
1. Introduction

Tomography is a method of imaging a single slice of
the body. Modern computed tomography (CT) is a
medical imaging method that uses tomography, but also
employs digital image processing techniques, to gener-
ate three dimensional images built from a large
sequence of two-dimensional x-ray images made
around a single axis. CT has shown promising results in
detecting lung cancers at more operable stages, when
survival is better [1].

The Food and Drug Administration (FDA) is con-
ducting research on developing reference cancer

lesions, called phantoms, to test CTs and their software.
Two samples were loaned to NIST to estimate volumes.
The material of the phantoms simulates lung cancer
material. The phantoms can be inserted into a simulat-
ed body torso for CT scans. The two phantoms are
shown in Fig. 1. Although they seem spherical, they are
slightly non-spherical. The larger one on the right is
referred to as the Green phantom and the one on the left
is called the Pink phantom due to the material colors.

One experimental approach to estimate the volume of
the phantoms would be to use an Archimedes test in
which the phantoms would be immersed in a liquid bath
in a well calibrated container with fine measurement
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The Food and Drug Administration (FDA)
is conducting research on developing
reference lung cancer lesions, called
phantoms, to test computed tomography
(CT) scanners and their software. FDA
loaned two semi-spherical phantoms
to the National Institute of Standards
and Technology (NIST), called Green and
Pink, and asked to have the phantoms’
volumes  estimated. This report describes
in detail both the metrology and computa-
tional methods used to estimate the
phantoms’ volumes. Three sets of coordi-
nate measuring machine (CMM) measured
data were produced. One set of data
involved reference surface data measure-
ments of a known calibrated metal sphere.
The other two sets were measurements of
the two FDA phantoms at two densities,
called the coarse set and the dense set.
Two computational approaches were
applied to the data. In the first approach
spherical models were fit to the calibrated
sphere data and to the phantom data. The
second approach was to model the
data points on the boundaries of the
spheres with surface B-splines and then
use the Divergence Theorem to estimate
the volumes. Fitting a B-spline model to
the calibrated sphere data was done
as a reference check on the algorithm
performance. It gave assurance that the
volumes estimated for the phantoms would

be meaningful. The results for the coarse
and dense data sets tended to predict the
volumes as expected and the results did
show that the Green phantom was very
near spherical. This was confirmed by
both computational methods. The spherical
model did not fit the Pink phantom as well
and the B-spline approach provided a
better estimate of the volume in that case.
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gradations to determine liquid displacement. However,
in the case of these phantoms, the material used to
manufacture these phantoms was porous and the phan-
toms would have to be coated. This, of course, would
affect the “ground truth” volume estimate. As a result,
the approach chosen for this study was based on a fun-
damental theorem in calculus, called the Divergence
Theorem (see Taylor [2]), an analogue of Green’s
Theorem in two dimensional space. In the Divergence
Theorem a volume integral is shown to be equal to a
surface integral. Therefore, we surmised that, if a
model of the surfaces of the phantoms could be devel-
oped, the Divergence Theorem would help to estimate
their volumes. In order to develop a surface model we
needed to obtain data about the surfaces of the phan-
toms. This was done using a coordinate measuring
machine (CMM) in the Manufacturing Engineering
Laboratory (MEL) at NIST. This machine produced a
set of (x, y, z) points on the surface of each phantom.
The data were then transformed to spherical coordi-
nates and modeled using a set of basis functions, called
B-splines. After fitting, the B-spline model was
employed to generate a grid of values on the surface.
These values were used to form surface triangles that
were then used to compute the necessary surface
integrals and finally the volume. The quality of the
volume estimates depended on the surface grid sizes, as
will be clear from the discussion below. The method of
B-spline surface modeling is not new, in that it was
suggested in the book by Dierckx [3]. However the
application in the current case, that uses the Divergence
Theorem, appears to be new. A reader can also consult
the Dierckx references [4] and [5].

The paper is divided as follows. Section 2 describes
how a volume can be computed using the Divergence

Theorem. Section 3 describes the surface point genera-
tion experiments using the CMM. Section 4 introduces
the two methods of data modeling used to estimate the
phantoms’ volumes. The first uses a spherical model.
The second uses the B-splines as a basis for a least
squares fit with regularization to model the phantoms’
surface data. The fitted functions were then used to
generate the grid data necessary to apply the
Divergence Theorem. Section 5 presents the specific
surface triangulation used to implement the Divergence
Theorem. Section 6 describes the volumetric results
from applying the spherical and B-spline models to the
CMM data. A summary is given in Sec. 7.

2. Volume Estimation by the Divergence
Theorem

In this section we state the Divergence Theorem and
indicate how it can be used to estimate the volume of a
polyhedron. This provides the motivation for the need
to determine surface data points from the phantoms and
then to build a surface model that is used to create data
points at surface triangulation vertices. As the number
of triangles was increased, the volume estimates were
expected to tend to a fixed value. As will be seen, this
expectation is confirmed below.

2.1 Divergence Theorem in 3-D and Volume
Computation

Let Ω be a simply connected region in three dimen-
sional space and Γ the surface boundary. Then

(1)

where F (x, y, z) = (F1 (x, y, z), F2 (x, y, z), F3 (x, y, z))
is a differentiable vector field,

(2)

is the divergence of the vector field, n̂ is an outward-
pointing unit normal vector to Γ, and dσ is an infinites-
imal element of the surface.

If we select F (x, y, z) = (1/3)(x, y, z), then ∇
→

· F = 1
and we can write

(3)

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

150

Fig. 1. Two simulated lung cancers, called phantoms.
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Note that the left hand side is simply the volume of the
region Ω. The 1/3 factor comes from the definition of
F (x, y, z) so that ∇

→
· F = 1. Now, if Γ is approximated

by disjoint polyhedra (planar surface patches), Γi, then

(4)

and

(5)

where n̂ i is the unit outer normal to Γi . Here we will
model the surface patches by planar facets and, in
particular, triangular facets. The plane for Γi is given by
n̂ i ⋅ (x, y, z) = ci , where ci is a constant associated with
each triangular facet. The sum of the integrals over the
facets thus reduces to

(6)

This method of computing the volume of an object
from a surface integral can be found in Schneider and
Eberly [6].

2.2 Area of a Planar Polyhedron in 3-D
In order to estimate the surface area of a facet, as

used in (6), we will describe the process of computing
the area of a planar polyhedron in space by use of
Stokes’ Theorem and then we will particularize it to a
planar triangle in space. Here the assumption is made
that there is surface data available at the planar triangle
vertices. Stokes’ Theorem states that if C is a piecewise
smooth boundary curve, oriented positively, of a sur-
face Γ, and if F is a differentiable vector field defined
on Γ and n̂ is a unit normal satisfying the right-hand
rule relative to the boundary orientation, then

(7)

where the curl of F (x, y, z) = (F1 (x, y, z) , F2 (x, y, z),
F3 (x, y, z)) is

(8)

(9)

The factor 1/2 comes from the definition of F (x, y, z)

We will now specialize the Stokes formula to find the
area of a spatial triangle, γ, in terms of its three vertices
oriented positively. Let the three vertices, in positive
orientation, be specified by v1 = (x1, y1, z1),
v2 = (x2, y2, z2), v3 = (x3, y3, z3). Parameterize the bound-
ary of the triangle as follows. For t ∈ [0, 1],
let v = v1 + t (v2 – v1) = (x1 + t (x2 – x1), y1 + t (y2 – y1),
z1 + t (z2 – z1)). For t ∈ [1, 2] let v = v2 + (t – 1)
(v3 – v2) = (x2 + (t – 1)(x3 – x2), y2 + (t – 1)(y3 – y2),
z2 + (t – 1)(z3 – z2)). Finally, for t ∈ [2, 3], put
v = v3 + ( t – 2)(v1 – v3) = (x3 + ( t – 2)(x1 – x3) ,
y3 + (t – 2)(y1 – y3), z3 + (t – 2)(z1 – z3)). The area of
the spatial triangle, in terms of the parameterized
boundary, can be written as

(10)
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By straightforward integration over each of the
parameterized segments it is easy to show that

(11)

The normal vector to the oriented triangle can be com-

3. Surface Metrology of the Artifacts

In this section we discuss the experimental method
used to obtain surface data for the three objects used in
this study. As a test object for the modeling process, a
well calibrated sphere was selected. This object, along
with the FDA phantoms formed the study artifact set.
Data points, in the form of (x, y, z) coordinates, were
created by the probing action of the CMM. Figure 2
shows the CMM system used to measure the artifacts.
The system is computer controlled and touches an
object to be measured at programmed points in order to
produce (x, y, z) values at the probed points. 

Figure 3 shows one of the phantoms, held by a
device called a vacuum chuck, as it is being touched by
the CMM probe. The probe itself can be programmed
to approach an object at various angles. In the back-
ground of the figure is a high quality reference steel
sphere. Before an object is probed the reference sphere
is measured to determine the effective diameter of the
CMM probe tip. This reference sphere is separate from
the calibrated sphere used to test the modeling process.
The difference between the known diameter of the ref-
erence steel sphere and the apparent diameter of the
measured reference metal sphere gave the calibrated
effective probe diameter.
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Fig. 2. Computer controlled CMM.

Fig. 3. Lung nodule phantom on the vacuum chuck.



The FDA phantoms were created by a molding
process and the mold marks on both spheres were
visible. These mold marks were used to align the
phantoms with the coordinate system of the CMM. The
marks were laid out like lines of latitude, leading to the
use of a natural nomenclature of latitude and longitude
like those of the Earth. For each phantom, the North Pole
was chosen to be the one with darker, deeper, or more
obvious mold marks.

For the purpose of understanding the measurement
process we will describe the physical fixture positioning
of the phantoms. They were held by a vacuum chuck (see
Fig. 3) to minimize distortion and reduce the chance of
damaging the spheres’ surfaces. As Fig. 3 shows, the
chuck has a shallow cone to hold the phantoms. The
phantoms contacted the cone around a circle of latitude
at about – 45°. This was measured from the equatorial
circle around the middle of the phantoms. For example,
the point at the top of the phantoms would be at + 90°.
The wall vacuum of the cone was strong enough to hold
the spheres sufficiently that they did not move signifi-
cantly, as shown by the repeatable results from run to run
at the 1 μm level. The setup of the phantoms in the
vacuum chuck was accomplished by eye alignment
using the visible mold marks and minor imperfections as
guides to the eye. The expanded uncertainty of alignment
was estimated to be approximately ± 2° for the vertical
angle (i.e., keeping the equator horizontal) and ± 4° for
the azimuthal angle. For a presentation of the guidelines
for how expanded uncertainty of parameters is comput-
ed see Taylor and Kuyatt [7]. Essentially, the guideline
for estimating the expanded uncertainty involves apply-
ing a multiplier, k = 2, times the square root of the vari-
ance about a predicted parameter value (i.e., two times
the standard error). For a full discussion of confidence
intervals for parameter estimation see Draper and
Smith [8].

Three sets of measurements were planned for each of
the phantoms. In each, points were probed on only a
hemisphere at a time and later the data sets were post-
processed to form a spherical data set. In the first set of
measurements the North Pole was set as the top point.
A set of points was programmed to probe the top
hemisphere down to the equator. The phantom was then
re-positioned in the chuck so that the South pole was
the top point. The same hemispherical points were
probed. The rotation was done in such a manner that the
mold marks representing the longitudinal lines were
kept as aligned as possible. Post-processing of the data
associated the correct signs with the measured coordi-
nates relative to the CMM coordinate system. The third
measurement involved re-positioning the phantoms so

that the equatorial circle was vertical and the North-
South axis was horizontal. Again two hemisphere sets
of probe points were measured. This position was not
feasible for the Pink phantom in one of the experiments
described below.

Visually, the pink sphere was noticeably out-of-
round, in the shape of an oblate spheroid. A dial caliper
gave diameter measurements given in Table 1. The
uncertainty of caliper measurements on hard steel
surfaces is about 0.1 mm, and is estimated to be about
0.3 mm on the sample spheres due to the potential that
the contact force would distort the soft surfaces of the
spheres. All estimated uncertainties were k = 2 expanded
uncertainties.

Two probing experiments were performed on each of
the phantoms and the calibrated sphere. They created
what we will call a coarse data set and a dense data set.
For the coarse data set the plan was to measure each
phantom on the CMM three times in each position,
with 61 coordinate points per hemisphere. For the green
sphere, each measurement set consisted of three
separate sets of points: North pole up, South pole up,
and prime meridian/equator intersection up. The pink
sphere could not be held sideways in the first experi-
ment, as the out-of-roundness prevented an effective
vacuum seal. Therefore, a measurement data set for this
sphere had only the North Pole up and South Pole up
data. The third data set in this case was a re-measure of
the North Pole up position. Each data set consisted of
122 points. The plots in Fig. 4 and 5 show the radial
deviation from a best-fit sphere for the full data sets.
The figures show the radial residuals obtained by fitting
sphere models to the Green and Pink data with an
algorithm ordinarily used during sphere calibration
work. In particular, they represent the residual errors
between the distance from the fitted sphere center to the
probed points and the fitted radius of the sphere model.
The residuals, in the case of the Green phantom, range
from approximately – 0.1 mm to + 0.1 mm, whereas
the residuals, in the case of the Pink phantom, range
from approximately – 0.57 mm to + 0.23 mm. This
suggests the slight non-spherical nature of the Pink
phantom. Figure 6 shows the typical distribution of the
probe points on a sphere. The plot is a transparency so
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Table 1. Dial Caliper Measurements of Phantoms’ Diameters

Equatorial Polar

Pink 20.0 mm 18.4 mm
Green 20.0 mm 20.1 mm
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Fig. 4. Residual Measures CMM Errors for the Green Phantom Sphere.

Fig. 5. Residual Measures CMM Errors for the Pink Phantom Sphere.



that probe points on the opposite side of the sphere are
visible. The calibrated sphere on the shaft, with a dia-
meter of 19.05 mm, was also measured with 122 points,
repeated five times. It was measured in one position,
since it was permanently mounted on a support shaft.

For the dense data set 181 points were taken on the
phantoms and the calibrated sphere, with five repeats in
each position. The positions were taken the same as
those in the first experiment. That is, the alignment was
selected with North pole up (position 1), South pole up
(position 2), and prime meridian/equator intersection
up (position 3). In this case it was possible to hold the
Pink phantom in the sideways position 3. The calibrat-
ed sphere was also measured at 181 points with five
repeats. 

4. Modeling Methodologies

In this section two forms of data modeling will be
discussed. Since the phantoms seemed to be nearly
spherical the natural tendency was first to consider
fitting a spherical model to each phantom and estimat-
ing the volume of the fitted spheres. However, in order
to develop a potentially more accurate volume estima-
tion model, the surface data was also fit using tensor
products of B-splines and the volumes estimated by the
Divergence Theorem.

4.1 A Spherical Model

In this section we consider how close the data could
be modeled by a spherical model for the data. The
calibrated sphere, of course, could be modeled via a
spherical model.

In particular, let c = (c1, c2, c3, c4) and set

(12)

The unknown parameters c1, c2, c3 represent the
center of the sphere and c4 is the radius. All of the data
were measured in millimeters so that the parameters
naturally have millimeter units. Define

(13)

where O, the objective function, is a measure of the
residual for the fitted sphere defined by the coefficients
c. Since the function O is a nonlinear implicit function
of the parameters we needed to use a nonlinear mini-
mization algorithm to find the best fit, i.e., to solve the
problem

(14)
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Fig. 6. Sample Distribution of the CMM Probe Points on a Sphere.
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There are a number of algorithms for fitting least
squares models to data on geometric shapes (see
Shakarji [9]). There are also various algorithms for
minimizing general nonlinear functions, such as (13).
All of the algorithms involve iterative minimization of
some form. Many require computing derivatives of the
objective function in order to generate search directions
along which to identify a minimum. Others do not
involve derivatives but may be somewhat slower in the
minimization search. The algorithm selected here,
because of the relatively few parameters involved, and
the fact that derivatives are not required, is a form of
polyhedron search method called the Nelder-Mead
method (see Sauer [10]). The Newton method, requir-
ing derivatives, was initially used to estimate the
parameters, but the Nelder-Mead tended to produce the
smallest value to (13).

The Nelder-Mead algorithm works iteratively
through steps that involve reflections, vertex exten-
sions, and multidimensional polyhedron contractions
until the volume of the polyhedron becomes less than a
prescribed tolerance. The polyhedron vertices then
enclose the minimum. The median value of the poly-
hedron vertex values is taken as the minimum value.

The uncertainties of the estimated center and radius
were computed using the methods proposed in Draper
and Smith [8] for nonlinear regression. In particular, if
ĉ = (ĉ1, ĉ2, ĉ3, ĉ4), then define the n × 4 matrix with
elements

(15)

The i-th row is given by

(16)

The standard error of ĉi , s.e. (ĉi ), is given by the
square root of the i-th diagonal element of (Ẑ' Ẑ )–1 s2

where s = O (ĉ) / (n – 4). The expanded uncertainty is
given by 2s.e.(ĉi ) as defined in Taylor and Kuyatt [20].
The uncertainty limits of ĉi are ĉi ± 2s.e. (ĉi ). All units
are in millimeters except volume, which is in cubic
millimeters.

4.2 A B-spline Model

Given measured data points on the surfaces of the
calibrated sphere and the two phantoms, surface mod-
els can be constructed using B-splines as basis func-
tions. In this section we will define cubic B-splines and
show the construction of tensor products of B-splines.

4.2.1 Cubic B-Splines in One Variable

Suppose that a function y = f (x), x ∈ [a, b], is known
at the n points (x1, y1) ,···, (xn, yn), where a < x1 < x2 < ···
< xn < b, yq = f (xq), q = 1,···, n. a and b are finite inter-
val bounds. It is known that a polynomial of degree
n – 1, P (x), can be constructed to pass through these n
points. In the case of highly accurate data points this
polynomial can be constructed to interpolate these n
points by, for example, Lagrange polynomial or
Newton divided difference algorithms. But, for large n,
it is also well known that polynomials of high degree
can produce unwanted oscillations between the interpo-
lated points. It is crucial then to approximate sets of
data with as low degree polynomials as possible. Of
course these polynomials may or may not interpolate
the data points but may be made to come as close to
them as possible. The ability to create highly flexible
approximants from low-degree polynomials is a signif-
icant advantage of functions called splines.

Given a set of r̂ real numbers, satisfying a < ξ1 < ξ2

< ··· < ξ r̂ < b, a spline function, F (x), of order p (or
degree p – 1) with knots ξ1, ξ2,···, ξ r̂ is a function that
satisfies two properties: (1) in each of the intervals
x ≤ ξ1 ; ξj – 1 ≤ x ≤ ξj , ( j = 2,3,···, r̂); ξ r̂ ≤ x, F (x) is a
polynomial of degree p – 1 or less. (2) F (x) and its
derivatives of orders 1, 2, ··· , p – 2 are continuous.
This would mean, for example, a spline function of
order four would be constructed from polynomials of
degree three (cubic) or less on the intervals x ≤ ξ1; ξ j – 1

≤ x ≤ ξ j , (j = 2,3,···, r̂); ξ r̂ ≤ x with continuous deriva-
tives of orders one and two.

A well known mathematical technique to construct
complicated functions is to form linear combinations of
simpler functions, called basis functions. In the current
paper, data sets will be approximated by linear combi-
nations of special spline functions, called B-splines, for
Basis splines. It is known that any spline function can
be represented in terms of B-splines. This particular
basis has the advantage of leading to computational
algorithms that are elegant, efficient, and stable. Only
B-splines of order four will be considered here. They
are cubic splines that are non-zero only over four
adjacent intervals between knots (see Fig. 7). The nota-
tion for a B-spline is Np , i (x), where Np , i (x), is
zero everywhere except in the range ξi – p < x < ξi ,
where in this work p = 4. To simplify notation let
Ni (x) = N4, i (x). Then a B-spline of order four, or
cubic B-spline, is a cubic spline with knots ξ i – 4 , ξ i – 3 ,
ξ i – 2 , ξ i – 1 , ξ i that is zero everywhere except in the
range ξ i – 4 < x < ξi . Ni (x) is defined uniquely except
for a scaling factor and is conventionally taken to be
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positive throughout the range ξ i – 4 < x < ξi and has a
single maximum value. Since Ni (x) is a cubic spline
it has continuous derivatives of order one and two at
ξ i – 4 and ξi . These derivatives are zero at the endpoint
knots.

To define a complete set of B-splines on the set of
points a < ξ1 < ξ2 < ··· < ξ r̂ < b it is necessary to intro-
duce eight additional points at the boundaries given by
ξ – 3 , ξ – 2 , ξ – 1 , ξ 0 , ξ r̂ + 1, ξ r̂ + 2, ξ r̂ + 3, ξ r̂ + 4 . It is usual to
have ξ 0 = a, ξ r̂ + 1 = b. With this augmented set of knots
one can define r̂ + 4 fundamental cubic B-splines,
Ni (x), i = 1, 2, ···, r̂ + 4. Then the general cubic
B-spline has a unique representation in the range
a ≤ x ≤ b of the form

(17)

where r = r̂ + 4.
There are computational advantages in using cubic

B-splines. For any given x, all but four adjacent Ni (x)
are zero. In particular, if x ∈ [ξ i – 1 , ξ i ], the four non-
zero cubic B-splines are Ni (x), Ni+1 (x), Ni+2 (x), Ni+3 (x).

A least squares curve fitting problem to the data
a < x1 < x2 < ··· < xn < b, yq = f (xq), q = 1,···,n , becomes
one of determining the coefficients ci as the least
squares solution to the equations

(18)

These may be written in matrix notation as

(19)

where A is the n × r matrix whose element in column i
of row q is Ni (xq) and c, y are column vectors with
elements ci, yq, q = 1, ···, n , respectively. If the data
points are arranged in increasing order of x, then the
matrix A becomes a banded matrix with bandwidth
four. For a more thorough discussion of B-splines and
their computation see de Boor [11] and Cox [12].

There are two functions in the MATLAB Spline
Toolbox that implement the evaluation of B-splines. A
set of knots can be augmented at the ends by the func-
tion augknt and the B-splines and their derivatives can
be evaluated by the function spcol.

4.2.2 Tensor Products of Cubic B-Splines in Two
Variables

In this section the B-spline concept will be extended
to two dimensions in order to fit two dimensional
scattered data by a surface function. In this surface-
fitting problem data points (xq, yq), q = 1,2, ···,n, and
values at these points, zq = f (xq, yq), q = 1,2, ···,n, are
given. The surface model used to fit these data points
will involve sums of products of B-splines.

To introduce this model, define a rectangle, say R, by
a ≤ x ≤ b, c ≤ y ≤ d in the (x, y) plane. The definition 
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Fig. 7. B-spline of Order 4 with knots at x = 0.1, 0.2, 0.3, 0.4, 0.5.
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does not restrict the data points to the Euclidean plane.
They could, for example be angular coordinates, as will
be seen later. The rectangle is subdivided by sets of
knots ξi, i = 1, 2, ···, r̂ and ηj , j = 1,2,···, ŝ , where
a < ξ1 < ξ2 < ··· < ξ r̂ < b and c < η1 < η2 < ··· < η ŝ < d,
where r̂, ŝ are indices, not necessarily equal and
a, b, c, d are the bounds on the rectangle R. The knots
are then extended by eight in each dimension as done
in the one dimensional case. These knots divide the
rectangle R into rectangular panels in the plane given
by Ri j , i = 1,2, ···, r̂, j = 1,2, ···, ŝ. Then, a basis set of
splines for this pairing of knots can be constructed as
products of B-splines Ni (x)Nj (y). In fact, the surface
spline model is given by

(20)

called a tensor product of splines, where r = r̂ + 4 and
s = ŝ + 4.

As in the one dimensional case, these tensor product
splines have a number of advantages. First of all, the
basis functions Ni (x)Nj (y) are each non-zero over a
rectangle composed of sixteen panels in a 4 × 4
arrangement. In particular Ni (x)Nj (y) is non-zero only
when ξi–4 ≤ x ≤ ξi and ηj –4 ≤ y ≤ ηj . Next, if (xq, yq),
q = 1,2, ···, n and values at these points, zq = f (xq, yq),
q = 1,2, ···, n are given, then the fitting problem can be
formulated as finding the least squares solution of

(21)

Again, this can be written in a matrix form as

(22)

where A is now a matrix with n rows and rs columns,
and z is a column vector with n rows. The elements in
row q, q = 1,2, ···, n, of A are formed as follows. We
start with a fixed j, j = 1,2, ···, s, and let i, i = 1,2, ···, r
vary for that j. Then, the element in column (j – 1)r + i
for row q is given by Ni (xq)Nj (yq) . The j is then incre-
mented and the i ’s varied again. The end resulting
column values in A for row q would look like
N1(xq)N1(yq) N2(xq)N1(yq) ··· Nr (xq)N1(yq) N1(xq)N2(yq) ···
Nr (xq)N2(yq) ··· N1(xq)Ns(yq) ··· Nr (xq)Ns(yq). For a full
discussion of tensor products of B-splines see de Boor
[11], Eberly [13], and Rogers and Adams [14].

4.2.3 An Issue in Computing Tensor Product
B-Splines and the Relation to Least Squares

Unfortunately, for some choices of knots the result-
ing matrix A in (22) might be rank deficient and it
would not be possible to use the normal equations to
solve the least squares problem. This can potentially
happen in the case of widely scattered data, where some
of the knot panels do not contain data points. This prob-
lem can be solved, though, by using the matrix singular
value decomposition.

Assume that a tensor product spline has been com-
puted as described in Sec. 4.2.2. A least squares fit can
be done to the scattered data as follows. Since the
matrix A could be rank deficient, with potentially zero
rows or columns, we cannot rely on the standard nor-
mal equations for determining the coefficients, but
using the matrix singular value decomposition provides
a convenient substitute (see Golub and Van Loan [15]).
In the singular value decomposition of the matrix A,
with the number of rows larger than the number of
columns, the matrix is decomposed into the product of
a column-orthogonal matrix U, a diagonal matrix S,
with diagonal elements Si , and the transpose V' of a
square orthogonal matrix, so that A = USV'. In order to
solve the problem Ac = z we compute c = V(S +(U' z)),
where

(23)

defines the generalized inverse of S and U' is the trans-
pose of U. A tolerance is used to determine which of the
small singular values in the decomposition should be
considered zero.

4.3 A Knot Selection Algorithm

In a least squares data fitting process involving
B-spline basis functions, the resulting model residuals
are sensitive to the knot placement for the B-splines.
The selection of B-spline knots in order to achieve as
small a residual as possible during the least squares
process is a nontrivial task. One would be extremely
lucky to manually select a set of knots that could
achieve a very small least squares residual. In this
section we will describe a heuristic algorithm that, in
practice, generates a set of knots that produces small
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least squares residuals. The strategy involves an itera-
tive knot insertion algorithm. An initial set of knots is
selected by the algorithm user and, at each iteration of
the algorithm, new knots are inserted in the vicinity of
the previous fit where the local residuals are the largest.
The knots are not moved once they have been inserted.
The iterative algorithm has a stopping criteria based on
a statistical test.

First we will discuss the knot insertion algorithm. It
is based on a strategy suggested by Dierckx [3]. At the
beginning of each iteration the assumption is that there
exists a current set of knots. In the first iteration of the
algorithm these would be an initial set chosen by the
user. The tensor product of the B-splines is computed at
the data points, a least squares fit is made to the data,
and the current absolute residuals of the fit are comput-
ed at each data point. The current knots divide the (x, y)
plane into rectangles. Some rectangles have data points
and others don’t. Let the knots at the k-th iteration be
labeled a < ξ1

(k) < ξ2
(k) < ··· < ξrk

(k) < b along the x-axis
and c < η1

(k) < η2
(k) < ··· < ηsk

(k) < d along the y-axis. The
(k + 1)-iteration begins by associating all of the data
points with the knot panels in which they fall. Let
the index pair ij indicate the Ri j-th panel defined by
ξi ≤ x ≤ ξi+1 , ηj ≤ y ≤ ηj +1 . Then suppose the data
values (x1

(ij ), y1
(ij )), ··· , (xrij

(ij), yrij
(ij)), fall into the Rij-th

panel. Let Fk (x, y) be the least squares B-spline func-
tion fit to the data at the k-th iteration. We next compute
the residuals of the fit at all of the data points

(24)

From these residuals we form the sums of squares of
the residuals that fall within the knot intervals. The
sums are separated into the x direction and the y direc-
tion as follows.

(25)

What is meant here, for example in the case of

We next find the maximums of these sums of
squared residuals.

(26)

where u = i for some i = 1,2,···, rk and υ = j for some
j = 1,2,···, sk. The next step is to add one knot at a time
at each iteration. In particular, a knot is added in the x

upon a weighted average of x or y data points in the
columns or rows determined by the knot intervals with
the maximum residual errors determined by (26). In
particular, the positions are given by

(27)

We note that

(28)

so that (27) represents weighted averages of all of the

The knots are then reindexed as necessary and
Fk+1(x,y) is computed as the least squares B-spline
function fit to the data at the (k + 1)-iteration based on
the new knot set. The iterations continue until the
stopping criteria is met.

The stopping criteria for the k-th iteration used in this
algorithm is based on the use of the R2-statistic, called
the coefficient of multiple determination (see Draper
and Smith [8]). R2 is the square of the correlation 
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between the vector of observed data, zq, q = 1,···, n, and
the least squares predicted data, Fk(xq, yq), q = 1,···, n.
The statistic satisfies 0 ≤ R2 ≤ 1. This statistic is often
used as a measure of how well the regression equation
explains the variation in the data. It is known that in
building models based on adding terms in the regres-
sion equation, care must be taken in using this statistic.
However, in the current algorithm, the statistic is used
in a somewhat non-conventional manner. We use it as a
measure of the benefit of adding more knots to the
tensor product spline model. The knot selection
algorithm is terminated when R2 > 0.98.

Although the knot placement algorithm is heuristic,
coupling it with the R2-statistic has shown good conver-
gence in practice. It is reasonable to expect this, since
knots are placed in intervals in which the fits at a pre-
vious iteration showed the largest local error. Placing a
knot there allows extra flexibility for those areas.

4.4 Data Smoothing by Tikhonov Regularization

As noted in Sec. 4.2.3, the data distribution can lead
to a rank deficient least squares matrix. Even though a
fit can be computed using SVD, evaluations of the
fitted function at some points can lead to unwanted
oscillations. It is necessary to introduce a smoothing
procedure by regularization. Regularization is a way of
introducing extra information to the least squares
objective function in order to control overfitting of the
data. It is the overfitting of data that can lead to the
unwanted oscillations. In the present work a penalty
term is introduced to control the smoothness of the
resulting fitted function. The objective function will
then balance the data fitting with the smoothness of the
fit. The second partial derivatives of the tensor product
B-splines will be introduced as the smoothing opera-
tors. The objective function will take the form

(29)

λ is called a Tikhonov parameter.
In the objective function the data values are given by

(xq, yq, zq), q = 1, ···,n. The smoothing terms will be

evaluated at a new set of points chosen so that every
knot panel has an equal number of points assigned to
the panel. In the current case there will be a total of t
points throughout the knot panels given by (up,υp),
p = 1, ···, t .

To write this in matrix form we will define two new
matrices B1 and B2 as follows. For m = 1,2,···, rs let
(im, jm) be such that m = ( jm – 1) r + im . Then define the
matrix elements

(30)

We can rewrite (29) in the form

(31)

The matrix dimensions in this objective function are: 

If we perform a QR decomposition, then

(32)

where Q is (n + 2t) × (n + 2t) and R is (n + 2t) × rs. Q is
orthogonal, so that QT Q = I, and R is zero except in its 
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upper right corner. Let R̂ be the rs × rs upper triangular
portion of R and let

(33)

Then, let d^ be the upper rs entries of d. The mini-
mum of O (c) then satisfies R^ c = d^. For a more
complete discussion of the QR method see Golub and
Van Loan [15].

At this point we need to discuss the selection of the
Tikhonov parameter, λ. A number of methods for
choosing the parameter have been discussed in the
literature (see [16, 17, 18, 19, 20]). For this work,
though, we used a graphical method that led to the
selection of a parameter in a few iterations. Before
continuing to discuss the selection of the Tikhonov
parameter for the current study we need to change the
coordinates of the original probe points to spherical
coordinates defined on a rectangle.

4.4.1 A Coordinate Transformation

Since our tensor product B-spline requires a rectan-
gular grid, we convert our CMM data to spherical
coordinates. We start with a given set of n points,
(xi, yi, zi), i = 1, 2, ···, n, for some n, on a surface. As
measured, these points are given relative to the CMM
origin. The first step is to center the data by using the
center-of-data mass of the data points. This establishes
an origin at the center-of-data mass point. It is done in
order to establish a common reference point interior to
the measured data points. It also simplifies writing
vectors from the origin to the data points and allows
the introduction of spherical coordinates. The center-
of-data point is given by

(34)

Since the data set is enclosed in a near-spherical
bounded region, it is reasonable to identify the
Euclidean data points with spherical coordinates. This
will map the points on the sphere to a rectangular
surface where the surface coordinates are designated
by θ, φ and the height of a surface point is given by
R (φ,θ ). In order to use spherical coordinates to repre-
sent points on the boundary of a surface, we need to
restrict our analysis to surfaces that are called
star-shaped. These are surfaces in which a ray drawn
from the center-of-data mass intersects the boundary
in a unique point. Whereas, in the definition of the
B-splines, we used the coordinates (x, y) we will
now use (φ , θ ) and build B-splines in terms of
these spherical coordinates. Euclidean coordinates
will now refer to the measured data points. This switch
in notation should not, it is hoped, cause too much
confusion.

To each data point there is a vector from (x
_

, y
_

, z
_

) to
(xi, yi, zi), given by Vi = (xi, yi, zi) – (x

_
, y
_

, z
_

). Further-
more, any point within the bounding sphere can be
identified by spherical coordinates of the form
S(R,φ,θ ) = (R sin(θ)cos(φ), R sin(θ)sin(φ), R cos(θ)),
where x = R sin(θ)cos(φ), y = R sin(θ)sin(φ), z =
R cos(θ), for 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. θ is referred to as
the colatitude and φ is referred to as the azimuth
(Fig. 8). Table 2 associates the three dimensional
octants with their spherical coordinates (where we have
suppressed R). Therefore, the Euclidean coordinates were
converted to θ, φ angles on a rectangle [0, π] × [0, 2π].
The height, R (φ,θ ), at each θ, φ is taken as the estimat-
ed radius from the center-of-data mass of all of the
Euclidean coordinates.

As an illustration, the results of the conversion of the
coarse probe points for the Green phantom from
Euclidean coordinates to φ,θ coordinates are shown in
Fig. 9. We note the density of data points near the equa-
tor is higher than towards the poles at θ = 0 and θ = π.
Unfortunately the distribution of data points was dictat-
ed by the software controlling the CMM. The lack of
data points near the poles leads to a well known prob-
lem, called the Pole Problem in the literature (see
Dierckx [3]). It creates rank deficient matrices during
the least squares fitting process. Section 4.2.3 discussed
how the singular value decomposition can be used to
handle this problem.
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Fig. 8. Spherical Coordinate angles. θ is the colatitude and φ is the azimuth.

Fig. 9. Plot of the θ , φ Coordinates of the Probe Points for the Coarse Data.



4.4.2 Choosing a Tikhonov Parameter

Once the original probe data had been converted to
spherical coordinates, the iterative selection of the
Tikhonov parameter for the current volume estimation
problem proceeded as follows. First, a set of knots was
selected with λ = 0 (i.e., no regularization terms) in
order to produce an R2 > 0.98 as described in Sec. 4.3.
We found that, for all of the data sets examined, only a
very few extra knots were added beyond the initial
set used to begin the knot selection process. This led
to a rapid convergence to a set of final knots in
all cases. These knots formed panels in the rectangle
[0, π] × [0, 2π]. Next, nine points were uniformly
chosen in each panel and the regularization terms
formed. Numerical experimentation showed that the
use of nine points in each panel provided sufficient
extra data to the regularization terms in order to smooth
the final fits. An initial Tikhonov parameter, λ, was
chosen and the objective function (29) was minimized
by the QR method discussed above. An initial grid of

40 θ and 80 φ values was generated in the rectangle
[0, π] × [0, 2π]. This grid was finally fixed on for
selecting a Tikhonov parameter since further numerical 
experimentation showed that the response surface of
the radii for denser grids did not change the final range
of the radii. The coefficients, c, computed to minimize
the objective function (29), were then inserted into the
linear form Ac, where A was the tensor product matrix
formed from all of the 40 × 80 grid points. The end
resulting radii at the grid values were then computed
and the spherical volumes for those radii were comput-
ed. The maximum and minimum sphere volumes over
the entire 40 × 80 grid were determined. To select the
appropriate Tikhonov parameter, λ values over a range
were used and the differences between the maximum
and minimum volumes were plotted. The value of λ
that produced the minimum difference was selected as
the working λ. For the current volume estimation prob-
lem, the final λ was λ = 0.32.

To illustrate the effect of using regularization terms
to smooth the least squares fit of the radii see Fig. 10.
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Table 2. Octant Equivalence between Euclidean and Spherical Coordinates

3-D Octants to Sperical Coordinates

Octant Number Cartesian Coordinate Spherical Coordinate

1 x ≥ 0, y ≥ 0, z ≥ 0 0 ≤ θ ≤ π / 2, 0 ≤ φ ≤ π / 2
2 x < 0, y ≥ 0, z ≥ 0 0 ≤ θ ≤ π / 2, π / 2 ≤ φ ≤ π
3 x < 0, y < 0, z ≥ 0 0 ≤ θ ≤ π / 2, π ≤ φ ≤ 3π / 2
4 x ≥ 0, y < 0, z ≥ 0 0 ≤ θ ≤ π / 2, 3π / 2 ≤ φ ≤ 2π
5 x ≥ 0, y ≥ 0, z < 0 π / 2 ≤ θ ≤ π , 0 ≤ φ ≤ π / 2
6 x < 0, y ≥ 0, z < 0 π / 2 ≤ θ ≤ π, π / 2 ≤ φ ≤ π
7 x < 0, y < 0, z < 0 π / 2 ≤ θ ≤ π, π ≤ φ ≤ 3π / 2
8 x ≥ 0, y < 0, z < 0 π / 2 ≤ θ ≤ π, 3π / 2 ≤ φ ≤ 2π

Fig. 10. Plot of Radius Data on a 40 by 80 Grid. λ = 0.



This figure shows the radii data for the case of λ = 0,
or no regularization. Note the large radii oscillations at
the boundaries (a range of approximately 10,000 mm).
Now see Fig. 11 and note the narrow range (approxi-
mately 0.1 mm) of the radii over the entire grid. This
clearly shows the effect of the regularization terms on
the least squares fit. The data used for these plots was
the coarse Green phantom data.

5. Volume Estimation by Surface
Triangulation

We could now estimate the volume using the triangu-
lation method described in Sec. 2 by dividing the
phantom surfaces into triangular surface patches as
follows. First of all we partitioned the phantom
surfaces at grid points located at the colatitude angles
θ1 = 0 < θ2 < ···< θυ < θυ + 1 = π from the north pole to
the south pole and azimuthal angles φ1 = 0 < φ2 < ··· <
φh < φh + 1 = 2π around the phantom surface, where υ
stands for vertical and h for horizontal. Since these grid
points did not necessarily fall at the measured data
points, a radius, R(φ, θ ), was calculated at the grid
points from the regularized fitted B-spline surface
model. At the north and south poles the radius was
taken as the median value, Rnorth , of the grid point
values R(φi ,0), i = 1,···, h, for the north pole and Rsouth ,
the median value of R(φi ,π), i = 1,···, h, . The spherical 
coordinates of all of the grid points were converted to
Euclidean coordinates on the surface by

(35)

At this point we could apply the Divergence
Theorem method of Sec. 2. The patches at the north
poles were easily constructed to be triangular as part of
the process of determining the contribution of each patch
to the phantom volumes. In particular, at the north pole
the designated point was (x1, y1, z1) = (0, 0, Rnorth ).
We then iterated through the spherical coordinate points
(φi , θ2), i = 1,···, h. At each of these angle pairs there
was a value R(φi , θ2), i = 1,···, h. We generated the
volume by adding up the contributions of each patch to
the volume total. We did this by initializing a variable,
vol, for the volume, to zero. We then started to generate
the contribution from the first layer of patches at the
north pole. As noted above, we set the north pole to
(x1, y1, z1) and then set

and
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Fig. 11. Plot of Radius Data on a 40 by 80 Grid. λ = 0.32.
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These were set in a positive orientation.
In order to make this process more concrete, we have

included a sample surface triangulation with υ = 5
colatitude angles and h = 8 azimuthal angles in Fig. 12.
In this figure the Euclidean grid points have been
indexed. The North Pole (x1, y1, z1) is designated by the
index 1. In the first step described above the points
(x2, y2, z2) and (x3, y3, z3) are indexed in Fig. 12 by
points 2 and 3 respectively. Next we computed the
outward normal to the triangle patch by forming the
vectors υ1 = (x2, y2, z2) – (x1, y1, z1), υ2 = (x3, y3, z3)–
(x1, y1, z1), for triangle 123 in Fig. 12 and then formed
the normalized cross product

(36)

We then computed the contribution that this patch made
to the volume as

where

(38)

is set in order to compensate for the cyclical vertex
indexing around the triangle patch. Formula (37) is a
combination of Eq. (6), where (n̂ · (x1, y1, z1)) is the
coefficient c in (6), and the second factor is a compact
form of Eq. (11). The factors 1/3 from (6) and 1/2 from
(11) were combined as a multiple of 1/6 after all of the
summations had been performed.

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

165

Fig. 12. A Sample Triangulation of a Sphere Viewed from the North Pole (Vertex 1).
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We proceeded to the next patch in the North Pole
layer. Again (x1, y1, z1) was the North Pole, indexed by
1 in Fig. 12, and we then used the previous computa-
tion to get x2 = x3, y2 = y3, z2 = z3 and set

In Fig. 12 the new point (x3, y3, z3) is indexed by 4 in
Fig. 12. The triangle of interest is now 134 in terms of
indices. We computed the normalized cross product as
for the first patch and then computed the contribution
of the second patch to the volume using Eq. (37). We
continued this process for θ 2, φi, i = 1,···, h. In Fig. 12
we would have proceeded with computing contribu-
tions to the volume by working through the indexed
triangles 123, 134, 145, 156, 167, 178, 189, and 192.

We next computed the contributions of the middle
layer patches in a two step process. We iterated through
each θ j , j = 2,···, υ – 1. The triangles at the South Pole
were handled separately. For each θ j , j = 2,···, υ – 1
and φi, i = 1,···, h, the patches were defined first in
terms of four vertices to create four sided patches. Each
of these patches was then divided into two triangles.
The four vertices of a rectangular patch were identified
counterclockwise as (θ j , φi, R(i, j)), (θ j + 1, φi, R(i, j + 1)),
(θ j +1, φi + 1, R(i + 1, j + 1)), (θ j , φi + 1, R(i + 1, j )). As an
example, in Fig. 12 one of the patches is identified by
indices, in counterclockwise order, as 8 16 17 9.
These indices would be associated with vertices
(θ 2, φ1, R(1, 2)), (θ 3, φ1, R(1, 3)), (θ 3, φ2, R(2, 3)),
(θ 2, φ2, R(2,2)). The four vertex patches were then
divided into two triangles. For the first triangle in the
rectangular patch we set

x1 = R(i, j) sin (θ j ) cos (φi),
y1 = R(i, j) sin (θ j ) cos (φi),
z1 = R(i, j) cos (θ j ).

x2 = R(i, j + 1) sin (θ j + 1) cos (φi),
y2 = R(i, j + 1) sin (θ j + 1) sin (φi),
z2 = R(i, j + 1) cos (θ j + 1).

x3 = R(i + 1, j + 1) sin (θ j + 1) cos (φi + 1),
y3 = R(i + 1, j + 1) sin (θ j + 1) sin (φi + 1),
z3 = R(i + 1, j + 1) cos (θ j + 1).

This triangle in the example Fig. 12 would be
8 16 17. Again, the volume increment was computed as
discussed previously. For the second triangle of the
rectangular patch we maintained the same (x1, y1, z1)
and set x2 = x3, y2 = y3, z2 = z3 and then set

x3 = R(i + 1, j ) sin (θ j ) cos (φi + 1),
y3 = R(i + 1, j ) sin (θ j ) sin (φi + 1),
z3 = R(i + 1, j ) cos (θ j).

This triangle in the example Fig. 12 would be 8 17 9.
Again the volume increment was computed as before.
We continued the process for θ j , j = 2,···, υ – 1 and
and φi, i = 1,···, h.

Finally, at the South Pole there were h triangles to
include in the volume calculation. Their vertices were
identified as follows

x1 = R(i,υ) sin (θυ ) cos (φi),
y1 = R(i,υ) sin (θυ ) sin (φi),
z1 = R(i,υ) cos (θυ ).

x2 = 0,
y2 = 0,
z2 = –Rsouth.

x3 = R(i + 1,υ) sin (θυ ) cos (φi + 1),
y3 = R(i + 1,υ) sin (θυ ) sin (φi + 1),
z3 = R(i + 1,υ) cos (θυ ).

As an example, in Fig. 13 one of these triangles
would be indexed by the points 23 26 24, where the
South Pole is point number 26, although the South Pole
index may be hard to see in the figure. The contribution
of these triangles to the volume was computed as
above. After all of the triangle contributions to the vol-
ume were computed, the final volume was taken to be
vol = (1/6) vol. The factor 1/6 comes from the product
of 1/3 from Sec. 2.1 and 1/2 from Sec. 2.2. The reader
can refer back to these sections to see how the factors
arose. The triangulation process can clearly be general-
ized to a denser surface triangulation.
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6. Computational Results

Two computational processes were involved in
generating the results for each object. The objects
involved were the calibrated sphere and the two
phantoms. First, sphere models were fit to an object.
The second process involved three steps. The first step
was to compute a good selection of knots for the tensor
product spline function. The next step was to fit the
tensor product spline function with the objective func-
tion modified by the regularization terms to the object.
Finally, once the tensor spline function had been devel-
oped they were used to generate data at the vertices of
the surface triangulation and to compute the volume
using the Divergence Theorem.

6.1 Computational Results for the Spherical Model

Tables 3, 4, and 5 present the results obtained by
fitting spherical models to the data from the calibrated
sphere and the two phantoms. For the calibrated sphere
there were five repeats for each of the coarse and dense 

data sets. Since the results of the point location repeats
differed only at the micrometer level the data sets were
combined by averaging to form two data sets represent-
ing the coarse and dense data sets for the calibrated
sphere. Similarly, the point locations of the three posi-
tion data sets for both the coarse and dense data sets for
the phantoms differed only at the micrometer level.
Therefore, by averaging of the three position data sets
for coarse and dense data sets, two working data sets
were formed for the Green and Pink phantoms.
Since the output of the Nelder-Mead algorithm
was a final polytope surrounding the minimizing
parameter with the polytope, the final reported para-
meters were selected as the median value of the vertex
values. These are the first four entries in the tables:
Center x, Center y, Center z, and Radius. The units are
millimeters. The fifth table entries are the spherical
volumes based on the median radius value in cubic
millimeters. The radius residuals were computed as the
absolute value of

(39)
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Fig. 13. A Sample Triangulation of a Sphere Viewed from the South Pole (Vertex 26).
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The sixth and seventh entries in the tables give the
mean value and standard deviation of these residuals in
millimeters. The eighth through the eleventh entries are
the expanded uncertainties for the estimated Center x,
Center y, Center z, and Radius, also in millimeters.

The results in these sections on spherical model fit-
ting involved the non-linear model (39) fitting to the
sparse data sets generated by the CMM. This process
did not involve the B-spline algorithm. Therefore any
differences between coarse and dense results were most
likely the consequence of the point selection in the
metrology of the artifacts.

6.1.1 Results for the Spherical Model Fit to the
Calibrated Sphere With Coarse and
Dense Data

Table 3 gives the results of the fit of the sphere
model to both the coarse (122 points) and the dense
(181 points) data sets for the calibrated sphere. In both
cases the average of the five repeat data sets was used
for the fitting process. As can be seen, the two volume
estimates differ by approximately 0.04 %. The radii
estimates differ by about 0.01 %. There is a slightly
larger difference when the spherical fit results are
compared to the volume estimate based on the manu-
facturer estimated calibrated sphere diameter of
19.05 mm. This would lead to a volume estimate of
3619.8 mm3. Since the method of estimating the dia-
meter by the manufacturer was proprietary we could
not independently verify the measurement. We could
only compare it against our sphere model fit results.
The manufacturer measured radius differs from the
computed radii in Table 3 by about 0.08 % whereas the
volume estimate based on the measured radius differs
from the volume estimates in Table 3 by about 0.2 %. If
we expand the radii in Table 3 to a diameter we find the
values 19.0651 millimeters in the coarse case and
19.0629 millimeters in the dense case. These differ by
approximately 0.01 mm from the manufacture’s meas-
ured diameter. It would seem that these differences
were sufficiently small so that the difference in value
estimates for radius and volume were not considered
significant. Although the estimated centers are slightly
different, all other values are of the same order of
magnitude. Based on these results we can accept that
the CMM is producing accurate position data for spher-
ical metallic artifacts. Tables 4 and 5, however, begin
to show the consequences involved with attempting
to measure slightly non-spherical and non-metallic
artifacts with the CMM.

6.1.2 Results for the Spherical Model Fit to the
Phantoms With Coarse and Dense Data Sets

From Tables 4 and 5 it is clear that the Green
phantom is more spherical than the Pink phantom as
indicated by the residuals and the expanded uncertain-
ties. This simply confirms the fact that the Pink
phantom was more difficult to measure using the vacu-
um chuck due to its lack of sphericity. For example, the
Mean Radial Residual for the Pink data is two orders of
magnitude larger than for the Green data. The Standard
Deviations for the Pink data are an order of magnitude
greater, as are the Expanded Uncertainties. It is not
clear how much the phantom material affected the
results since it was difficult to set up a specific probe
test for metallic versus phantom material. The artifacts
would have to have been exactly the same size,
positioned at exactly the right location, and probed at
exactly the same coordinates to separate those factors
from the material factor difference. There were no such
comparable artifacts. We can make a guess, though,
that there might be some effect due to probe force
against the non-metallic material if we look at Table 3
and Table 4 for the Green phantom, the most spherical
of the two phantoms. The Expanded Uncertainties for
the sphere fit to the calibrated metallic sphere and the
Expanded Uncertainties for the sphere fit to the Green
phantom data differ by one to three orders of magni-
tude. Since the repeatability of the CMM measure-
ments is at the 1 μm level, it is likely then that materi-
al difference had some significant affect on the differ-
ence in the uncertainties. It is a conjecture that this and
the non-spherical shape of the Pink phantom account
for a large part of the differences between the Pink
phantom Expanded Uncertainties in Table 5, the Green
phantom Expanded Uncertainties in Table 4, and the
calibrated sphere Expanded Uncertainties in Table 3.
For the Green phantom the radii estimates in Table 4
between the fits of the coarse and dense data sets is
approximately 0.3 % and the volumes differ by approx-
imately 0.8 %. Whereas, for the Pink phantom the radii
estimates in Table 5 between the fits of the coarse and
dense data sets are 0.4 % and the volumes differ by
approximately 1.3 %. In both Tables 4 and 5 the
expanded uncertainties for the dense data sets are
approximately an order of magnitude better than the
results for the coarse data sets. This suggests that the
radius and volume estimates in the case of the dense
data sets for both the Green and Pink phantoms are
probably the more realistic values, at least in terms of a
spherical model fit.

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

168



Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

169

Table 3. Results of a Spherical Fit to Coarse and Dense Data for Calibrated Sphere

Spherical Fit Results for Calibrated Sphere
Properties Coarse Dense

Center x 0.2803 × 10– 4 – 0.1331 × 10– 2

Center y – 0.4881 × 10– 3 – 0.2034 × 10– 2

Center z – 0.6642 × 10– 2 – 0.2564 × 10– 2

Radius 9.5326 9.5314
Est. Volume 3628.41 3627.14
Mean Rad. Residual 0.3231 × 10– 4 0.8720 × 10– 4

Stand. Dev. Rad. Residual 0.2156 × 10– 2 0.22302 × 10– 2

Expanded Uncert. Center x 0.2711 × 10– 4 0.2357 × 10– 4

Expanded Uncert. Center y 0.2711 × 10– 4 0.2357 × 10– 4

Expanded Uncert. Center z 0.4316 × 10– 4 0.3757 × 10– 4

Expanded Uncert. Radius 0.2188 × 10– 4 0.1909 × 10– 4

Table 4. Results of a Spherical Fit to Coarse Data for the Green Phantom

Spherical Fit Results to Green Phantom
Properties Coarse Dense

Center x 0.8216 × 10– 3 – 0.9172 × 10– 3

Center y 0.1532 × 10– 2 0.4275 × 10– 2

Center z – 0.1832 × 10– 1 0.1723
Radius 10.1121 10.0850
Est. Volume 4331.3 4296.48
Mean Rad. Residual – 1.4802 × 10– 4 – 0.8450 × 10– 4

Stand. Dev. Rad. Residual 0.5526 × 10– 1 0.3093 × 10– 1

Expanded Uncert. Center x 0.1926 × 10– 1 0.4757 × 10– 2

Expanded Uncert. Center y 0.1926 × 10– 1 0.4753 × 10– 2

Expanded Uncert. Center z 0.2123 × 10– 1 0.7261 × 10– 2

Expanded Uncert. Radius 0.1146 × 10– 1 0.3632 × 10– 2

Table 5. Results of a Spherical Fit to Coarse Data for the Pink Phantom

Center x 0.7110 × 10– 3 0.2495 × 10– 1

Center y – 0.1329 × 10– 2 0.3272 × 10– 1

Center z 0.1739 × 10– 3 0.3719
Radius 9.7332 9.7752
Est. Volume 3862.09 3912.54
Mean Rad. Residual – 0.2315 × 10– 2 – 0.3223 × 10– 3

Stand. Dev. Rad. Residual 0.2127 0.8935 × 10– 1

Expanded Uncert. Center x 0.2686 0.3818 × 10– 1

Expanded Uncert. Center y 0.2693 0.3862 × 10– 1

Expanded Uncert. Center z 0.2972 0.5832 × 10– 1

Expanded Uncert. Radius 0.1602 0.2880 × 10– 1

Spherical Fit Results to Pink Phantom
Properties Coarse Dense



Table 1 shows that the diameter of the Green
phantom is approximately 20 mm and that the diameter
of the Pink phantom falls approximately between
20.0 mm and 18.4 mm. This would imply that the
sphere model for the Green phantom should have a
volume of about 4188.8 mm3.With the estimate of
0.3 mm uncertainty using the calipers, this would place
the Green volume in the range of 4380.1 mm3 and
4003.1 mm3. The estimated volumes in Table 4 are
within this range for both the coarse and the dense data.
The Pink phantom should have a volume between
4445.2 mm3 and 3104.8 mm3. Table 5 for the Pink
phantom shows that for the coarse and dense data the
volume estimates fall from about 3862 mm3 to about
3913 mm3. These volumes are within the expected
range of the caliper measurements.

6.2 Computational Results for the B-Spline Model
In this section we will describe the method used to

estimate volume uncertainties and discuss the results of
using a B-spline surface model and the Divergence
Theorem to estimate the phantom volumes. A nonpara-
metric method to estimate the volume uncertainties was
chosen since there did not exist any “ground truth”
values for the Green and Pink FDA phantom volumes.
All of the expanded uncertainty results are displayed in
row two of Tables 6, 7, and 8.

For each data set we conducted twenty one estimates
of the volumes and volume uncertainties by increasing
the density of the surface triangulation. The twenty one
were selected since beyond that point the computer
time became large and the volume increment per case
was minimal. In order to plot the volume results in
terms of grid density we use the term grid size by which
we mean the product of the number of θ values times
the number of φ values for a particular grid density. As
shown in Tables 6 through 8 we begin with a grid of
ten θ and twenty φ values and compute the volume and
uncertainty. The grid size in this 10 × 20 grid is then
200. The θ values were then incremented by ten and the
φ values by twenty for each grid case until the last case
of 210 θ values and 420 φ values, giving a grid size of
88200 (8.82 × 104). The volumes in Figs. 14 through 19
grow very rapidly and appear to approach a fixed value
as the grid size increases. They simply reflect the
volume data in the Tables 6 through 8.

6.2.1 Estimating Volume Uncertainties

The uncertainties were estimated by the nonpara-
metric “bootstrap” method. It is a computer intensive
technique for estimating uncertainties and it involves
repeated Monte Carlo resampling from the spherical
coordinates of the original measured data sets with radii
values modified by the fitting residuals, refitting the
model to estimate new volumes, and finally computing
an uncertainty for the process from the set of computed
volumes. For a full discussion of the bootstrap see
Efron and Tibshirani [21] but we will give a brief
description here of how we applied the bootstrap
method in the current study.

The object of our application of the bootstrap was to
develop volume uncertainty as a function of grid size.
The process began with the conversion of the Euclidean
data points to spherical coordinates. An automatic
selection of knots was done. These steps were done
once for a given data set. It was assumed that the
modifications of the data made during the bootstrap
would be small and not affect the knot selection.
During the first pass of the bootstrap algorithm the radii
of the spherical coordinates were fit by a tensor product
of B-splines. The predicted values and residuals from
this initial fit were called the master predicted values
and master residuals respectively. The computed
volume was then put in a list of volumes that was added
to in subsequent passes of the algorithm. The algorithm
then iterated two hundred times as follows. In the first
iteration the master residuals were sampled randomly
uniformly with replacement. The resampled residuals
were then added to the master predicted radii and a new
fit was performed. The new computed volume was
added to the volume list and the master residuals
sampled randomly uniformly with replacement for the
next iteration. The process continued for all two
hundred iterations. The standard deviation of the
volumes in the volume list was then used as an estimate
of the volume uncertainty and the average volume was
taken as the reference volume for the chosen grid size.
We found that in all cases the expanded uncertainties
remained approximately constant and that is why only
upper bounds for the expanded uncertainties are report-
ed in the tables below.
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Table 6. Estimated Volumes for Calibrated Sphere Data

Table 7. Estimated Volumes for Green Phantom Data

Calibrate Sphere Data. Volumes vs Grid Size
Expanded Volume Uncertainties: Coarse < 0.6 (mm3), Dense < 0.5 (mm3)

Grid Case θ φ Coarse Volume (mm3) Dense Volume (mm3)

1 10 20 3455.05 3453.90
2 20 40 3587.92 3586.74
3 30 60 3610.80 3609.61
4 40 80 3618.63 3617.35
5 50 100 3622.17 3620.88
6 60 120 3624.07 3622.83
7 70 140 3625.21 3623.92
8 80 160 3625.95 3624.66
9 90 180 3626.45 3625.23
10 100 200 3626.81 3625.59
11 110 220 3627.08 3625.86
12 120 240 3627.28 3626.06
13 130 260 3627.43 3626.21
14 140 280 3627.56 3626.34
15 150 300 3627.66 3626.44
16 160 320 3627.74 3626.52
17 170 340 3627.81 3626.59
18 180 360 3627.86 3626.64
19 190 380 3627.91 3626.69
20 200 400 3627.95 3626.73
21 210 420 3627.99 3626.77

Green Phantom Data. Volumes vs Grid Size
Expanded Volume Uncertainties: Coarse < 12 (mm3), Dense < 8 (mm3)

Grid Case θ φ Coarse Volume (mm3) Dense Volume (mm3)

1 10 20 4125.34 4092.77
2 20 40 4283.92 4250.85
3 30 60 4310.93 4277.65
4 40 80 4320.67 4285.66
5 50 100 4324.90 4289.86
6 60 120 4327.17 4292.12
7 70 140 4328.53 4293.47
8 80 160 4329.41 4294.35
9 90 180 4330.01 4294.95
10 100 200 4330.44 4295.37
11 110 220 4330.75 4295.69
12 120 240 4330.99 4295.92
13 130 260 4331.07 4296.11
14 140 280 4331.33 4296.26
15 150 300 4331.45 4296.38
16 160 320 4331.54 4296.47
17 170 340 4331.62 4296.55
18 180 360 4331.69 4296.62
19 190 380 4331.75 4296.68
20 200 400 4331.80 4296.72
21 210 420 4331.84 4296.77
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Table 8. Estimated Volumes for Pink Phantom Data

Pink Phantom Data. Volumes vs Grid Size
Expanded Volume Uncertainties: Coarse < 28 (mm3), Dense < 18 (mm3)

Grid Case θ φ Coarse Volume (mm3) Dense Volume (mm3)

1 10 20 3668.27 3719.71
2 20 40 3811.59 3863.30
3 30 60 3836.22 3887.99
4 40 80 3844.59 3896.39
5 50 100 3848.41 3900.21
6 60 120 3850.46 3902.27
7 70 140 3851.69 3903.51
8 80 160 3852.48 3904.30
9 90 180 3853.03 3904.85
10 100 200 3853.41 3905.23
11 110 220 3853.70 3905.52
12 120 240 3853.91 3905.74
13 130 260 3854.08 3905.91
14 140 280 3854.22 3906.04
15 150 300 3854.32 3906.15
16 160 320 3854.41 3906.24
17 170 340 3854.48 3906.31
18 180 360 3854.55 3906.37
19 190 380 3854.60 3906.42
20 200 400 3854.64 3906.47
21 210 420 3854.68 3906.50

Fig. 14. Volume Estimates for Coarse Calibrated Sphere Data Set vs. Grid Size.
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Fig. 15. Volume Estimates for Dense Calibrated Sphere Data Set vs. Grid Size.

Fig. 16. Volume Estimates for Green Coarse Data Set vs. Grid Size.
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Fig. 17. Volume Estimates for Green Dense Data Set vs. Grid Size.

Fig. 18. Volume Estimates for Pink Coarse Data Set vs. Grid Size.



6.2.2 Calibrated Sphere Volume Estimates and
Uncertainties for the Coarse and Dense Data

As a test of the accuracy of the B-spline volume
estimation procedure, we applied the method to the
coarse and dense data sets for the calibrated sphere.
If the volumes computed by the B-spline method in
Table 6 are compared with the sphere fit results in
Table 3, we see that the B-spline method and the sphere
fit method results differ by approximately 0.01 % for
both the coarse and dense data sets. This indicates that
the B-spline approach is performing as adequately as
the straightforward sphere fit model and thus can be
relied upon to produce good results when applied to the
phantom data.

6.2.3 Phantom Volume Estimates and
Uncertainties for the Coarse Data

In this section we discuss briefly the results of com-
puting the volumes and volume uncertainties for the
two phantoms using the coarse data sets. As described
earlier, twenty one surface grid cases were used and the
results are shown in Tables 7 and 8. Figures 16 and 18
show the trends of the volume estimates as the grid
sizes increase. The estimates rise rapidly, and both tend
to what appears to be stabilized values. The figures
graphically display the values in the tables.

The spherical fit to the Green phantom data in
Table 4 indicates an estimated volume of 4331.3 mm3.
Table 7 indicates an estimated volume of 4331.84 mm3

for the largest grid size of 210 θ by 420 φ. This is
approximately a 0.01 % difference suggesting that the
Green phantom is very nearly spherical.

The spherical fit to the Pink phantom data in Table 5
indicates an estimated volume of 3862.6 mm3. Table 8
indicates an estimated volume of 3854.68 mm3 for
the largest grid size. The difference is approximately
0.21 %, suggesting the slight non-spherical shape of the
Pink phantom.

From Tables 7 and 8, the uncertainties are shown
bounded on the coarse surface grid by 12 mm3 for the
Green phantom and 28 mm3 for the Pink phantom. This
larger uncertainty for the Pink phantom might be due to
the non-spherical nature of the Pink phantom. As indi-
cated here, the uncertainties for the Pink phantom are
approximately twice those of the Green phantom.

6.2.4 Volume Estimates and Uncertainties for the
Dense Data

In this section we report the results of volume esti-
mates and the extended uncertainties for the dense data
sets for both phantom surfaces. The first thing of inter-
est is that the stabilized volume estimates for the Green
dense data in Table 7 differ from the volume estimate
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Fig. 19. Volume Estimates for Pink Dense Data Set vs. Grid Size.



for the Green coarse data by about 0.82 %. This is in
the negative direction in that the volume estimates for
the Green dense data were smaller than for the Green
coarse data. In the case of the volume estimates for the
Pink dense data in Table 8, the differences with the
volume estimate for the Pink coarse data is approxi-
mately 1.33 %. This is in the positive direction in the
sense that the volume estimate for the dense data is
slightly larger than the volume estimate for the coarse
data. These results are consistent with the results of the
spherical model fit to the Green and Pink phantoms in
Tables 4 and 5. Another thing to notice is that the uncer-
tainties are lower for the dense data sets as shown in
Tables 7 through 8 compared to those estimated from
the coarse data, although the uncertainty for the Pink
phantom is about twice that for the Green phantom.
These uncertainties are consistent with the uncertain-
ties computed during the fits of the sphere models in
Tables 4 and 5. It is not clear why the results for the
dense data differ slightly in the directions they do from
the results for the coarse data. A complete analysis of
these differences is beyond the scope of this paper, but
would be appropriate for a detailed study related to an
analysis of the fitting algorithms and their sensitivity to
the surface data distribution.

7. Summary

The B-spline surface model joined with the
Divergence Theorem seems to be a viable approach for
estimating volumes of the near-spherical molded
phantoms, but the volume results seem to depend
strongly on the distribution of the data points on the
surface. In the case of sparse data the problem of
extending a surface fitted to the data to a grid on the
surface leads potentially to unwanted oscillations in the
neighborhood of some of the sparse data points. In the
current algorithm this problem was dealt with by
adding regularization terms to the objective function.
These provided a balance between the fit and the
surface smoothness in order to control overfitting of the
data. The final regularization parameter was λ = 0.32
for all data sets.

The results obtained from both the coarse and dense
data distributions appear to be consistent with the
results from the spherical model fits. As shown in
Table 7 the volume estimates for the Green phantom
are very close to the estimates obtained by the spheri-
cal model in Table 4 suggesting that the Green sphere
is essentially spherical in shape. The volume estimates
in Table 5 for the Pink sphere are higher by about

0.19 % for the coarse data and 0.15 % for the dense
data than the B-spline model estimates in Table 8
suggesting that the Pink phantom might be close to
spherical, although it does show some non-spherical
tendencies. The uncertainties in the Pink phantom case
suggest though that the Pink phantom may indeed have
a slightly non-spherical shape. This is also suggested by
the difficulty with holding the Pink phantom in the
vacuum chuck during one of the surface data probing
experiments.

In summary we conclude that the combination
of using the CMM to obtain surface data and the
B-spline/Divergence Theorem volume estimation
method can produce useful results but that there are
some limitations. First, the CMM is primarily used for
probing manufactured metallic artifacts and its use in
probing non-metallic artifacts such as the FDA phan-
toms can likely lead to some larger uncertainties in
volume estimation. Second, the distribution of probed
points can lead to results that indicate the models used
are sensitive to the point locations. Third, the methods
employed may not provide useful volume estimation
for more complex artifacts that surely would arise in
developing simulated lung cancer phantoms. The
current artifacts were near-spherical and even these did
not provide fully expected results based on data distri-
bution for the Pink phantom. Further research on the
affect of surface data distribution is required. Fourth,
the Pole Problem is definitely a limitation that required
regularizing of the objective function. Finally, the
number of data points obtained on the surfaces was
limited by the relative size of the artifact and the CMM
probe size.
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