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Assuming diffusive carrier transport, and employing an effective medium theory, we calculate the
temperature dependence of the conductivity due to Fermi surface broadening as a function of carrier
density for both monolayer and bilayer graphene. We find that the temperature dependence of the
conductivity depends strongly on the amount of disorder. The conductivity is a function of T/T ∗,
where T ∗ is the characteristic temperature set by the disorder. For bilayer graphene, our results are
in good quantitative agreement with recent experiments.
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Monolayer and bilayer graphene are distinct electronic
materials. Monolayer graphene is a sheet of carbon in
a honeycomb lattice that is one atom thick, while bi-
layer graphene comprises two such sheets, each in a hon-
eycomb lattice, with the first lattice 0.3 nm above the
second. Since the first transport measurements [1] in
2005, we have come a long way in understanding the ba-
sic transport mechanisms of carriers in these new carbon
allotropes.

At low energies relevant for most experiments, mono-
layer graphene has a linear dispersion while bilayer
graphene has a parabolic dispersion. A unique feature
of graphene is that the density of carriers can be tuned
continuously by an external gate from electron-like car-
riers at positive doping to holes at negative doping [2].

At precisely zero doping, in the absence of any disorder
and at zero temperature, there are no free carriers. One
expects ballistic transport through evanescent modes to
give rise to a universal conductivity in both monolayer [3]
and bilayer graphene [4]. In practice, one is in the “bal-
listic regime” so long as the disorder-limited mean-free
path is larger than the distance between the contacts [5].

For monolayer graphene at finite temperature, the
thermal smearing of the Fermi surface gives a density
n(T ) ∼ T 2. For ballistic transport in these monolayers,
the conductivity σ ∼

√

|n| for large n, so σ(T ) ∼ T [6].
Indeed, it was recently shown [7] that in the absence of
disorder, σ(T ) interpolates from the universal σmin to the
linear in T regime following a function that depends only
on T/TF; (TF is the Fermi temperature).

However, it seems that the vast majority of exper-
iments on graphene are in the dirty limit, where the
carrier transport is diffusive [8]. The characteristic fea-
tures of this regime are a conductivity for both mono-
layer and bilayer graphene that is linear in density (i.e.
σ = neµc, with a mobility µc that is independent of
temperature and carrier density [9, 10]), and the exis-
tence of a minimum conductivity plateau in σ(n), with
σmin = nrmseµc/

√
3 [11]. nrms is the root-mean-square

fluctuation in carrier density induced by the disorder.

The purpose of the current work is to address the ques-
tion: What is the temperature dependence of this min-
imum conductivity plateau for both monolayer and bi-
layer graphene in the presence of disorder?

This problem is complicated by the fact that in re-
gions of inhomogeneous carrier density (i.e. puddles of
electrons and holes) induced by the disorder, there will be
activation of both electron and hole carriers at finite tem-
perature. Moreover, the ratio between electron-puddles
and hole-puddles changes continuously with carrier den-
sity, until at very high density there is only a single type
of carrier.

The temperature dependence of the conductivity in the
limit of high density with only a single carrier was consid-
ered in Ref. [12]. Reference [10] modeled the temperature
dependence of the Dirac point conductivity by assum-
ing that the graphene samples comprised just two big
“puddles” each with the same number of carriers. In the
appropriate limits, our results agree with these previous
works. Here we provide a semi-analytic expression for
the graphene conductivity by averaging over the random
distribution of puddles with different carrier densities.
This result is valid throughout the crossover from the
Dirac point (where fluctuations in carrier density domi-
nate) to high density (where these fluctuations are irrel-
evant), both with and without the thermal activation of
carriers.

Given a microscopic model for the disorder, one could
compute both µc and nrms [13]. Alternatively, µc could
be determined from low temperature transport measure-
ments and nrms from local probe measurements [14]. In
what follows, we take µc and nrms to be parameters of
the theory. As a consequence, the results reported here
do not depend on the microscopic details of the impurity
potential, provided it is reasonably well characterized by
this parameterization.

The key assumption in this work is the applicability
of Effective Medium Theory (EMT), which describes the
bulk conductivity σEMT of an inhomogeneous medium by
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the integral equation [15]

∫

dnP [n]
σ(n)− σEMT

σ(n) + σEMT
= 0. (1)

P [n] is the probability distribution of the carrier den-
sity in the inhomogeneous medium – positive (negative)
n corresponds to (electrons) holes, and σ(n) is the local
conductivity of a small patch with a homogeneous car-
rier density n. Ignoring the denominator, Eq. 1 gives the
average conductivity. The denominator correctly weights
the integral to cancel the build-up of any internal elec-
tric fields. The validity of this approximation for mono-
layer graphene was shown to be good in Refs. [15–17]. In
Ref. [16], for example, it was shown that for sufficiently
large disorder the transport is semiclassical and quantum
corrections and any additional resistance caused by the
p − n interfaces between the electron and hole puddles
can be ignored. Since we are concerned with diffusive
transport in the dirty limit, we assume that the EMT
results hold for both monolayer and bilayer graphene.

We derive a semi-analytic equation for effective
medium conductivity σEMT from Eq. 1 using two assump-
tions: First, we assume that the distribution function
P [n, ng] is Gaussian [18] centered at ng, (i.e. the field ef-
fect carrier density induced by the back gate and assumed
to be proportional to Vg), with width nrms. Second, we
write the local conductivity as σ(n, T ) = nrmseµcH(z, t).
Below we will calculate the dimensionless function H(z, t)
assuming thermally activated carrier transport with con-
stant nrms and µc and show that it depends only on
scaled variables z = n/nrms and t = T/T ∗. Here, using
the definitions zg = ng/nrms, σ̄[zg, t] = σEMT/(nrmseµc),
T ∗ = ~vF

√
πnrms for monolayer graphene and T ∗ =

π~
2nrms/2m for bilayer graphene, (with h = 2π~ is

Planck’s constant), we manipulate Eq. (1) into a dimen-
sionless form

∫ ∞

0

dz exp
[

−z2/2
]

cosh [zgz]
H [z, t]− σ̄[zg, t]

H [z, t] + σ̄[zg, t]
= 0. (2)

With the analytical results for H(z, t) discussed below,
this implicit equation can be solved either perturbatively
or by numerical integration to give σEMT.

Equation 2 correctly reproduces various known limits.
For example, in the limit T → 0 (where H [z, 0] = z), the
results of Ref. [19] are reproduced for ng ≫ nrms, and the
results of Ref. [11, 15] are reproduced for nrms ≫ ng. For
T = 0, we find σmin ≈ nrmseµc/

√
3 for both monolayer

and bilayer graphene. In the limit T ≫ TF, ng ≫ nrms,
we obtain the results of Ref. [12], while for T ≫ T ∗,
H [z, t] is independent of z giving (for any gate voltage)
the solutions σ̄ = π2t2/3 for monolayer and σ̄ = 2t ln 2
for bilayer graphene.

A consequence of Eq. 2 is that the amount of disorder
in the sample sets the scale for the temperature depen-
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FIG. 1: (Color online) Monolayer graphene conductivity as a
function of temperature and carrier density. From bottom to
top, the curves are for T/T ∗ = 0, 0.5, 1, and 1.5, where T ∗ is
a characteristic temperature scale set by the amount of disor-
der. Due to the large T ∗ in monolayer graphene, most experi-
ments would probe the regime T/T ∗ . 0.5. Inset: Monolayer
chemical potential as a function of temperature. Solid line
shows the interpolation function (Eq. 4).

dence i.e. T/T ∗ ≈ 1 separates the low temperature be-
havior, where the magnitude of the conductivity and its
temperature dependence are set by the disorder, from the
high temperature limit where the conductivity from ther-
mally excited carriers dominate the transport (σ ∼ T 2

for monolayer graphene and σ ∼ T for the bilayer inde-
pendent of both gate voltage and disorder). Our result
explains the empirical observations of Ref. [20], where the
saturation in the temperature dependence of the conduc-
tivity was found to be correlated with the sample quality.

To proceed we need to calculate the function H(z, t).
For thermal activation of carriers, the chemical potential
µ is determined by solving for ng = ne − nh [12], where

ne(T ) =

∫ ∞

0

dE D(E)f(E, µ, kBT ),

nh(T ) =

∫ 0

−∞

dE D(E) [1− f(E, µ, kBT )] , (3)

where f(E, µ, kBT ) is the Fermi-Dirac function and kB

is the Boltzmann constant. The density of states for
monolayer graphene is D(E) = 2|E|/(π~

2v2
F), while for

bilayer graphene at low density, D(E) = 2m/π~
2. For

T = 0, only majority carriers are present, while for T →
∞ activated carriers of both types are present in equal
number.

For the crossover regime, we have ne(h) =
−2ng(T/TF)2Li2 [− exp(∓µ/kBT )] for monolayer

graphene, where Li2(z) =
∫ 0

z
dt t−1 ln(1 − t) is the

dilogarithm function. Data points in the inset of
Fig. 1 show chemical potential µ(T ) obtained by
the numerical solution of the implicit equation, 1 =
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FIG. 2: (Color online) Bilayer layer graphene conductivity
as a function of temperature and carrier density for T/T ∗ =
0, 0.5, 1, 1.5, and 2. Inset shows a close-up of the zero tempera-
ture minimum conductivity (which is the same for both mono-
layer and bilayer graphene). The dashed horizontal line shows
the result of Ref. [11] and the other dashed line is the high-
density transport result of Ref. [19]. The solid line (Eq. 2)
captures the full crossover from the regime where the conduc-
tivity is dominated by the disorder induced carrier density
fluctuations, to the semiclassical Boltzmann transport regime.

2(T/TF)2 {Li2[− exp(µ/kBT )]− Li2[− exp(−µ/kBT )]},
as well as the interpolation function

Fµ(x) = µ(T/TF)/EF = g(x)(1−π2x2/6)+ḡ(x)/(4 ln 2x),
(4)

where EF is the Fermi energy, and g(x) + ḡ(x) =
1 are a choice of complementary functions, e.g. we
use g(x) = (1 + Erf [10(x− 1/2)])/2 and ḡ(x) =
Erfc [10(x− 1/2)] /2 [21]. Similarly, for bilayer graphene
we find ne(h) = ng(T/TF) ln [1 + exp(∓µ/kBT )] and µ =
EF. Using σ(n, T ) = (ne + nh)eµc, we find

H(z, t) =

{

π2t2

3 + z
[

Fµ

(

t√
z

)]2

, Monolayer

z + 2t ln
[

1 + e−z/t
]

, Bilayer.
(5)

Figure 1 shows results for monolayer graphene. For a typ-
ical disorder of nrms = 1011 cm−2, T ∗ ≈ 475 K. For high
temperature, phonon scattering dominates the transport.
Therefore, the regime relevant to experiments is between
the red and black curves which show very weak temper-
ature dependence. This is in sharp contrast to bilayer
graphene (shown in Fig. 2), where for the same amount
of disorder, T ∗ ≈ 40 K and one can observe the full range
of temperature dependence shown in the figure. We now
focus on the minimum conductivity σmin(T ). Figure 3
shows a numerical solution for σmin(T ) as well as ana-
lytic asymptotes for both low and high temperature [26].

In Fig. 4 we compare the theory with several exper-
iments in the literature. In principle, the two param-
eters of the theory µc and nrms can be determined by
looking at the gate voltage dependence of the low tem-
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FIG. 3: (Color online) Minimum conductivity as a func-
tion of temperature for monolayer (upper curve) and bilayer
(lower curve) graphene. Dashed lines show the high tem-
perature asymptotes σmin → πeµcT

2/(3~
2v2

F) for monolayer
and σmin → meµc4 ln 2T/(π~

2) for bilayer graphene. In-
set: low density regime with perturbative results σ̄(t)/σ̄(0) =
1 + 4π2t4 ln t/(9|π − 2|) for monolayer and 1 + 7.27 × [t2 −
2
√

3t3 + 16t4] for bilayer graphene.
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FIG. 4: (Color online) Same results as in Fig. 3 showing
comparison with experimental data. Left panel shows mono-
layer graphene where circles are the two suspended samples
(with µc = 1 m2/Vs, T ∗ = 1080 K and µc = 2.8 m2/Vs,
T ∗ = 170 K) of Ref. [22] before annealing. (After annealing,
these suspended samples did not show signatures of diffusive
transport). Triangles (Ref. [23]) and Diamonds (Ref. [10]) are
non-suspended devices with µc = 1.5 m2/Vs, T ∗ = 720 K and
µc = 0.4 m2/Vs, T ∗ = 1040 K respectively. For all these sam-
ples, we use the value of low temperature mobility reported
by the authors. Right panel shows bilayer graphene. Green
triangles show suspended bilayer data from Ref. [20] using
µc = 1.4 m2/Vs and T ∗ = 36 K. Black squares (Ref. [24])
and diamonds (Ref. [10]) are bilayers on a SiO2 substrate with
µc = 0.11 m2/Vs, T ∗ = 530 K and µc = 0.045 m2/Vs and
T ∗ = 290 K. We were unable to obtain good agreement with
the four data points of Ref. [9] using their reported value for
the low temperature mobility. The apparent lack of correla-
tion between nrms and T ∗ for bilayer graphene suggests that
multiple scattering mechanisms are at play [25].
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perature conductivity, σ(ng, T → 0). This fixes both
σmin[T = 0] ≈ nrmseµc/

√
3 and T ∗[nrms] and therefore

any agreement between theory and experiment (even for
T ≫ T ∗) is significant. Where possible, we used the val-
ues of low temperature mobility µc reported in the liter-
ature. However, even without using the low temperature
data to fix the parameters of the theory, the scaling of
the conductivity σ(T ) in the crossover region T/T ∗ ≈ 1
is non-trivial.

Bilayer graphene (right panel of Fig. 4) shows quantita-
tive agreement with the theory. For monolayer graphene
(left panel), the non-monotonicity in the experimental
data suggest physics beyond the thermal activation of
carriers considered here. In retrospect, this disagreement
is not surprising. For dirty samples T ∗ is large, and since
phonons degrade the mobility for T & 200 K, the theory
is only valid for t ≪ 1, where the effects of temperature
dependent screening are strongest [27]. For clean sam-
ples, although T ∗ is small, the mean-free path is long
and the transport becomes ballistic. For both ballistic
samples, and for t ≪ 1 one expects the conductivity to
first decrease with increasing temperature [7, 12] before
Fermi smearing reverses this trend. In contrast, the com-
paratively low T ∗ for bilayer graphene suggests that we
capture the regime relevant to experiments.

In summary, we have developed an effective medium
theory that captures the gate voltage and temperature
dependence of the conductivity for both monolayer and
bilayer graphene. The theory depends on two param-
eters: nrms that sets the scale of the disorder, and µc

the carrier mobility. Our main finding is that (except at
very high temperature), disorder sets the scale for the
temperature dependence, implying that the σ(T ) is yet
another probe of the microscopic disorder. Our results
show good agreement with the observed temperature de-
pendence taken from bilayer experiments in the litera-
ture, suggesting that even some suspended samples are
still the the diffusive (rather than ballistic) regime.

We thank M. Fuhrer and K. Bolotin for suggesting this
problem and for useful discussions. SA also acknowledges
a National Research Council (NRC) postdoctoral fellow-
ship.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
Y. Zhang, M. I. Katsnelson, I. V. Grigorieva, S. V.
Dubonos, and A. A. Firsov, Nature 438, 197 (2005);
Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature
438, 201 (2005).

[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[3] M. I. Katsnelson, Eur. Phys. J. B 51, 157 (2006);
J. Tworzyd lo, B. Trauzettel, M. Titov, A. Rycerz, and
C. W. J. Beenakker, Phys. Rev. Lett. 96, 246802 (2006).

[4] I. Snyman and C. Beenakker, Phys. Rev. B 75, 045322
(2007); J. Cserti, Phys. Rev. B 75, 033405 (2007).

[5] F. Miao, S. Wijeratne, Y. Zhang, U. Coskun, W. Bao,
and C. Lau, Science 317, 1530 (2007); R. Danneau,
F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmile-
hto, A. F. Morpurgo, and P. J. Hakonen, Phys. Rev. Lett.
100, 196802 (2008).

[6] X. Du, I. Skachko, A. Barker, and E. Andrei, Nature
Nanotechnology 3, 491 (2008).
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