventional concordant computation composed of one-
and two-qubit gates to an equivalent permutation and change of basis.

in Sec. II C, the effect of Gt is identical to that of a
permutation P t of the vectors labeling eigenstates fol-
lowed by a change of product eigenbasis. Thus, if U t−1

and U t are unitary product operators that transform
from the standard basis to the product eigenbases at

times t − 1 and t, respectively, then ρt = Gtρt−1Gt† =

U tP tU t−1†ρt−1U t−1P t†U t† for some P t which permutes
the elements of the standard basis. Moreover, Lemma 2
shows that there exists a product eigenbasis for ρt consis-
tent with U t such that U t

k = U t−1
k for all k not in Gt, the

support of Gt, and additionally, that for such a product
eigenbasis there exists a permutation P t with support Gt.

The problem of finding U t
k for k 6∈ Gt is addressed by

Lemma 3, which shows that the remaining components
of a product eigenbasis for ρt can be calculated given one
additional piece of information, the degeneracy of part
Gt of ρt−1. This calculation is efficient in that it entails
solving a system of equations whose number depends only
on the number of subsystems in Gt and their dimension,
not on the total number of subsystems in the computa-
tion. The appropriate permutation is easily found from
the eigenbases for ρt−1 and ρt; it is sufficient to pick any
permutation mapping eigenprojectors of ρt−1 to eigen-
projectors of ρt which are in the same connected compo-
nent of a graph Γ defined as per Lemma 2. (Remember
that the permutation P t can be assumed to have support
Gt, thereby limiting the size of the graph that must be
considered.) As indicated by Theorem 2, these results
are sufficient to enable the efficient simulation of concor-
dant computations with most input states. The question
of arbitrary input states is taken up in the next section.

Lemma 3. For ρ =
∑

~i p~iP
~i and σ = GρG†, where

G is a unitary gate with support G, {Q
~j} satisfies σ =

∑

~j Q
~j
GσQ

~j
G if and only if trG(ρP

~i
G) = trG(ρP

~h
G) for all ~h,

~i, and ~j such that GP
~h
GG

†Q
~j
G 6= 0 and GP

~i
GG

†Q
~j
G 6= 0.

Proof.

∑

~i

GP
~i
GG

†σGP
~i
GG

† =
∑

~i

GP
~i
GρP

~i
GG

† = GρG† = σ ,

so by Lemma 1, {Q
~j} satisfies σ =

∑

~j Q
~j
GσQ

~j
G if and

only if trG(σGP
~h
GG

†) = trG(σQ
~j
G) for all GP

~h
GG

†Q
~j
G 6= 0.

Given ρ, σ, G, {P
~i}, and {Q

~j} as defined, the condition

trG(σGP
~h
GG

†) = trG(σQ
~j
G) for all GP

~h
GG

†Q
~j
G 6= 0 is equiv-

alent to trG(ρP
~h
G) = trG(ρP

~i
G) for all GP

~h
GG

†Q
~j
G 6= 0 and

GP
~i
GG

†Q
~j
G 6= 0.

Fig. 2 presents pseudocode for an algorithm calculat-
ing the necessary sequence of permutations and basis
changes.

Theorem 2. A conventional concordant computation
with an input product state that is generic can be effi-
ciently simulated by a classical computer.

Proof. A generic product state has no degenerate eigen-
values, so the simulation method as outlined thus far is
sufficient for such input states.

C. Diagnosing the degeneracy

In order to update the product eigenbasis following
the tth gate in a conventional concordant computation,
it is necessary to diagnose the degeneracy of part Gt of
ρt−1, where Gt is the support of Gt, the tth gate in the
computation, and ρt−1 is the state of the computation
at time t − 1. This degeneracy can be found by de-

termining whether ρt−1 and U t−1QU t−1† commute for
each permutation Q exchanging two eigenstates of the
standard basis for the subsystems in Gt. As the simu-
lation algorithm progresses, permutations equivalent to

7

each gate are found, so ρt−1 = U t−1Pρ0P †U t−1† where
P =

∏t−1
r P r represents the sequence of (known) per-

mutations up to step t − 1. Thus, one may equally well
check whether

ρ0 = P †QPρ0P †QP . (9)

I now restrict my attention to concordant computa-
tions composed of two-qubit gates acting on a register of
n qubits. The permutation P †QP is an involution, i.e.,
it is self-inverse, and for the case of qubits and two-qubit
gates, it is affine when considered as a function on binary
vectors. Lemma 4 shows that such a permutation com-
mutes with ρ0 if and only if Eq. 9 is satisfied for the pure
product state corresponding to each of a particular set of
n + 1 binary vectors. Consequently, the commutativity
of ρ0 and P †QP , and therefore the degeneracy relevant
to updating the product eigenbasis, can be efficiently de-
termined for concordant computations composed of two-
qubit gates.

Lemma 4. A product state on qubits, ρ =
⊗

k ρk,
such that ρ is diagonal in the standard basis and ek =
〈1 |ρk| 1〉 / 〈0 |ρk| 0〉 ≤ 1 for all k commutes with an affine

involution S if and only if
〈

~i
∣

∣

∣
SρS† − ρ

∣

∣

∣

~i
〉

= 0 for all
∣

∣

∣

~i
〉

such that ik = δkl or ik = 0.

Proof.
Throughout this proof, binary vectors labeling states

are represented by the set of indices identifying bits in
the |1〉 state. Let S be a version of S that acts on such
sets2. In this representation, the affine linearity of S is
expressed as S(A ⊖ B) = S(A) ⊖ S(B) ⊖ K for some
fixed K, while the fact that S is an involution implies
that S(S(A)) = A. Define Ce = {k : ek = e} and
f(B) =

∏

k∈B ek. In terms of f and S the commutativity
condition to be satisfied is

f(B) = f(S(B)) (10)

for any set of bits, B.
The forward implication stated in this lemma is trivial.

If Eq. 10 is satisfied for any set B then it is obviously
satisfied for any singleton {k} and for the empty set.
To demonstrate the reverse, I assume, for the remain-

der of the proof, that Eq. 10 is satisfied for the empty set
and any singleton and seek to show that it is satisfied in
general. I organize what follows in terms of a sequence
of small points.

Point 0: T (B) = S(B)⊖K is a linear involution, and T
satisfies Eq. 11 if and only if S satisfies Eq. 10.
T is linear since S is affine with constant K. Because

2 For brevity I omit brackets in the argument of this and other
functions when the input is a singleton, e.g., I write S(k) rather
than S({k}).

S(∅) = K and S is an involution, S(K) = S(S(∅)) = ∅,
implying that T is an involution since

T (T (B)) = T (S(B)⊖K) = S(S(B)⊖K) ⊖K

= S(S(B)) ⊖ S(K) ⊖K ⊖K = B .

Furthermore, K ⊆ C1 since if ∃k ∈ K such that k 6∈ C1
then f(K) ≤ ek < 1 = f(∅). Consequently, f(B) =
f(B ⊖ K), and thus Eq. 10 is satisfied if and only if

f(B) = f(T (B)) (11)

Point 1: ∀k∃m ∈ T (k) such that k ∈ T (m)
Because T is a linear involution,

k = T (T (k)) = T

(

⊖
l∈T (k)

{l}

)

= ⊖
l∈T (k)

T (l) ,

so ∀k∃m ∈ T (k) such that k ∈ T (m).

Point 2: el ≥ ek ∀l ∈ T (k)
If ∃l ∈ T (k) such that el < ek then f(k) = ek > el ≥
f(T (k)), so el ≥ ek ∀l ∈ T (k).

Point 3: ∃m ∈ T (k) such that em = ek
By the previous two points ∃m ∈ T (k) such that
k ∈ T (m) and em ≥ ek, but this implies that em = ek
since, by Point 2, k ∈ T (m) implies ek ≥ em.

Point 4: Each k ∈ Ce where e > 0 is mapped by T to a
single m ∈ Ce together with (possibly) some elements of
C1.
By the previous point, ∃m ∈ T (k) such that m ∈ Cek ,
implying that

f(T (k)) = f(m)f(T (k) \ {m}) = ek
∏

l∈T (k)\{m}

el ,

which is equal to f(k) = ek only when ek = 0 or
el = 1 ∀l ∈ T (k) \ {m}.

Point 5: Any two distinct elements k, l ∈ Ce where
e > 0 are mapped by T to distinct elements of Ce
together with (possibly) some elements of C1.
If ∃k, l ∈ Ce with k 6= l and 1 > e > 0 such that
T (k)/C1 = T (l)/C1 = {m} then k, l ∈ T (m) since
k, l 6∈ T (o) for any o ∈ C1, which contradicts the
preceding point.

Point 6: If B ∩ C0 6= ∅ then T (B) ∩ C0 6= ∅.
If ∃B such that B ∩ C0 6= ∅ but T (B) ∩ C0 = ∅ then
∃l ∈ T (B) such that el > 0 and T (l) ∩ C0 6= ∅, which
contradicts my second point.

Point 7: Eq. 11 is satisfied for any set B.
If B∩C0 6= ∅ then T (B)∩C0 6= ∅ so f(B) = f(T (B)) = 0.

8

Otherwise,

f(B) =
∏

l∈B

f(l) =
∏

l∈B

f(T (l)) = f

(

⊖
l∈B

T (l)

)

= f

(

T

(

⊖
l∈B

{l}

))

= f(T (B)) ,

where the middle equality follows from Point 5, which
shows that T (l) ∩ T (k) ⊆ C1 for all k and l such that
k 6= l and k, l 6∈ C0, C1.

IV. EXTENSIONS

Quantum computations, even those described in terms
of quantum circuits, frequently are not envisioned in the
conventional form outlined by Def. 4. The most common
deviations are the inclusion of single-subsystem measure-
ments intermixed with the unitary operators and the in-
troduction of new subsystems during the course of the
computation. Another possibility for concordant compu-
tations is that the input state be a mixture of product
states that is not also a product of mixed states but that
can be efficiently prepared due to the mixture having
few terms. Computations with these features can be con-
verted to conventional ones (allowing for some post selec-
tion to assist in the generation of the desired input state),
but, in general, the conversion process preserves neither
the concordance of the computation nor the maximal
support of its unitary operators. While subsystems in-
troduced during the course of a computation can equally
well be introduced at its beginning, non-terminal mea-
surements and non-product-state inputs require special
treatment.

A. Non-terminal measurements

It requires some effort to extend the simulation algo-
rithm described in the previous section to non-terminal
measurements on single subsystems. Through the first
measurement, the simulation may proceed exactly as pre-
viously explained, but subsequent to that, a more com-
plex technique for diagnosing the degeneracy is neces-
sary since measurements introduce the possibility that
the degeneracy relevant to determining the permutation
and change of eigenbasis equivalent to a gate might be
dependent on the outcome of the measurement result.
There seems to be a method of efficiently diagnosing the
relevant degeneracy when measurements are performed
in the eigenbasis, but the more general problem is one
that I have not yet been able to solve.

B. Non-product-state inputs

Generically, Def. 4 excludes a very natural kind of
mixed input state, namely, the probabilistic mixture of
a few pure product states. As it happens, however, con-
cordant computations with such input states are easy to
simulate; the state of the computer can simply be stored
and updated explicitly. The algorithm is the same as
that described in Sec. III except that the degeneracy
is straightforward to evaluate since the state is explic-
itly known. Because unitary operators do not change
the rank of density matrix and projective measurements
can only decrease it, explicit storage of the state remains
practical throughout the simulation.
Effectively, a quantum computation on a low-rank in-

put state becomes complicated only because the eigenba-
sis becomes complicated. For a concordant computation
the eigenbasis remains manageable.

V. CONCLUSION

In summary, I have shown that conventional concor-
dant computations composed exclusively of gates acting
on one or two qubits can be efficiently simulated using a
classical computer. As a consequence, such a computa-
tion must generate quantum discord if it is to permit the
efficient solution of a problem requiring super-polynomial
resources classically. A similar statement holds for more
general gate sets whenever the input state is either a
generic product state or a mixture of a few pure product
states. These results lend support to the idea that quan-
tum discord is the appropriate generalization of entangle-
ment with regard to mixed-state quantum computation.
That being said, concordance is such a stringent property
that it no doubt corresponds to the case of zero quantum
correlations for a variety of measures (including the many
flavors of discord), so this is far from the final word on
the subject. As has periodically been noted, it is also
important to keep in mind that there can be no single
resource for quantum computing: If quantum computa-
tions without property P can be efficiently simulated
classically then P is a necessary resource for achieving a
Promethean speedup.
Several possible directions for future research are sug-

gested by previous work on simulating quantum com-
putations with restricted entanglement. The two most
prominent are investigating the performance of the simu-
lation for approximately concordant states and extending
it to computations where discord is restricted to blocks
of qubits of bounded size. A block of qubits with unre-
stricted correlations can be treated as a single quantum
system, so progress on the latter topic would likely re-
quire extending the simulation method to qudits.
Though I specialize to qubits and two-qubit gates only

in Sec. III C, it is doubtful whether my simulation method
can be extended to more general gate sets. Section III C
depends crucially on the fact that permutations on one or

9

two bits of a vector are necessarily linear (or, from an al-
ternate perspective, that such permutations are Clifford
gates) since this allows me to determine whether Eq. 9
is satisfied by checking a small set of basis vectors. On
the other hand, permutations on systems of dimension
greater than two or on more than two bits need not be
linear. Thus, directly generalizing the method of simula-
tion described in this paper requires a means of testing
Eq. 9 for an arbitrary sequence of permutations and in-
put (mixed) product state. This implies the ability to
efficiently solve 3-SAT, an NP-Complete problem, since
P in Eq. 9 can be chosen to implement a boolean for-
mula, Q to copy the result to an ancillary qubit, and ρ0

to consist of unbiased input qubits and maximally biased
ancillary qubits, yielding ρ0 6= P †QPρ0P †QP if and only

if the boolean formula is satisfied for some input. In other
words, a direct extension of my simulation method is ef-
fectively ruled out, though I am unable to exclude the
possibility that some more generally applicable method
exists for simulating concordant computations.

Acknowledgments

I am grateful to Emanuel Knill, Anil Shaji, Carlton
Caves, Vaibhav Madhok, and Adam Meier for many pro-
ductive discussions. This paper is a contribution by the
National Institute of Standards and Technology and, as
such, is not subject to U.S. copyright.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and
K. Horodecki, Rev. Mod. Phys. 81, 865 (2009),
arXiv:quant-ph/0702225.

[2] R. Jozsa and N. Linden, Proc. R. Soc. A 459, 2011
(2003), arXiv:quant-ph/0201143.

[3] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003),
arXiv:quant-ph/0301063.

[4] R. Orús and J. I. Latorre, Phys. Rev. A 69, 052308
(2004), arXiv:quant-ph/0311017.

[5] E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672
(1998), arXiv:quant-ph/9802037.

[6] L. S. A. Ambainis and U. Vazirani, Journal of the ACM
53, 507 (2006), arXiv:quant-ph/0003136.

[7] A. Datta, S. T. Flammia, and C. M. Caves, Phys. Rev.

A 72, 042316 (2005), arXiv:quant-ph/0505213.
[8] A. Datta and G. Vidal, Phys. Rev. A 75, 042310 (2007),

arXiv:quant-ph/0611157.
[9] W. H. Zurek, Ann. Phys. 9, 855 (2000),

arXiv:quant-ph/0011039.
[10] A. Datta, A. Shaji, and C. M. Caves, Physical Review

Letters 100, 050502 (2008), arXiv:0709.0548.
[11] B. P. Lanyon, M. Barbieri, M. P. Almeida, and

A. G. White, Phys. Rev. Lett. 101, 200501 (2008),
arXiv:0807.0668.

[12] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901
(2001), arXiv:quant-ph/0105072.

http://arxiv.org/abs/arXiv:quant-ph/0702225
http://arxiv.org/abs/arXiv:quant-ph/0201143
http://arxiv.org/abs/arXiv:quant-ph/0301063
http://arxiv.org/abs/arXiv:quant-ph/0311017
http://arxiv.org/abs/arXiv:quant-ph/9802037
http://arxiv.org/abs/arXiv:quant-ph/0003136
http://arxiv.org/abs/arXiv:quant-ph/0505213
http://arxiv.org/abs/arXiv:quant-ph/0611157
http://arxiv.org/abs/arXiv:quant-ph/0011039
http://arxiv.org/abs/arXiv:0709.0548
http://arxiv.org/abs/arXiv:0807.0668
http://arxiv.org/abs/arXiv:quant-ph/0105072

