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Abstract:  Coherent dual comb spectroscopy can provide high-resolution, 
high-accuracy measurements of a sample response in both magnitude and 
phase. We discuss the achievable signal-to-noise ratio (SNR) due to both 
additive white noise and multiplicative noise, and the corresponding 
sensitivity limit for trace gas detection. We show that sequential acquisition 
of the overall spectrum through a tunable filter, or parallel acquisition of the 
overall spectrum through a detector array, can significantly improve the 
SNR under some circumstances. We identify a useful figure of merit as the 
quality factor, equal to the product of the SNR, normalized by the square 
root of the acquisition time, and the number of resolved frequency elements. 
For a single detector and fiber-laser based system, this quality factor is 106 - 
107 Hz1/2. 
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1. Introduction  

There have been a number of demonstrations of coherent dual comb spectroscopy [1-8] 
providing broadband spectroscopic data often with very high frequency accuracy and 
resolution. In the configuration considered here, and demonstrated fully in Ref. [6-8], the 
output of one comb is transmitted through a sample and then combined with a second “local 
oscillator” (LO) comb source to measure the full complex response of a sample (i.e., phase 
and amplitude) with the frequency resolution and accuracy inherent to the comb source. In the 
time domain, the approach mirrors time-domain spectroscopy [7] or dispersive Fourier 
transform spectroscopy (FTS) [9-12]. In the frequency domain, the approach resembles a 
massively parallel laser heterodyne spectrometer, where each pair of comb teeth contributes to 
the heterodyne signal at a specific rf frequency [13]. Although this technique can provide the 
complex response (phase and amplitude) with high frequency accuracy and resolution, the 
achievable signal-to-noise ratio (SNR) is limited by the usual factors, namely detector noise, 
shot-noise, technical laser noise and detection dynamic range. A low SNR can, of course, 
diminish many of the benefits of the approach. For example, the ability to find the line center 
of broad spectral lines will have a statistical limit set by the SNR that can exceed the inherent 
comb accuracy. Here we derive scaling laws and quantitative SNR expressions and examine 
the sensitivity of this technique. These expressions will be useful in system design, in 
evaluating the system performance, and in comparisons to more conventional approaches.  

We derive three main equations. First, we give the limiting SNR due to detector noise, 
shot noise, excess laser relative intensity noise (RIN), and detector dynamic range. We point 
out the potential advantages of sequential or parallel acquisition across the full spectrum. We 
also compare with a tunable laser spectrometer. Second, we give the corresponding sensitivity 
limit for trace gas detection. Third, we give the SNR limitations due to multiplicative noise, in 
particular due to residual carrier phase noise between the combs. Under the appropriate 
operating parameters and with either active phase-locking [6-8] or active monitoring [4] to 
cancel relative phase and timing jitter between the combs, this multiplicative noise is shown to 
be negligible. The derivations are straightforward and the final scaling laws follow closely 
related expressions in conventional FTS [14-16] and laser spectroscopy [17, 18]. Therefore, in 
Section 2, we present and discuss the basic results and only later in Section 3 do we give a 
detailed derivation.  

2. Sensitivity of dual-comb spectrometers 

2.1 Configuration of dual-comb spectrometer 

Coherent dual comb spectroscopy can be viewed as a massively parallel multi-heterodyne  
measurement between a source comb that passes through a sample and an LO comb with a 
different repetition rate; each pair of comb teeth from the source and LO combs forms its own 
RF beat signal, thereby down-converting the optical response to the rf domain. In the time 
domain, the method is essentially Fourier spectroscopy and involves the acquisition of an 
interferogram (or cross correlation) between the individual pulses of the source, Es(t), and the 
LO, ELO(t); the overlap between successive pairs of pulses occurs with an effective time step 
equal to the difference in pulse periods so that the LO pulses slowly walk through the signal 
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pulses. In this picture, the digitized voltage with no sample present is ( )( ) ( )ref sV t S t E t= ⊗  as 
a function of effective time t where ⊗  denotes a convolution and S(t) ~ ELO

*(-t) is the 
sampling function. (A more accurate expression for S(t) that preserves the multi-heterodyne 
frequency-domain picture is given in Eq. (12) and Ref. [19].) In the presence of a sample with 
time-domain response H(t), the digitized voltage is ( )( ) ( ) ( )sV t S t E t H t= ⊗ ⊗ . The goal is to 
isolate the sample response, which is easily done in the frequency domain from the ratio 

( ) ( )0
( )
( ) H

ref

VH H
V

νν ν σ
ν

= = +          (1) 

where the tilde represents a Fourier transform and ν is the optical frequency. ( )0H ν  is the 
true sample response and Hσ is the inevitable added noise, which is the subject of the 
remainder of this paper. For a weakly absorbing sample, 

( ) ( )2 1
0 1 4H ic Lν π νχ ν−≡ + ( ) ( )1 2L i k Lα ν ν≈ − + Δ , where χ  is the linear susceptibility, 

L is the sample length, ( )α ν  is the attenuation coefficient and ( )k νΔ  the phase shift.  
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Fig. 1. (a) Schematic of dual-comb layout including the possibility of sequential or parallel data 
acquisition. In the figure, the signal and reference are time-multiplexed [7, 8], but the reference 
could also be acquired in a separate interferometer [6] or sequentially with an empty cell. (b) 
Simulated time-domain signal versus the effective down-converted time (and not laboratory 
time). (c) Corresponding frequency-domain sample response over a 10 THz window at 100 
MHz resolution for 100,000M = resolved elements. For illustrative purposes, we assume a 
sample with 20 equally spaced, Lorentzian transitions 2 GHz wide and a spectral domain SNR 
of σH

-1 = 100. In the time domain, the corresponding signal is a one-sided interferogram with 
two components: a centerburst and a trailing free induction decay signal. In the frequency 
domain, each transition is highly resolved in magnitude and phase.  
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We consider the general configuration shown in Fig. 1, which is motivated by the 
following consideration. While Fourier spectroscopy can significantly reduce the effects of 
detector noise (Felgett’s advantage), it magnifies the effects of excess source noise and 
dynamic range limitations [9, 10, 14, 16]. These noise terms are mitigated by  breaking up the 
measured spectrum (Δν) into sub-bands that can be acquired sequentially or in parallel. 
Parallel acquisition is accomplished through a fixed filter that multiplexes Nd spectrally 
filtered bands to an array of Nd detectors. Sequential acquisition is accomplished through a 
tunable optical bandpass filter in front of each detector that steps through F different filter 
bands. In all, the total spectral bandwidth is divided into F×Nd sub-bands with filtered 
bandwidth ( )A dFNν νΔ = Δ . Each sub-band is measured for a period T/F, where T is the 
total acquisition period. Within each sub-band, the response is calculated according to Eq. (1). 
The stability of the combs allows one to coherently stitch together the full bandwidth 
signature from these sub-bands while preserving the frequency resolution and accuracy. In 
addition to potentially improving the SNR, this spectral division allows for a larger difference 
in comb repetition rates, Δfr, (while still satisfying Nyquist constraints). Since this difference, 
Δfr, is exactly the separation between the down-converted rf heterodyne beat signals, a larger 
value of Δfr translates to a relaxed requirement on the relative comb linewidths. Filtering also 
helps normalize strong spectral variations in the comb spectra [8]. However, these benefits 
must be balanced with the fact that spectral division also magnifies multiplicative noise 
(Section 2.4) and can come with added overhead in time. 

We make several assumptions in the analysis. First, we assume negligible differential 
chirp between the filtered source and LO pulses. Differential chirp between the pulses has the 
benefit of reducing the dynamic range limitation [4, 16] and furthermore would be cancelled 
in Eq. (1). However, it can also introduce correlations in the phase and timing noise which are 
not treated here. Second, we assume the optical filter is Gaussian in shape and calculate the 
average SNR (equal to 1

Hσ − ) across the central FWHM. Effectively, then, for no filtering 
( 1dFN = ), we assume a Gaussian source spectrum while for filtering ( 1dFN > ), we assume 
a roughly uniform source spectrum. Third, we assume the detection is followed by a hardware 
or software low-pass filter with bandwidth equal to the Nyquist frequency of fr/2.  Fourth, we 
assume that the difference in comb repetition rates, Δfr, and spectral width of the sub-bands 
are chosen to satisfy the Nyquist constraint [1-8].  Fifth, we assume that the relative linewidth 
of the two comb sources is sufficiently controlled to be below Δfr (i.e. we assume negligible 
“1/f” noise in relative phase and timing jitter between the combs [20]).  

2.2 Effects of additive noise: detector noise, shot noise, laser RIN & detector dynamic range 

In terms of noise, we consider detector noise, shot noise, and excess Relative Intensity Noise 
(RIN). The detector noise is characterized by an effective Noise Equivalent Power (NEP) that 
includes any and all additive noise terms up to the digitization of the signal such as dark 
current, Johnson noise, amplifier noise figure etc. This NEP will vary significantly depending 
on wavelength band and type of detector. We do assume the heterodyne signal is at high 
enough frequency to be well away from any “1/f” detection so that the NEP is white with 
frequency. The shot noise is easily calculated from the comb power, evaluated at the 
photodetector. The laser RIN can have a component at lower frequencies from pulse-to-pulse 
variations and a component at all frequencies from additive amplified spontaneous emission 
(ASE) emitted from the laser or from any subsequent optical amplification. The low-
frequency component can lead to multiplicative noise but we ignore it under the assumption 
that the interferogram update rate, equal to Δfr, is faster than this low frequency noise. 
Alternatively, this RIN component could be experimentally suppressed through active 
feedback or cancelled through a separate measurement. Therefore, we only consider the white, 
broadband RIN due to additive ASE. Furthermore, we assume the ASE has the same uniform 
spectral shape as the comb output. Finally, we also include a dynamic range limit to the 
detection set by the digitizer, amplifier, or, ultimately, the photodetector itself. 
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By considering only the white, broadband noise sources above, we essentially assume 
“perfect” source and LO combs, other than the effect of additive ASE. However, there will 
also be residual timing and carrier phase noise between the combs that can lead to 
multiplicative noise. In Section 2.4 and 3.4, we consider the multiplicative noise from carrier 
phase jitter since it will likely dominate over timing jitter. We show there that the 
multiplicative noise is negligible provided the optical filter bandwidth is sufficiently large and 
that the phase jitter is sufficiently suppressed through either active feedback or monitoring. 

The measurement of ( )H ν of Eq. (1) yields a set of complex points covering a 
bandwidth Δν with M resolved spectral elements. Including only the broadband noise 
contributions, the averaged uncertainty across the spectrum at each spectral element for the 
magnitude or phase (in radians) is,  

( )
1/2

2 2
d

1 1 ,
0.8H NEP shot RIN range

d cc

M Fa a a a
N PP N FT

εσ
⎧ ⎫

= + + +⎨ ⎬
⎩ ⎭

                   (2) 

with the variables given in Table 1. (Eq. (2) is derived in Section 3.2.) The SNR is simply 
1 Hσ . The first two terms in the sum are detector noise and shot noise. The last term reflects 
the limits to measuring a pulse set by either the laser RIN or by detection dynamic range. ε  
accounts for the mismatch between the required resolution and the resolution set by the comb 
repetition rate. It can be viewed as a duty cycle correction in the time domain. It is 
theoretically absent in FTS because the scan length would be matched to the desired 
resolution (although even then, conventional FTS would still have a similar term due to the 
turn-around time of the mirror.) Note that modulation of the difference in repetition 
frequencies [2] can in principle reduce this duty cycle factor.  

Table 1. Definition of variables 

Quantity (Units) Variable Quantity (Units) Variable 

Source comb power (W) Pc Spectral width (Hz) Δν  

Source to LO power ratioa γ Comb repetition rate (Hz)b  fr 

LO comb power (W)  γ Pc
 Spectral resolution (Hz) νres  

Detector noise (W/Hz1/2) NEP # of resolution elements M = Δν/νres 

Detection dynamic rangec  D Duty cycle res rfε ν≡  

Laser Relative Intensity 
Noised  RIN  # of filters positions (degree 

of sequential acquisition) F  

Detector efficiency η # of detectors (degree of 
parallel acquisition) Nd 

Balanced detection factore b 
Coefficients    

1 2
NEPa NEPγ −=  14shota c hγη ν−=  22RINa c bRIN

γ
=  2 18range ra D f− −=  

a The related constants are  cγ  = (1 + γ)/(2γ) and cγ2 = (1+γ 2)/(2γ) . γ is closely related to the modulation 
efficiency in conventional FTS.  
b Specifically, the source or LO repetition rate is frS or frL. 
c The dynamic range can be related to an effective number of bits N, as D =√3 2N [16]. For N = 12, D ~7000. 
d The RIN is single-sided. It is typically quoted in dBc/Hz. 
e Detection can employ balanced detection, for which b = 1, or unbalanced detection for which b = 2. 
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Fig. 2. SNR and quality factor for a dual comb spectrometer versus the total comb power, Pc, 
for a single detector with no optical filtering (F = Nd = 1) from Eq. (2), normalized to a 1 sec 
total acquisition time. The quality factor is the product of the number of resolved spectral 
elements and the SNR for either amplitude or phase. The SNR for 100,000M = resolved 
elements is also shown. The SNR (or quality factor) (solid blue line) is limited by detector 
noise (long dashed brown line) at low comb powers, by shot noise (short dashed grey line) at 
medium comb powers, and by either laser RIN (dash-dot light green line) or detector dynamic 
range (dash-dotted dark green line) at high comb powers. With our assumption of a uniform 
spectrum and Gaussian filter shape, the average power per comb tooth is 0.8tooth c rP P f ν= Δ . 
Values used: NEP = 2 pW/Hz1/2, D = 7000, RIN = -145 dBc/Hz, η  = 0.9, b = 1, ε =1, γ = cγ = 
cγ2 =1, Δν = 10 THz,  fr = νres = 100 MHz. 

From Eq. (2) regardless of the dominant noise, the uncertainty scales linearly with M. An 
M 1/2 dependence is expected in Fourier spectroscopy because there are ~M time steps per 
interferogram. In dual-comb spectroscopy, an additional M 1/2 arises because we assume a 
constant laser power, therefore doubling the spectral width reduces the source spectral power 
density. In conventional FTS it is not normally present since the source power spectral density 
is fixed. From both this scaling, and from a practical point of view, a useful figure of merit is 
the normalized quality factor, HM σ at T =1 s [9], or the product of the SNR per unit time 
and number of resolved spectral elements. Figure 2 plots the quality factor and SNR versus 
total comb power. In the next subsections, we discuss other consequences of Eq. (2).  

2.2.1 Scaling with filtering and number of detectors  

Figure 3 illustrates the scaling of the quality factor and SNR with the degree of sequential or 
parallel spectral acquisition, as quantified by F and Nd. The quantities are all normalized to the 
same 1 sec total acquisition time. In the detector noise limit (low Pc), there is a distinct 
disadvantage to sequential acquisition ( 1F > ), as expected from Fellgett’s advantage and no 
benefit to multiple detectors. In the shot noise limit (medium Pc), the same SNR is reached 
whether the spectrum is measured sequentially or at once, but there is benefit to multiple 
detectors. Finally, in either the RIN or dynamic range limit (high Pc), there is an advantage to 
sequential acquisition and an even stronger advantage to multiple detectors.  

Increasing the overall degree of filtering, NdF, reduces the optical power on a given 
detector and shifts the limiting noise from RIN or dynamic range to either shot noise or 
detector noise. Ideally, one would like to increase the number of detectors, Nd, until the noise 
is limited by the detector noise. In practice, the use of multiple detectors must be balanced by 
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the corresponding increase in system complexity and for practical reasons Nd may be limited 
to one. It is still advantageous to then increase the sequential filtering, F, until the RIN or 
dynamic range no longer dominates. Based on Eq. (2), the optimal value of spectral filtering is 

( )2opt c dF P RIN N NEP≈  (for large D and 2 1b c
γ

ε γ= = = = ). For the values in Fig. 1 and 

cP =2 mW, one finds 1100opt dF N −≈ , corresponding to ~ 1 nm bandwidth filtering for a 10 
THz source at 1550 nm. This bandwidth is probably too narrow given the need to suppress the 
effects of multiplicative noise (see Section 2.5) and one would likely operate the system at a 
slightly broader filtering level.  
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Fig. 3. Quality factor and SNR at M = 100,000 resolved elements versus the total comb power, 
Pc, for different values of sequential acquisition at F = 10, 20, 50 and Nd = 1 (black lines) and 
parallel data acquisition at Nd = 10, 20, 50 detectors and F = 2 (red lines) under the otherwise 
identical conditions to Figure 2.  The additional lines are carried over from Figure 2 for 
reference. The use of sequential acquisition comes at a cost for low powers, but at high comb 
powers can remove the limitations otherwise imposed by laser RIN or detector dynamic range. 
The effects of multiplicative noise (see Section 2.4) are not included. (The curves for Nd > 1 
use F = 2 since an interleaved approach would likely be used.)   

2.2.2 Quantitative values and comparison with existing demonstrations 

In general, for systems operating near the gain bandwidth of the laser or amplifier, the comb 
power can be high enough that we expect the limiting noise term in Eq. (2) to be the 
RIN/dynamic range term, at least for a low F and Nd. For supercontinuum sources, it may well 
dominate as well due to the degradation in RIN [21-23]. In this limit, Eq. (2) can be rewritten 
as the quality factor in the simplified expression,  

 2 10.8
2 8

d

H r

N TM F
RIN D fσ ε − −=

+
 (3) 

for 2 1b c
γ

γ= = = . We measure fiber-laser RINs as low as 10-15, or -150 dBc/Hz. However, 

with amplification, values of -145 dBc/Hz are perhaps more realistic, and even higher RIN 
may be reached for significant spectral broadening. The dynamic range contribution, 2 18 rD f− − , 
is -148 dBc/Hz at 12 bits and -124 dBc/Hz at 8 bits [16]. Therefore, depending on the system, 
either laser RIN or dynamic range can dominate Eq. (3). As a useful benchmark, the SNR is  

1/ 21 ~ 100H Tσ  for 100,000M = resolved elements and a single detector with no filtering at 
RIN = -145 dBc/Hz. 
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In our recent work [7, 8], the SNR was limited by the poor dynamic range of ~ 500D  at 
the center of the spectrum and by detector noise at the edges. For the corresponding value of 

2 18 rD f− − = -125 dBc/Hz and the experimental parameters ~ 45F  and 2ε = , Eq. (3) 
yields 6 1/26.7 10 HzHM σ = × . At the measured M = 41000, 44 10Hσ −= ×  and T = 2700 sec 
the measured quality factor was 6 1/ 22 10 HzHM σ = × , or ~3 times worse than the calculated 
value, which is attributed mainly to the rolloff in the SNR on the spectral edges due to 
reduced comb power (the peak SNR was ~2× better) and to unequal source and LO powers.   

We can also compare Eq. (3) to several other demonstrations of fiber-based dual-comb 
spectroscopy [4, 5]. In the initial cavity-enhancement demonstration of Ref. [5], there were M 
= 1500 resolved elements.  Including a reference scan, the peak SNR 100 2=   and the 
acquisition time 12 ~rT f −= Δ 4 ms. (In [5] the quoted acquisition period is the apodization 
window, but in Eq. (2) it is the time required for a full scan or Δfr

-1).  With these values, the 
experimental quality factor was 6 1/ 21.7 10 HzHM σ = × . In Ref. [4], both sources passed 
through the sample but the SNR should still apply to within a factor of two. We estimate 

3100M ≈ , ε = 115, an SNR of √2×100 for magnitude, and an acquisition time of 2T =  s, to 
calculate 6 1/ 20.25 10 HzHM σ ≈ ×  (with higher values possible for Δfr closer to the Nyquist 
limit). 

In general for a single detector, these results, as well as Eq. (3) and Fig. 2, point to a 
quality factor of HM σ < 107 Hz1/2 for coherent dual comb spectrometry, at least with fiber-
based combs; solid-state combs have lower RIN and could reach higher quality factors. 

2.3 Sensitivity to a trace gas 

The reconstructed response provides high-frequency resolution and accuracy for 
characterizing a sample and therefore comes with the potential to detect a particular gas in the 
presence of large background clutter. The best possible sensitivity (with no background 
clutter) can be calculated based on Eq. (2). To compare with laser spectrometers, it is useful to 
express the sensitivity in terms of the minimum absorption sensitivity at a discrete line 
( )0 min

Lα . One might simply equate this to the uncertainty in spectral intensity, 2 Hσ . 
However, the actual sensitivity is considerably better because there are many measured points 
across a single absorption line and many absorption lines. We derive 

 ( )
( )0 2min

, 0

4
2 ,effective res

H

Lor j jj

L
ν

α σ
π ν α α

= ×
Δ∑

    (4) 

where the sum is over the different rovibrational lines, each with Lorentzian FWHM 
,Lor jνΔ and peak absorption jα . The square root term represents the enhancement over the 

sensitivity calculated at a single frequency element. For the mock signal of Fig 1, the sum is 
over 20 equally strong lines with widths ~20×νres, yielding an enhancement of ~20. More 
realistically, for example, for the HCN data of Refs. [6-8], the enhancement factor relative to 
the strongest line is ~11 for resν =200 MHz. Eq. (4) also assumes the gas response is known. 
While this enhancement helps, the overall sensitivity is low by the standards of laser 
spectrometers. As with conventional FTS, this lower sensitivity is a tradeoff with the fact one 
has access to broadband spectrum.  

2.4 Multiplicative noise from residual phase noise between the combs 

An important noise contribution in any Fourier spectroscopy is multiplicative noise. It can 
occur here due to relative amplitude noise, timing jitter or phase noise between the two comb 
sources. (Shot noise is technically multiplicative but treated as additive here for reasons 
explained in Section 3.2.) We assume most of the timing and phase noise between the combs 
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is suppressed either through active phase-locking or monitoring approaches [4, 6-8]. (It would 
be possible to suppress pulse-to-pulse amplitude noise in this way as well, in principle.)  
Nevertheless, there will remain residual noise between the combs and it is useful to calculate 
the effect of this noise on the measured sample response. Carrier phase noise is particularly 
troublesome even for highly stabilized combs [20], so we concentrate on carrier phase noise 
rather than timing jitter. We can divide the phase noise into slow and fast components. Phase 
noise slow compared to the interferogram update rate 1

rf
−Δ  will cause a reduction in the 

summed interferogram signal of ( )2
,1 / 2slowϕσ−  where 2

,slowϕσ  is the (slow) component of the 

phase variation.  For , 0.4slowϕσ = rad, the net effect is a negligible reduction of 8 % [19]. For 
time scales where ,slowϕσ  > 1 rad, phase correction should be applied in the usual way [8, 16]. 
With these considerations, slow phase noise is not generally a problem. 

Residual fast phase noise that occurs over the timescale of the interferogram (and 
particularly over the centerburst) cannot be similarly removed. Assuming the noise is small (< 
1 radian),  it adds a multiplicative noise term that will average down with the square root of 
the number of interferograms, but can still easily exceed the additive white noise. For 
example, a 0.1 radian variation leads to ~ 10 % noise over the centerburst, which will 
completely mask any weak underlying signal. To retain sensitivity in the time domain to the 
sample response (i.e., FID signal for a trace gas), the centerburst duration ( ~ 1/ AνΔ ) must be 
shorter than the sample coherence time (~inverse width of the spectral features).  In the 
frequency domain, this multiplicative noise results in phase and amplitude noise with a 
correlation width equal to the spectral width of the signal in a given sub-band , e.g., AνΔ  
yielding a slow baseline wander. To retain sensitivity in the frequency domain to a sample 
response, the correlation width AνΔ  must be larger than the width of the spectral features 
(exactly the same condition as in the time domain). The slow wander can be removed by a 
simple polynomial fit [6-8].  Assuming white carrier phase noise with pulse-to-pulse variance 
of 2

, fastϕσ  and a spacing between filter centers equal to the FWHM, the noise on the magnitude 
or phase is approximately  

 , ,~ 3 ,H mult fast
d rTN f ϕ
νσ σΔ  (5) 

with a Gaussian correlation width equal to the spectral width of the filter or AνΔ .  The 
variables are defined again in Table 1. (See Eq. (30) for a more rigorous expression). This 
noise can be compared to the white noise of Eq. (2). For Nd = 1 and the values of Fig. 1, 

1/2
, ,~ 0.1 HzH mult fastϕσ σ − .  (Note that the shot-noise contribution of the relative phase noise is 

1/2
, ~shotnoise
fast cnϕσ − , where cn  is the number of photons per pulse. Inserting this into Eq. (5) yields 

a noise contribution that is ~ M times smaller than the equivalent shot-noise contribution in 
Eq. (2).)  In general, while this multiplicative noise may be larger than the additive white 
noise, it is highly correlated across the spectrum; its contribution to the noise across a spectral 
line of width LνΔ  is only ~ ( ) ,L A H multν ν σΔ Δ . For example, in Refs. [7, 8], , ~ 2H mult Hσ σ  but 
since 100A Lν νΔ > Δ , the multiplicative noise was negligible. Therefore, through a 
combination of suppressing residual noise between the combs and the built-in common-mode 
rejection of Fourier spectroscopy, multiplicative noise can be suppressed in dual comb 
spectroscopy to a level where it is unimportant.  Of course, with greater sequential or parallel 
filtering, AνΔ  is reduced and there is a corresponding reduction in the effective common 
mode rejection so that one must be careful to always ensure that this noise contribution 
remains below Eq. (2).  
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2.5 Comparison with tunable laser spectrometer & grating spectrometer 

It is also useful to compare the SNR of a dual-comb spectrometer to a tunable laser 
spectrometer (TLS) [17, 18] covering the same bandwidth at the same resolution. We first 
compare to the dual-comb spectrometer with a single point detector and no filtering 
( 1dF N= = ), ignoring geometry-dependent numerical factors and assuming spectrally flat 
RIN and comb spectrum.  In the detector noise limit, the dual-comb spectrometer is equivalent 
to a TLS with a power teeth toothN P  where toothP is the power per tooth and teeth rN fν= Δ  is the 
number of participating comb teeth (equal to M for 1ε = ). Of course, the TLS is unlikely to 
be detector noise limited. In the shot-noise limit, the dual-comb spectrometer is equivalent to 
a TLS at a power equal to toothP . In the RIN limit, the dual comb spectrometer is equivalent to 
a TLS with a RIN that is Nteeth greater. The comparison improves if sequential or parallel 
acquisition is used. For example, in the shot-noise limit the dual-comb spectrometer is 
equivalent to a TLS with power d toothN P and, in the RIN limit, to a TLS with a RIN of 

( )2
teeth dN RIN N F . 

 There are several additional points in favor of dual-comb FTS over TLS. First, the comb 
spectrum can, in principle, cover spectral regions where a TLS is unavailable. Second, a 
conventional TLS measures the intensity (amplitude) and does not recover the phase of the 
signal. It is possible to configure a TLS to measure phase as well as amplitude, but it is 
difficult to control the phase noise down to the sub-mradian level possible with dual comb 
spectroscopy. Third, high frequency accuracy and stability is challenging in a fast swept laser 
system. Fourth, the comb spectrometer can acquire spectra more rapidly than many (but not 
all) swept lasers and allow for spectral measurements in dynamic systems. This potential for 
high speed spectral measurements is a strong attribute of dual comb spectroscopy.  

2.6 Summary 

We derive the basic SNR achievable with a dual comb spectrometer, Eq. (2), considering the 
effects of additive white noise from detection, shot noise, or RIN due to additive ASE under 
the assumption of negligible differential chirp, Nyquist filtering, and negligible 1/f noise 
between the combs. This latter assumption requires some combination of a sufficiently high 
scan rate (Δfr) and effective phase-locking between the combs through active feedback or 
monitoring of error signals. We show that under the appropriate conditions, multiplicative 
noise can be controlled to below the noise level of Eq. (2). We also derive the effective SNR 
for trace gas detection considering the additive noise of Eq. (2). We allow for the possibility 
of detecting the entire spectrum at once, sequentially through a tunable filter, or in parallel 
through a fixed filter and detector array.  

The equations can be used to guide the design of dual-comb spectrometers, depending on 
the contribution of the different noise sources. For example, with appropriate care in treating 
multiplicative noise, the best SNR is attained through a dual comb spectrometer that uses a 
detector array.  A useful figure of merit, both in terms of the scaling of the SNR and for 
practical reasons, is the quality factor given by the product of the number of resolved elements 
and the SNR. For fiber-based systems, it is on the order of 106 Hz1/2 – 107 Hz1/2; however, the 
equations are general and apply as well to future dual comb spectroscopy into the mid- and 
long-wave infrared. The limit to the sensitivity for measuring a specific gas spectrum will be 
set by the SNR, the overall path length (which can be quite large for these systems through 
either cavity enhancement or multipass cells) and the total achievable integration period, 
which can also be quite large through coherent signal averaging. Although not as sensitive as 
tunable laser spectrometers, dual-comb spectrometers are promising for broadband detection 
of multiple gases and for high resolution spectroscopy, due to the excellent frequency 
resolution and accuracy, the high acquisition speed, and the possibility of accessing spectral 
regions inaccessible to tunable lasers.  
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3. Derivations 

The organization of this section mirrors that of Section 2, i.e. Section 3.1 derives the basic 
response of the system, additive noise is considered in 3.2, trace gas sensitivity in 3.3, and 
multiplicative noise in 3.4. For added insight, the derivation is given in both the time domain, 
where the data are acquired, and the frequency domain, where they are often used.   

As shown in Fig. 1, a single detector will see an “instantaneous” spectral subband of 
width ( )dA FNν νΔ = Δ  for an acquisition period /AT T F= . The responses within each 
spectral sub-band are concatenated in the frequency domain to cover the full source 
bandwidth, Δν, (and then inverse Fourier transformed to yield the time-domain response). 
Assuming roughly uniform spectral power, the spectral SNR within a subband AνΔ  is 
identical to that over the full band νΔ , and therefore we need calculate only the SNR in a 
sub-band.  The subscript A  is added to the variables in Table 1 to indicate filtered quantities. 

3.1 System response 

In dual comb spectroscopy, the source and the LO have different pulse repetition periods, TS 
and TL, so that the LO pulses advance through the source pulses by L ST T TΔ = − every LO 
pulse, yielding a down-conversion factor in time of  

 1.S LT T
K

T T
≡ = −

Δ Δ
 (6) 

that relates laboratory time to effective time. (We take 0TΔ > .)  A single pass of the LO pulse 
through the source pulses generates a single interferogram, which will contain K points and 
take a time 1

rf
−Δ . Similarly, in the frequency domain, the repetition rates frS = TS

-1 and frL = TL
-

1 differ by r rS rLf f fΔ = −  so that their heterodyne signal is an rf comb with repetition rate rfΔ  
yielding a down-conversion factor in frequency of [1-8, 13],  

 1.rSrL

r r

ffK
f f

≡ = −
Δ Δ

 (7) 

As noted in previous work [19], to achieve fully synchronous sampling, we would like 
each time-domain interferogram to be identical so that we can simply add them. In the 
frequency domain, the rf frequency comb then falls exactly on the measured frequency grid, 
which is not necessary [4] but does simplify the math. To achieve this, we assume [19]:  

(1) K is an integer. This condition ensures that the overlap of the Kth LO pulse with (K+1)th 
source pulse has exactly the same time offset as the overlap of the 0th LO and source pulse.  
(2) ( ) , ,1 2ceo S ceo LK K qθ θ π+ Δ = Δ + , where , ( )ceo S LθΔ is the carrier-envelope offset (ceo)  
phase shift per pulse [24, 25] and q is an integer. This insures the relative phase of the Kth LO 
pulse and (K+1)th source pulse is exactly the same as the 0th LO and source pulse. An 
equivalent condition is that a regular series of comb teeth, 0 0n rLnKfν ν= +  sit at identical 
frequencies for both source and LO combs. For simplicity, we select 0ν  to correspond to the 
particular “shared” comb tooth, 0nν , closest to the carrier frequency of the filtered light.  As 
the filter is tuned, or for different point detectors, or if a comb offset frequency is shifted (in 
increments of Δfr), part of the bookkeeping is to track jumps in 0ν .    
(3) The entire instantaneous bandwidth AνΔ   falls between 0ν  and 0 / 2rSKfν ± , i.e., 

00 / 2rSKfν ν< − < . This condition insure there are no rf beats that fall at zero or Nyquist 
and  avoids aliasing effects. Clearly, in an experiment, it is necessary to first shift 0ν  if a 
portion of the optical spectrum covering a shared tooth, or equidistant between two shared 
teeth, is to be measured (see Fig. 4). 
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(4) All spectral filtering is Gaussian with FWHM AνΔ  and a spacing between filtered sub-
bands equal to the FWHM. (The formulae then apply to d 1N F= =  for a Gaussian source.)  

Figure 4 clarifies the different frequencies involved.  

Measured Bandwidth Δν

Filter
ΔνAK source comb teeth

ν0 ν0+KfrνA ν0+nKf ν0+(n+1)Kfr
Frequency

In
te

ns
ity

rNyquist Nyquist

 
Fig. 4.  Schematic of the different optical frequencies involved in the calculation.  The light 
blue (dark blue) lines are the source (LO) comb lines. Their repetition-rate difference is Δfr. 
The entire measured bandwidth is Δν, but for any given interferogram, the bandwidth is filtered 
to ΔνΑ either sequentially by tuning the filter across the spectrum or in parallel with a fixed 
filter bank to multiple detectors (or a combination of the two.)  Note the “dead zones” where 
the rf beat notes are at either zero or Nyquist frequency; at these filter locations an overall 
frequency shift is applied to one source [7, 8]. 

Under assumptions 1 and 2 above, the source and LO electric fields are 

( ) ( ) ( ) ( )0 02 2, ,S Si i t i i t
S S S L L Ln m

E t e e A t nT E t e e A t mTϕ πν ϕ ϕ πν− +Δ −= − = −∑ ∑  (8) 

where n and m are pulse indices, sϕ and ϕΔ are phase factors, 0ν  is the common shared comb 
tooth, and AS(L) are electric field envelopes. These equations describe two combs with 
frequencies 0n rSnfν ν= ±  and 0m rLmfν ν= ±  where n, m are integers. We assume the source 
and LO pass through the same spectral filter, so that AL and AS have identical carrier 
frequencies, 0Aν ν− , and bandwidths, AνΔ . As stated earlier, we assume negligible 
differential chirp.  

The heterodyne portion of the detected voltage is 

 ( ) ( ) ( ) ( )*' ,L SV t aR t E t E t= ⊗  (9) 

where R(t) is the filtering from both hardware and software and a converts from squared 
electric field to measured photocounts. The voltage is digitized synchronously with the LO 
comb at a series of times, LkT , where k is an integer. Substituting (8) into (9) yields 

( ) ( ) ( )( ) ( )*
,

' ' ' ' ' 'i
k L L L S L Sn m

V V t kT a e R A k m T A kT nT dϕ τ τ τ τ− Δ= = = − − − −∑∫ .  

Rewriting this in terms of the effective time efft k T= Δ , noting L ST T T= + Δ , and with 
the change of variables , , ' L Sr n m p k m kT pTτ τ≡ − ≡ − = − +  , after some rearranging, 

 ( ) ( )/

0
' ,framer T Ti

eff eff Sr
V t e V t rTϕ =− Δ

=
= −∑  (10) 

where the individual terms (interferograms) are  

 ( ) ( ) ( ) ( ) ( )' ' ' ,S sV t S t A t t dt S t A t= − ≡ ⊗∫  (11) 

with a sampling function ( ) ( ) ( )*
S Lp

S t a R pT t A p T t= + Δ −∑ .  

Eq. (10) simply describes a series of concatenated interferograms. If Fourier transformed, 
one finds the rf comb of Ref. [6].  However, it is simpler to just add the individual 
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interferograms, and just as effective in terms of noise suppression. With the assumption of 
synchronous sampling, there is no phase shift between interferograms, and the grid of time 
points, efft k T= Δ  is aligned with the effective time offset ST , so that no interpolation is 

required in calculating the average interferogram, ( )effV t . Henceforth, we drop the brackets 

and let efft t→ . Under assumption 3 above, TΔ  is sufficiently short that p TΔ  is effectively 

a continuous variable ( p T τΔ → ), and the sum for ( )S t  can be rewritten as 

( ) ( ) ( )1 *
LS t a T R K t A t dτ τ τ−≈ Δ + −∫  with Eq. (6). With a change of variables, 

 ( ) ( )1 * 11 .L
KS t a T R K t A t

K
− ⎡ + ⎤⎛ ⎞= Δ + ⊗ −⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 (12) 

In the limit K >> 1 and a broad detection bandwidth, ( ) ( )*
LS t A t≈ − , as expected.   

From a frequency-domain point of view, Eq. (8) in the limit of a long pulse train is also   

 
( ) ( )
( ) ( )

0

0

2 2

2 2 ,

S rS

S rL

i i t i qf t
S S rSq

i i t i pf t
L L rLp

E t e e A qf e

E t e e A pf e

ϕ πν π

ϕ ϕ πν π

− −

+Δ − −

=

=

∑
∑

 (13) 

where q, p are integers. Substitution into Eq. (9) gives 
( ) ( ) ( ) ( ) ( ) ( )2 22 *

,

rL rSi pf t i qf ti i f
L rL S rS

p q
V t e d df R f e A pf A qf e eπ τ π τϕ π ττ − − −Δ −= ∑∫ . Letting p =w+q, and 

carrying out the integrations, 
( ) ( ) ( ) ( ) 2 2*

,
' .r rLi q f t i wf ti

r rL L rL rL S rS
w q

V t e a R q f wf A qf wf A qf e eπ πϕ − Δ− Δ= Δ − +∑  (14) 

Only the w = 0 term survives, and there is a finite range of q , giving  

 ( ) ( ) ( ) ( )max

min

2*' ,r
q q i q f ti

r L rL S rSq q
V t e a R q f A qf A qf e πϕ = − Δ− Δ

=
= Δ∑  (15) 

with the Fourier transform  

 ( ) ( ) ( ) ( ) ( )max

min

*' ,q qi
r L rL S rS rq q

V f e a R q f A qf A qf f q fϕ δ=− Δ
=

= Δ − Δ∑  (16) 

or the standard “multi-heterodyne” result modified to account for the frequency response of 
the detector: an rf comb where each tooth at rq fΔ is the beat between the neighboring qth comb 
lines [1, 2, 6] . We rewrite this in terms of the optical frequencies ( )1K fν = + as 

( ) ( ) ( )( ) ( )( ) ( ) ( )1 *' 1 1 1i
L S rSq

V e a K R K A K K A qfϕν ν ν ν δ ν−− Δ= + + + −∑ . We observe for 

only a finite time so the delta function should be a sinc function; however, we sample on the 
grid of rSqfν = ,  and the values are unchanged and  

 ( ) ( ) ( ) ,i
SV e S Aϕν ν ν− Δ=  (17) 

where  

 ( ) * ,
1 1 1L

a KS R A
K K K

νν ν⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
 (18) 

 or the transform of Eq. (12). Reinstating 0ν , so that ( ) ( )S L S LA E→ , Fourier transforming, 
adding the effect of the sample response, and a noise term, gives 
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 ( ) ( ) ( ) ( ) ( )
,S

A r

n t
V t S t E t H t

T f
= ⊗ ⊗ +

Δ
 (19) 

evaluated at K  time points separated by TΔ  and covering a time window ST , where ( )n t  is 
the noise in a single interferogram, which is reduced by the square root of the number of 
averaged interferograms equal to A rT fΔ . The interferogram has the appearance shown in Fig. 
1 of a centerburst, oscillating at a frequency 0Aν ν−  and with a width ~ 1

Aν −Δ . If ( )n t  has a 
standard deviation tσ  , the peak time-domain signal-to-noise ratio is 

 ( ) ( )0
/ .A rt

t

V
S N T f

σ
= Δ  (20) 

In the frequency (spectral) domain, the Fourier transform of (19) yields  

 ( ) ( ) ( ) ( ) ( )
,S

A r

n
V S E H

T f
ν

ν ν ν ν= +
Δ

 (21) 

evaluated at (K/2+1) frequency points separated by frS and covering a bandwidth (2ΔT)-1 with 
an optical frequency offset ν0. The SNR in either quadrature is   

 ( ) ( )
/ ,A r

V
S N T f

ν
ν

ν
σ

= Δ  (22) 

where the noise term ( )n ν has equal real and imaginary standard deviations, vσ . 
This SNR applies to both the reference and signal of Eq. (1). Therefore, the noise on the 

normalized transmittance, or sample response is  

 
( )

2 ,H S N
ν

σ =  (23) 

where the numerator includes one factor of √2 from comparing reference and signal and one 
factor of √2 from the fact that equal periods must be spent measuring reference and signal. At 
this point, the detector response, R(ν) drops out. We will assume a bandwidth matched to 
Nyquist (thus avoiding aliased noise) but otherwise ignore R(ν) below.  

3.2 Contributions of additive white noise sources 

We now derive Eq. (2). The additive, white, Gaussian noise from detector noise, shot-noise 
and laser RIN to each interferogram has standard deviation 

          ( ) ( ) ( )( )2 2 2 2 22 2 .t d S LO S r L L r Sn n RIN f n RIN f nσ σ η η η η= + + + +  (24) 

The first term is the detector and digitizer noise contribution, dσ  (in units of photon counts). 
The second and third term are shot noise, where ( )S LOn is the number of photons per source 
(LO) pulse within the filtered band AνΔ . The shot-noise term is technically multiplicative, as 
it varies over the centerburst, but if the centerburst is short compared to the interferogram, we 
ignore this variation. The last two terms arise from the excess RIN of the lasers, which we 
assume here arises from an additive ASE field. This RIN is white so that variation in photons 
per pulse Snδ  is ( ) ( )2 2S S S rn n RIN fδ =  since the RIN is single-sided.  With balanced 
detection, this RIN from each individual laser is cancelled. However, the noise from the LO 
pulses beating against the source ASE component, and vice versa, is not cancelled and leads 
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to the 4th and 5th terms in Eq. (24). Without balanced detection, the RIN contribution is twice 
as big. The peak signal for the interferogram is ( )0 2 2S LO SV n n nη η γ= =  and Eq. (20) 
becomes, 

( )
( )2

1 2 2 2 2 2 2

2
/ ,

2 4
S

A rt
d S r S S

n
S N T f

c n c b RIN f n D nγ γ

η

γ σ η η η− −
= Δ

+ + +
 (25) 

where ( ) ( )1 2cγ γ γ= + , ( ) ( )2
21 2c

γ
γ γ= +  for L SRIN RIN RIN= =  and we introduce the 

parameter b =1(2) for balanced (unbalanced) optical detection. The last term in the 
denominator is added to include experimental dynamic range limitations in the detection that 
clamp the SNR of a single interferogram to D. The fraction in brackets is the SNR of a single 
interferogram; for 1γ = ; it equals 2 Snη  in the shot-noise limit and D  in the dynamic range 
limit, which can be set by the photodetection, amplification or digitizer.  

Under the assumption of white noise, the frequency domain is 

( ) ( ) ( )( ) ( )/ 2 /
t

S N K V V S N
ν

ν ν= × , where the brackets indicates the mean value 

across the measured spectrum [16]. An average of the numerator over the central FWHM of 
the gaussian signal spectrum, denoted 

AνΔ
, gives the ratio 

( ) ( ) ( )( ) ( )erf ln 2 2 ~ 0.4
A

r A r AV V Kf Kf
ν

ν ν ν ν
Δ

= Δ Δ  for ( ) 12A Tν −Δ << Δ (which 

is true to avoid aliasing).  With cA r sP h f nν≡ , in the frequency-domain Eq. (25) becomes, 

( )
( )2

1 2 1 2 2 1 2

2
/ 0.8 ,

4 2 8
A cA

A cA cA r cA

T P
S N

M NEP c h P bc RIN P D f Pν
γ γ

γ η ν− − − −
=

+ + +
 (26) 

where we use rS rL rf f f≈ ≈ , A A rM fν= Δ , and the equality 1 2d rh NEP fσ η ν− = . 
Assuming this same SNR is achieved across the full spectrum (i.e., the RIN and power are 
spectrally flat), and accounting for spectral reconstruction we substitute /AT T F= , 

( )A AM M ν ν= Δ Δ ,  ( ),c c A AP P ν ν= Δ Δ  and  ( )A dFNν νΔ = Δ into Eq. (26), and the result 
into Eq.  (23),  

2

2
1

2 2 2

1 4 1 82 .
0.8H

c c d d r d

M NEP h RINF c bc
P P N FN D f FNT γ γ

νσ γ
η

−
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= + + +⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 (27) 

This uncertainty can be improved by smoothing (i.e., apodizing in the time domain) to a 
resolution of resν . In that case, we redefine resM ν ν= Δ to retain its definition as the number 

of resolved elements and multiply by res rfε ν=  to finally reach (2). 

It is easier to derive the same expression (27) entirely in the frequency domain.  For 
simplicity, we take 1γ =  so that the power per tooth, toothP , is the same for the source and LO 

combs. The rms signal amplitude between two teeth is 2 toothPη at an rf frequency 
corresponding to their optical frequency difference. The white noise power is 

( )2 2 2 24 2cA cANEP h P b P RIN Bη η ν η⎡ ⎤+ +⎣ ⎦ , where the first term is detector noise, the second 
term is the shot noise associated with the two sources, and the third term is the RIN of the two 
sources.  Note that both the shot noise and RIN are given by the total comb power cAP . The 
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effective bandwidth is ( )1/ 2 AB T= . This random noise power contributes equally to the 
amplitude and phase noise, and  

 ( )
2 1 2

2
/ .

4 2
A tooth

cA cA

T P
S N

NEP h P bP RINν η ν−
=

+ +
 (28) 

Averaged across the FWHM of an assumed Gaussian spectrum, the comb tooth power is 
0.8tooth cA AP P M=  and Eq. (28) is exactly Eq. (26) after reinstating γ  and introducing D. 

3.3 Sensitivity to a known gas 

A weakly absorbing gas with density ρ  and sample length L will have a time-domain 

response equal to ( ) ( ) ( ) ( )sincH t t t LF tπ ν δ ρ= Δ ⊗ +⎡ ⎤⎣ ⎦ , where the sinc term reflects the 
instrument response over the bandwidth νΔ  and the term in square brackets is the sample 
response characterized by the function ( )F t . We use a standard matched filter approach by 
defining a cutoff time 0t . We mask out points earlier than 0t  to avoid the multiplicative noise 
across the centerburst. The uncertainty in the column density, Lρ , is 

( ) ( )
0 0

2
2 2

, 2 Si S

i

Tt T
L t R i H rest t t

F t F tρσ σ σ ν=

>
= =∑ ∫ , where ,t R H Mσ σ= is the standard 

deviation of the spectrally reconstructed time-domain interferogram (See Fig. 1). For a Voigt 
profile, a single absorption line at jν  with integrated line strength jS  has a time-dependent 

response ( ) ( ) ( )2 2 2
,2 / 4ln 2 jj D Lori t

j j
t tF t S t e eπ ν π ν π νθ − − Δ − Δ= , where DνΔ  is the FWHM Doppler 

width, LorνΔ  is the FWHM Lorentzian width and ( )tθ is the Heavyside step function.  (This 
time-dependent signal is exactly the free induction decay). We will assume a collisionally 
broadened line ( Lor Dν νΔ > Δ ). If 1 1

0 ,Lor j rSt fν − −<< Δ << , the limits on the integral are 0 and ∞  

and ( ) 12
,2 2L H res j Lor jj

Sρσ σ ν π ν
−

= Δ∑ , where the sum is over all observed lines. The 

peak absorption of a given line is ( ),2j j Lor jSα ρ π ν= Δ for a Lorentzian. To rewrite this in a 

more conventional form, we let ( )minL Lρσ ρ= , the minimum detectable column density, and 
then scale it by a particular reference line (denoted 0j = ), to find  the effective minimum 

absorption, normalized to a  reference line, ( ) ( ) ( )1
0 0min min

2effective
LorL S Lα π ν ρ−≡ Δ , or  Eq. (4).  

3.4 Multiplicative noise from residual phase noise between combs 

The combs will exhibit residual amplitude, timing and phase jitter between pulses since no 
effort to remove the residual noise will be perfect. The carrier phase noise is typically 
dominant because it is the most challenging to control and, particularly outside the locking or 
monitoring bandwidth, the combs will have some residual high-frequency phase variations 
[20]. As a result, the first term of Eq. (19) is modified to ( ) ( ) ( )i KtV t e V tδϕ→ , where the 
exponent describes the relative carrier phase jitter as a function of laboratory time. The fast 
phase variations are particularly problematic (see Section 2.5). If small (< 1 rad), they add a 
multiplicative noise ( ) ( ) ( )n t iV t tδϕ= to Eq. (19). From a generalized Eq. (22) and (23),  

 ( )
( ) ( )
( ) ( )

*
2

, *

'4, '
'H mult

A r

n n

T f V V

ν ν
σ ν ν

ν ν
⎛ ⎞

= ⎜ ⎟Δ⎝ ⎠
 (29) 
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is the covariance with ( ) ( )( ) ( )0 /n K iVν ϕ ν ν ν= − ⊗ . Assuming a pulse-to-pulse phase 

variance of 2
, fastϕσ , ( ) ( ) ( )* 2 1

,' 'fast rf f f f fϕϕ ϕ σ δ−= −  and a Gaussian filter profile, 

( ) ( )( )2 2exp 4ln 2 A AV ν ν ν ν⎡ ⎤= − − Δ⎣ ⎦ ,  

 ( ) ( )2 2
1/ 4

4 ln(2)
, ,2

2, ' ,
ln(2)

A AA
H mult fast

A r

e
T f

ν ν ν
ϕ

νπσ ν ν σ − Δ⎛ ⎞ Δ
≈ ⎜ ⎟

⎝ ⎠
 (30) 

where ( )' / 2ν ν ν= + . As expected, the noise increases exponentially in the wings of the 
spectrum, because the white phase noise will lead to broadband noise while the signal is 
falling exponentially. At the center, ' Aν ν ν= = , the noise is just the prefactor to the exponent 
in Eq. (30). We restrict the data to the FWHM or 2 2A A A Aν ν ν ν ν− Δ < < + Δ . The 
correlated noise is removed through phase correction; the remaining uncorrelated noise is 

3 times the prefactor in (30). Substituting, AT FT=  and d AN Fν νΔ = Δ  , we reach Eq. (5). 
Similar derivations can be made of relative jitter in effective time, tδ , or relative fractional 
amplitude noise, aδ , with the substitution of ( ) ( ) ( )n t t dV t dtδ=  or ( ) ( ) ( )n t a V tδ=  
respectively. 
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