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Abstract In this paper, the piezoelectric ceramics mounted on the endplates of a 

cylindrical resonator were used as the source and detector for acoustic speed 

measurements. The perturbations of the longitudinal gas modes of the cavity due to 

the compliance of the diaphragms (10 mm diameter, 0.3 mm thick) and the attached 

transducers were estimated from first-order perturbation theory. The estimated 

fractional shifts of the resonance frequencies in argon caused by the source and 

detector were 60.07 10  at 0.1 MPa and 273.16 K. The high signal-to-noise ratio 

(up to 41 10 ) we obtained with these transducers makes them suitable for acoustic 

thermometry. Heat generated by dissipation in transducers is an important 

consideration. The dissipation that we measured in the source transducer was only 

0.7 μW  at the working voltage (7 V) and frequency (1 kHz). 

 

Keywords Acoustic thermometry · Acoustic speed · Transducer · Piezoelectric 

ceramic · Cylinder 
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1 Introduction 

 

Acoustic thermometry is one of the most accurate ways to determine 

thermodynamic temperature and Boltzmann constant by measuring the acoustic 

resonance frequencies of diluted, high purity argon or helium in a gas-filled cavity 

[1-4]. The most promising way to determine the universal gas constant R and the 

Boltzmann constant kB with relative uncertainty less than 61 10  is the acoustic 

thermometry which can fulfill the new definition of temperature unit – Kelvin (K) [5]. 

In order to achieve this uncertainty, the acoustic impedance of the transducer used to 

generate and detect the acoustic signal in the cavity need to be determined over the 

whole working frequency range. Piezoelectric ceramic is one of proper transducers 

which can improve signal-to-ratio for determining the resonance frequency with 

relative uncertainties of 61 10  or less.  

Quinn [6, 7] measured the Boltzmann constant by using a variable-length 

cylinder resonator with the piezoelectric ceramic as the detector. One obvious merit of 

this procedure lays in its high signal-to-noise ratio which can remedy the low quality 

factor Q for the cylinder resonator. But this brings perturbations to the acoustic and 

temperature fields for the determination of acoustic speed and the Boltzmann 

constant. 

In this paper, the piezoelectric ceramic was designed on a diaphragm of the 

resonance cavity to provide stable acoustic signal. The acoustic impedance, the 

frequency shift caused by the two transducers and the heat generated by the power 

dissipation were determined by the experimental and theoretical investigations for the 

piezoelectric ceramic. The results showed that the piezoelectric ceramic can be used 

for the acoustic thermometry and bring low perturbations. 

 

2 Fundamental theory 

 

Consider a circular diaphragm with radius a and thickness t that has been 



4 

machined into a plate as shown in Fig. 1. A piezoceramic disc is firmly attached to the 

underside of the diaphragm such that the strains in the piezoceramic are assumed to be 

equal to the strains in the diaphragm. A pressure difference p applied uniformly 

across the diaphragm will cause the diaphragm to deflect by an amount  
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 (1) 

where Y is Young’s modulus,  is the Posson’s ratio, and z is the deflection of the plate 

as a function of distance r from the axis [8]. p is defined as positive if the pressure 

above the diaphragm in Fig. 1 is greater than the pressure below the diaphragm. Eq. (1) 

describes a plate with a “clamped” boundary condition.  

 

The average deflection over the area of the plate is: 
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The effective the compliance per unit area of the diagram, defined as 
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is used to estimate the perturbation to the resonance frequencies in the next section. 

The stresses in the diaphragm as a function of distance from the center due to an 

applied pressure are approximately [10] 
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where r  and   are the radial and azimuthal stresses. The radial and azimuthal 

strains in the diaphragm are given by 
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 (6) 
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Similar relationships hold for the strains in the piezoceramic in terms of Young’s 
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modulus YPZT and Poisson’s ratio PZT. We equate the radial strains and the azimuthal 

strains in the diaphragm and the ceramic,  PZTr r   and  PZT   , where the 

subscript PZT refers to the piezoceramic. These relationships can be inverted to give 

relationships between the stresses in the ceramic and in the diaphragm,  

        PZT PZT
PZTPZT PZT PZT2
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 (8) 
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. (9) 

For a circular piezoelectric ceramic disc that has been poled along the z-axis 

(perpendicular to the flat faces), the relevant piezoelectric coefficients relate the 

stresses and strains to the electric fields  

 PZT
31 31
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where Fr is the radial-component of the force, Ez is the electrical field in the z 

direction, d and g are the electro-mechanical properties matrices of piezoelectric 

ceramic. Eq. (10) is obtained from the constitutive equations. 

We realized the piezoceramic-diaphragm system shown in Fig. 2 in the endplates 

of a cylindrical resonator. A very thin diaphragm (0.3 mm thick), axially located, was 

machined into each endplate. A piezoelectric ceramic disc was attached to the outer 

surface of each diaphragm with epoxy as shown in Fig. 2. One was used as an 

acoustic source and the other as a detector. The resonator was made from oxygen-free 

copper, had an inner radius of resonator of 40 mm, an inner length of 129.4 mm, and a 

wall thickness of 10 mm. 

 

3 Source and detector 

 

The model described in the section 1 was used to estimate the source strength and 

detector sensitivity of the PZT diaphragm transducers. The RMS volume displaced by 

the diaphragm is  
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 2V a z  , (11) 

where a is the radius of the well on the endplate. For the longitude mode of the 

cylindrical resonator, the acoustic pressure Longp  generated at resonance is  

 2
Long 4

2

V
p iQ c

V
 

 , (12) 

where Q is the quality factor for the resonator and V is the volume of the resonator, 

and   and c are the density and speed of sound of gas in the resonator, respectively. 

From Eq. (10), the radial strain in the diaphragm at PZTr a  is given by: 
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where PZTa  is the radius of the piezoelectric ceramic.  The strain in the PZT due to 

the applied voltage produces in the diaphragm a similar strain, which we relate to an 

effective pressure that results in the diaphragm deflection. From Eqs. (4) and (5), we 

obtain the relationship between the strain generated in the diaphragm and the effective 

pressure p  generated by the PZT 
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. (14) 

Combining Eqs. (10), (13) and (14), and also remembering s PZT/zE V t , we find the 

effective pressure 
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. (15) 

From Eqs. (2) and (15), we estimate the displaced volume V  

 
4

2 31 s
2

PZT PZT
3

3 1

d Va
V a z

t t a
a

   
     
   

. (16) 

Finally, we estimate the longitude acoustic pressure generated by the PZT source from 

Eq. (12) as a function of the applied voltage Vs 
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where R and L are the radius and length of the cylindrical resonator, respectively. 

Next, we estimate the sensitivity of the detector. The radial stress for the PZT 

detector is 
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. (18) 

The voltage from the detector is 
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 (19) 

where p  is the RMS acoustic pressure.  We combine Eqs. (17) and (19) to estimate 

the detector signal at a longitudinal resonance in the cylindrical cavity as a function of 

the RMS source voltage sV  
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4 Results and discussions 

 

The piezoelectric ceramics used in this paper were type 402 from Piezo Kinetics 

Inc [9]. The properties of PZT 402 are shown in Table 1. 

 

4.1 Location of the source and detector 

For the steady state, the modified Helmholtz equation for forced oscillations of 

the acoustic pressure is [10] [11] 

      2 2, , i t
ac ac acp t k p t S e 

  r r r% % , (21) 

where �p  is the acoustic pressure, ac bk i
c

   ,  S r  is the source strength,  is 

the source frequency, and b is the bulk absorption coefficient.  If the sound source 
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is embedded in the boundary wall at  0r r  and drives the sound by a small motion 

of the boundary like a piston, then we may incorporate the source into the boundary 

condition and obtain the pressure response from 

          srcˆ| | ,
V S

p S G dV i G dS           r r r r r r n u r% %g , (22) 

where G is the Green’s function and srcu%  is the source strength, respectively. There 

are no volume sources in our case, so the volume integral in Eq. (22) vanishes.  To 

proceed, we expand the Green’s function in the surface integral in terms of the 

eigenfunctions of Eq. (21) in the usual way [11]. 

The actual source and detector transducers are not point objects, but they are 

small compared to the wavelength of sound. The approximate the integral over the 

source in Eq. (22) by a uniform velocity and the average wavefunction at 0r  

 N s
 0r  over the area of the source. The signal from the detector transducer at dr  

is proportional to the average of the acoustic pressure over the area of the detector.  

When we average both sides of Eq. (22), replace  N dr  in the expanded Green’s 

function with its average  N d
 dr . In terms of these average quantities, the 

detector signal is proportional to 

  
   
 

0

2 2

Ψ ΨN d Nd s
d d

N N N

if
p

F f
 





r r

r , (23) 

where   is the eigenfunction and   21N NV
V dV   , NF  is the (complex 

valued) resonance frequency. 

The eigenfunctions for the rigid-walled resonator are [10] 

          Ψ cos sin coslmn m mnJ r R m m l z L      r  (24) 

where 0,1, 2,...l   is the longitudinal quantum number, 0, 1, 2,...m     is the 

azimuthal quantum number, and 0,1,2,...n   is the radial quantum number.  When 

0m  , the eigenfunctions with azimuthal quantum numbers m  are degenerated. 
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mJ  is the cylindrical Bessel function and mn  is the turning point. 

If the thermal and viscous boundary layer corrections are assumed to be the only 

perturbations, the acoustic pressure of the cylinder resonator is obtained from the 

first-order approximation of acoustic theory as [11] 

   3
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where 
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 (28) 

where 0f  is the unperturbed resonance frequency, T  is the thickness of the thermal 

boundary layer,   is the adiabatic index, Pr is the Prandtl number, 0 1   and 

0 2l   . 

The theoretical response from Eqs. (25)-(28) predicts that the coupling between 

the transducers and a particular mode (and therefore the observed response) will be 

minimum (maximum) when the transducers are placed at a pressure node (antinode) 

for that mode. To test this prediction, we measured the acoustic spectrum of the 

cylindrical resonator (Fig. 2), filled with argon at 0.1 MPa and 293.16 K, with the 

source transducer placed at two different locations: (1) the center of the endplate, 

   , , 0,0,0r z  , to maximize the coupling to the longitudinal and radial modes 

while minimizing the coupling to the azimuthal modes, and (2) off center at 
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   , , 0.628 ,0,0r z R  , which is at a radial node for the modes (l,0,1) for l = 0,1,2,....  

In both cases, the detector was located on axis at the opposite end of the resonator, i.e. 

   , , 0,0,r z L  . Figure 3 shows the measured frequency response between 1 kHz 

and 6 kHz for case (1) with both transducers located on axis. The longitudinal modes 

(l,0,0), the radial mode (0,0,1), and the mixed modes (l,0,1) are clearly visible. The 

azimuthal modes near 2334 Hz, 3872 Hz, and 5326 Hz do not appear, since the 

coupling of these modes to both transducers is weak. Figure 4 shows the response for 

case (2) over the same frequency range as Fig. 3. The radial and mixed mode 

amplitudes have been reduced by a factor of 200 due to the reduced coupling.  The 

azimuthal modes again do not appear since the coupling to the detector is weak. 

 

4.2 Compliance and perturbation of the transducer 

From Eq. (3), the compliance of the diaphragm   is  

 
 2 4

3

1 1

16

v az

p t Y



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 (29) 

The acoustic admittance of the transducers is  

 try i c   (30) 

We use first-order perturbation theory to estimate the shift frequency for the longitude 

modes [12] 

 
2

tr tr tr tr
2 2 2

0

f iy A i c A

f l R R L

 
 


    (31) 

Table 2 shows the estimated perturbations for 1/4 inch microphone and PZT 402 at 

273.16 K and different pressures. The perturbations for microphone are calculated 

from Ref. [1] for a spherical resonator. 

 

4.3 Heat generated by the PZT 

Figure 5 shows the circuit we used to measure the dissipation factor tanδ as a 

function of voltage and frequency. The equivalent circuit for the PZT is assumed to be 
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a parallel combination of resistance R1 and capacitance Cp, which is shown in the dash 

frame in Fig. 5. The voltage across PZT was measured by the lock-in SR830 and the 

PZT was attached on the endplate shown in Fig. 2. The 0R (200.110 Ω) is a standard 

resistor which has very low capacity and induction. The power dissipation then can be 

determined by 

 0
diss PZT

0

tan
V

P V
R

  (32) 

Table 3 lists the results and the power dissipation for the PZT 402. Fig. 6 shows 

the power dissipation as a function of the square of source voltage 2
sV  at different 

frequency. If the PZT is operated at 7 V (RMS), the power dissipation will be 0.75~35 

μW at 1~15 kHz by extrapolating from the values shown in Fig. 6. 

 

4.4 Signal-to-noise ratio 

The Piezoelectric ceramic transducers can improve the signal-to-noise ratio for 

the cylinder resonator. Figure 7 shows a typical acoustic resonance for which the 

resonance frequency was 1976.4072 1.7668N N NF f ig i     Hz.  Figure 8 shows 

the amplitude deviation for the in-phase and quadrature components.  The 

signal-to-noise ratio is more than 41 10 . 

 

5 Conclusions 

 

The piezoelectric ceramic transducer can be used for the acoustic thermometry to 

generate and detect the acoustic signal.  The piezoelectric ceramic transducers were 

set on the middle of each endplate in order to minimize the coupling to the azimuthal 

modes.  We observed a signal-to-noise ratio up to 41 10  for cylinder resonator 

which is high enough to fit the complex resonance frequency with a precision of 10-7 

of fN.  The heat generated by the piezoelectric ceramic transducer is 0.75 to 35 μW 

when the voltage is 7 V and frequency is 1 to 15 kHz, respectively.  The 
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perturbations to the acoustic field are only -0.03×10-6 and -0.27×10-6 when pressure is 

0.1 MPa and 1 MPa, respectively, at 273.16 K in argon.
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Figure Captions 

 

Fig. 1 Pressure applied on a diaphragm 

 

Fig. 2 Cylinder resonator and the transducers settlement 

 

Fig. 3 Spectra for cylinder resonator at 1~6.5 kHz in argon when the source transducer 

is at    , , 0,0,0r z  and detector is at    , , 0,0,r z L   

 

Fig. 4 Spectra for cylinder resonator at 1~6.5 kHz in argon when the source transducer 

is at    , , 0.628 ,0,0r z R  and detector is at    , , 0,0,r z L   

 

Fig. 5 Circuit used to measure the dissipation factor 

 

Fig. 6 Power dissipation of PZT 402 changing with the square of source voltage for 

different frequency 

 

Fig. 7 The in-phase and quadrature voltages from the PZT detector as a function of 

frequency near the (100) longitude mode of cylinder resonator (2R=80 mm, L=80 mm) 

in argon. 

 

Fig. 8 Measured voltages minus calculated voltages[13] 
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Fig. 1.  Pressure applied on a diaphragm 
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Fig. 2.  Cylinder resonator and the transducers settlement 
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Fig. 3.  Spectra for cylinder resonator at 1~6.5 kHz in argon when the source transducer is at 

   , , 0,0,0r z  and detector is at    , , 0,0,r z L   



19 

 

 

Fig. 4.  Spectra for cylinder resonator at 1~6.5 kHz in argon when the source transducer is at 

   , , 0.628 ,0,0r z R  and detector is at    , , 0,0,r z L   
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Fig. 5.  Circuit used to measure the dissipation factor 
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Fig. 6. Power dissipation of PZT 402 changing with the square of source voltage for different 

frequency 
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Fig. 7.  The in-phase and quadrature voltages from the PZT detector as a function of frequency 

near the (100) longitude mode of cylinder resonator (2R=80 mm, L=80 mm) in argon. 
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Fig. 8.  Measured voltages minus calculated voltages[13] 
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Table 1 Properties of PZT 402 

Name Unit Values 

Radius m 0.0032 

Thickness m 0.0004 

Transverse charge coefficient d31 
12 110 m V    -120 

Transverse voltage coefficient g31 
3 110 V m N     -10.8 

Young’s modulus 10 210 N m   7.6 

Poisson ratio  0.31 
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Table 2 Perturbations for PZT and Microphone 

 
6tr

0

/10
f

f


 

 0.1 MPa 1 MPa 

1/4 inch Microphone -0.16 -1.60 

PZT 402 -0.03 -0.27 
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Table 3 Results of the power dissipation measurement for PZT 402 

f / Hz V0 / mV VPZT / V Vs / V tan δ  Pdiss / μW 

1000 0.236 0.199 0.199 0.002 0.0005 

1000 0.354 0.299 0.299 0.003 0.0015 

1000 0.472 0.398 0.399 0.003 0.0024 

1000 0.590 0.498 0.499 0.003 0.0039 

1000 0.708 0.597 0.598 0.003 0.0061 

1000 0.943 0.796 0.797 0.003 0.0094 

1000 1.179 0.995 0.997 0.003 0.0150 

      

3000 0.707 0.199 0.199 0.004 0.0025 

3000 1.414 0.398 0.399 0.003 0.0085 

3000 2.121 0.597 0.598 0.003 0.0207 

3000 2.826 0.797 0.798 0.003 0.0365 

3000 3.533 0.995 0.997 0.003 0.0527 

      

6000 1.411 0.199 0.199 0.004 0.0057 

6000 2.824 0.398 0.399 0.004 0.0224 

6000 4.235 0.597 0.598 0.004 0.0504 

6000 5.641 0.795 0.797 0.004 0.0878 

6000 7.051 0.994 0.996 0.004 0.1409 

      

9000 2.117 0.199 0.199 0.005 0.0110 

9000 4.234 0.397 0.399 0.005 0.0414 

9000 6.351 0.596 0.598 0.005 0.0943 

9000 8.451 0.793 0.796 0.005 0.1707 

9000 10.565 0.992 0.996 0.005 0.2683 
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12000 2.821 0.198 0.199 0.006 0.0179 

12000 5.646 0.397 0.399 0.006 0.0727 

12000 8.467 0.595 0.598 0.007 0.1652 

12000 11.260 0.792 0.796 0.007 0.2953 

12000 14.073 0.990 0.995 0.007 0.4629 

      

15000 3.529 0.198 0.199 0.008 0.0282 

15000 7.061 0.396 0.399 0.008 0.1120 

15000 10.592 0.594 0.598 0.008 0.2562 

15000 14.084 0.790 0.796 0.008 0.4620 

15000 17.606 0.988 0.996 0.008 0.7101 

 

 

 


