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Abstract—This paper presents a Bayesian framework and a
pricing structure for a secondary wireless user that opportunis-
tically uses a RF channel licensed to a network of N primary
users. The secondary user operates in a time-slotted fashion,
where each time slot consists of observing the channel for D
seconds followed by possibly using it for W seconds depending
on the decision the user makes after observing the channel. The
paper assumes the secondary user observes the on-off Markov
process modeling the primary user activity corrupted by additive
white Gaussian noise, and it employs a decision rule that is a time-
averager followed by a threshold device. The pricing structure
includes rewards for the secondary user when it uses the channel
without interfering with the primary users and penalties when
it does so and it interferes. The paper derives a formula for the
average per unit time net profit of the secondary user. Numerical
results are presented that show the behavior of the maximum
profit of the secondary user, its throughput, and the resulting
level of interference to the primary users as functions of various
network parameters.

I. INTRODUCTION

The volume of wireless communications has dramatically
increased over the past two decades and this trend is ex-
pected to continue with new and increasingly bandwidth-
hungry mobile applications and services introduced every day.
Wireless service providers typically argue that they need more
radio frequency (RF) spectrum and lobby spectrum regulatory
agencies to release more spectrum so that they can cope with
rising data traffic demands. On the other hand, there is ample
evidence [1] that suggests that much of the licensed spectrum
is underutilized. Of course, the degree of underutilization
varies greatly depending on the frequency band, location,
and time, but it appears that at most locations at any given
time opportunities exist to use some underutilized frequency
bands. These observations and the increasing importance of
software-defined radios led Mitola and Maguire [2] to propose
the concept of a cognitive radio network (CRN) in 1999. A
number of survey papers on the subject have been published
since then ([3], [4], [5]) that cover the progress made in this
field as well as open problems and challenges.

The license holders of any frequency band that might be
regarded as a good candidate for opportunistic spectrum access
(OSA) are understandably concerned that any opportunistic
use of their spectrum would lead to a degradation of their
radio communications or wireless services they provide over
that band. Perhaps in certain circumstances, e.g. emergency
response in the aftermath of large-scale natural or man-made

disasters or when national security is at risk, these concerns
are trumped by more important priorities and opportunistic use
of any spectrum is justified. However, in the absence of such
conditions, there has to be a balance between empowering
unlicensed users to use an underutilized RF band and not
noticeably degrading the radio communications of the licensed
users. In fact, this is by far the most major obstacle to viability
of OSA and deployment of CRNs.

There has been some work on developing techniques for
unlicensed, henceforth called secondary, users to characterize,
quantify, and manage interference to the licensed, henceforth
called primary, users when a secondary user (SU) decides
to opportunistically use the licensed spectrum. This problem
is trivial in certain scenarios. For example, a SU could in
principle use the spectrum allocated for television broadcasting
when TV is off air, because TV broadcast schedules in a
given geographic region are well known and widely advertised.
This is an example of spatial OSA. Although technically more
challenging, a SU might be allowed to transmit over the TV
bands even when TV broadcasting is on, and this is the subject
of a recent FCC ruling on the use of the so-called “white
spaces” by unlicensed users [6]. The problem would then
be that of detecting the presence of TV sets (receivers) in
the vicinity of a prospective secondary transmitter. An early
work on this topic [7] uses the RF energy leaked from TV
local oscillators to detect their presence. Temporal OSA is
the other type of OSA that arises when SUs try to exploit
a licensed spectrum during very short periods of time when
primary users (PUs) are not using the spectrum. This problem
is in general quite challenging, because there is usually no
coordination between PUs and SUs. At best, the latter have
a statistical characterization of the primary system traffic.
Hidden and exposed terminal problems, shadowing, fading,
and other types of RF propagation effects [8] are some of
the problems that have to be dealt with. Yet, a number
of researchers have worked on this problem under various
settings. [9] classifies classic detection problems that could be
used for spectrum sensing into three categories: matched filter,
energy detector, and feature detector. One example of spectrum
sensing using feature detection is [10]. A more promising
approach is collaborative / cooperative spectrum sensing where
all users in a secondary network sense the licensed spectrum
and arrive at a more reliable picture of spectrum occupancy
through use of centralized or preferably distributed detection



algorithms [11], [12]. Naturally, these techniques require more
resources and have a higher overhead.

Of more relevance to our work are papers that consider not
just the spectrum sensing aspect but also the benefit to the
SU as a result of using the spectrum. Some work has been
done on pricing, economic models, and applications of game
theory to CRNs. For example, [13] proposes a game-theoretic
model for analyzing the behavior and dynamics of a CRN.
[14] uses game theory to analyze a scenario where multiple
primary service providers compete with each other to offer
spectrum opportunities to SUs with the goal of maximizing
their profits subject to constraints on the quality of service
(QoS) they provide to their own PUs. [15] is an application
of stochastic control theory to the MAC layer protocol design
for CRNs. Specifically, the paper considers N data channels,
which both the PUs and SUs use in a time-slotted fashion. At
the beginning of certain time slots, a SU selects one channel
to sense and it transmits over that channel for L time slots
if it finds it idle. The SU gets a reward of L units if the
transmissions are successful and a reward of −αL if any of the
transmissions fail due to a collision with the PUs. The paper
designs a channel selection policy for the SUs by taking a
stochastic control approach and maximizing a discounted sum
of expected rewards over an infinite horizon.

Along similar lines, Markov decision theory has been used
to optimize the SU spectrum sensing operation under the a
periodic sensing assumption. Specifically, it is assumed that a
SU senses one or more licensed channels at the beginning of
a time slot and then may decide to use one of the licensed
channels, not necessarily one of those that were sensed. The
goal of the SU is to maximize its own throughput subject to
limits on interference caused to the PUs. The papers described
below assume error-free spectrum sensing and/or sensing and
PU activity detection schemes that could suffer from errors.
Whenever the latter is considered, the papers start from the
assumption that the receiver operating curve (ROC) for the
spectrum sensing operation and the associated decision rule
are known. Therefore, the spectrum sensing operation is fine-
tuned by selecting a point on the ROC curve according to
the Neyman-Pearson (NP) criterion. [16] and [17] consider a
time-slotted primary network with N channels and a Markov
chain with M = 2N states and known transition probabilities
that governs PU activity over these channels. At the beginning
of each slot, a SU chooses a subset A1 of channels to observe
with |A1| ≤ L1 ≤ N , and then it uses a subset A2 ⊆ A1

of size no more than L2 ≤ L1 channels to use. This leads
to a finite-horizon, constrained partially observable Markov
decision process (POMDP) problem, for which an optimal
as well as a greedy suboptimal solution are found. These
papers consider both cases of error-free spectrum sensing and
sensing that could suffer from errors. The model considered
in [18] is similar to the previous two references. However,
in this paper the authors study the interaction between the
PHY layer sensor operating characteristics and the MAC layer
access strategy. The paper establishes a separation principle
in the single-channel sensing case. It shows that the optimal

solution consists of choosing in the first step a spectrum
sensor (operating point on ROC curves for various channel
sensors) and an access strategy (probabilities of use for various
channels depending on sensing operation recommendations)
to maximize the instantaneous SU throughput subject to a
collision constraint (limit on interference caused to the PUs)
and in the second step a sensing strategy (which channels to
sense) to maximize the overall throughput. It turns out that a
general separation principle does not exist in the case where
the secondary user is allowed to sense multiple channels in
each time slot. As an example, the paper considers a case
where the PU signal is assumed to be a white Gaussian
noise process that is corrupted by an additive white Gaussian
noise (AWGN) process, in which case an energy detector
is optimal under the NP criterion. In a departure from the
time-slotted operation assumption for the PUs, [19] consid-
ers a continuous-time Markov chain (CTMC) model for PU
activity. Specifically, the PU occupancy of the i’th channel,
i = 0, 1, · · · , N − 1, is modeled by a homogeneous CTMC
with exponential sojourn times with parameters λ i and μi

for the idle and busy states, respectively. The SU senses a
single channel at the beginning of each time slot and decides
if and over which channel, again not necessarily the one that
was sensed, to transmit. This leads to a constrained Markov
decision process (CMDP) problem in which the SU average
throughput over an infinite horizon is maximized subject to
an upper bound on the average interference caused for the
PUs. The paper solves for the optimal policy via a linear
program. Finally, [20] extends the results of [18] to the case
of an unslotted primary system under certain conditions on the
false alarm probability of the spectrum sensor.

There are some other papers on OSA with periodic sensing
that are relevant to our paper. [21] considers a CTMC model
for PU activity. In each cycle, an SU monitors the channel
for Tmonitor seconds and uses an energy detector to decide
whether there is PU activity on the channel sensed. If it does
not detect PU activity, it uses the channel for Tdata seconds.
Otherwise, it initiates a search for other PU channels that
lasts a random Tsearch seconds. The paper uses approximate
formulae for the false-alarm and detection probabilities of
the detector based on the central limit theorem (CLT) for
detection of signals with large time-bandwidth products. This
is in contrast with our paper, where exact formulae for
these probabilities have been derived. [21] optimizes both
the channel monitoring time and the channel search time to
maximize the SU throughput while limiting the interference to
the PUs. [22] is another paper that optimizes channel sensing
time of an energy detector to maximize SU throughput subject
to bounds on the interference to the PUs. This paper assumes a
discrete-time signal model and uses CLT arguments to derive
expressions for probabilities of false-alarm and detection. The
paper also considers cooperative sensing using multiple mini-
slots and multiple SUs. The former means the SU is allowed to
divide up its sensing time in each cycle into M discontiguous
mini-slots.

This paper considers a Bayesian framework for optimizing



the average per unit time net profit of a SU in a network
of primary users. It proposes a pricing structure that rewards
the SU for the durations of time it successfully uses the
channel and penalizes it during times that it interferes with
the PUs. The paper considers an idealized model for channel
sensing, an energy-detector “type” of decision rule for the
SU, and a simple network model for the PUs and the SU. It
derives an analytical formula for the average per unit time net
profit of the SU and uses numerical methods to maximize the
profit as a function of the sensing and channel use parameters
of the SU. The analytical formulae involve, among others,
computing the probability distribution of the time an on-off
Markov process spends in the on state during an observation
interval of length D. We should point out that [23] computes
the probability distribution of “opportunity time” in OSA in a
system consisting of N channels, where the PU activity over
the channels is modeled by independent homogeneous CTMCs
and the SU is allowed to switch from one channel to another
as long as one is unoccupied. The opportunity time is defined
as the duration of time from the first instance a channel is
available until the time all channels become unavailable.

The organization of the paper is as follows. In Section II
we present the model for the network consisting of the SU
and the PUs, the pricing structure, the channel sensing and
PU detection mechanism, and formulate the SU optimization
problem. In Section IV, we present the analysis that leads to
a formula for the SU average net profit. In Section V, we
use numerical methods to maximize the net profit and present
numerical results of this optimization as functions of various
network parameters. Section VI concludes the paper.

II. NETWORK MODEL

Consider a communication network consisting of N primary
and a single secondary wireless users, all sharing a single
communication channel. While the PUs are licensed to use
the channel, the sole SU tries to sneak in and use the
channel whenever it believes the channel is not in use by
the PUs. The operation of the PUs is governed by a network
administrator that allows at most one PU to use the channel
at any given time. The time a PU holds the channel and
uses it is characterized by an exponential random variable
(r.v.) with parameter μ. These channel holding times are
independent identically distributed (i.i.d.) across PUs and over
time. Once a PU finishes using the channel, it releases it and
waits until it needs the channel again. This interarrival time
is characterized by an exponential r.v. with parameter λ, and
such r.v.’s are once again i.i.d. across PUs and over time and
are independent of the channel holding times. If a PU needs
to use the channel but finds it in use, it gives up and waits
until it needs the channel again. This leads to a continuous-
time, on-off Markov process {X(t); t ≥ 0} model for channel
occupancy, as depicted in Figure 1, where states ’0’ and ’1’
denote the channel being idle and busy, respectively, and
λ̄ = Nλ. The steady-state probability distribution of this
Markov process is given by π0 = P (X(t) = 0) = μ/(λ̄ + μ)

Fig. 1. Markov process model for channel occupancy {X(t); t ≥ 0}.

Fig. 2. The SU behaves in a periodic manner. It senses the channel for D
seconds and then it may use it for W = T − D seconds or wait for W
seconds.

and π1 = P (X(t) = 1) = λ̄/(λ̄ + μ). We assume that
P (X(0) = 0) = π0, and hence {X(t); t ≥ 0} is stationary.

The SU operates in periodic fashion. It starts each period
or cycle by sensing the spectrum for D seconds, based on
which it decides what to do in the next W seconds: use the
channel and transmit data or wait and back off. If the SU
ends up using the channel, it may interfere with a PU even if
the channel is idle at the beginning of the W -second interval.
We assume the behavior of the SU does not affect {X(t)} at
all. Specifically, the PUs and their network administrator do
not sense the channel before using it. If the SU begins using
the channel while a PU is using it due to the SU’s incorrect
decision about PU activity on the channel, the PU will be
unaware of this event and will continue to use the channel.
The operation of the SU is depicted in Figure 2. We assume
the SU has unlimited amount of data to send and will use the
channel for the entire W -second transmission slot if it decides
the channel is idle after observing it during the preceding D-
second sensing period. Let T = D + W denote the length of
a SU cycle.

It is assumed that the SU observes an attenuated version of
{X(t)} corrupted by additive white Gaussian noise (AWGN).
Specifically, the SU observes:

Y (t) = SX(t) + N(t) ; t ∈ [0, D],

where S is a constant attenuation factor known to the SU and
{N(t); t ≥ 0} is a zero-mean, Gaussian random process with
power spectral density SN (f) = N0/2 that is independent of
{X(t); t ≥ 0}. We realize that S is typically random and time-
varying and not known to the SU. We leave consideration of
more realistic channel propagation models to future work.

The SU needs to decide whether X(D) = 0 or X(D) = 1
based on observing Y (t) during [0, D]. We do not address the
problem of finding the optimum decision rule for this problem
in this paper. Rather, we consider the following decision rule:



X̂(D) =
{

1 ; if 1
SD

∫ D

0
Y (t)dt > τ

0 ; otherwise
(1)

Note that

1
SD

∫ D

0

Y (t)dt =
1
D

∫ D

0

X(t)dt+
1

SD

∫ D

0

N(t)dt
�
= Z+Ñ ,

(2)
where Z is a continuous r.v. distributed over [0, 1] and Ñ ∼
N (0, σ2) with σ =

√
N0

2DS2 . If Z were a binary r.v. taking the
values 0 and 1, then the decision rule given by Equation (1)
would be optimal with a proper choice of the threshold τ . Its
performance would depend on D and the signal-to-noise ratio
(SNR)

SNR in dB = 10 log10
S2

N0/2
Even under the present circumstances where Z is not a binary
r.v., this decision rule would be a reasonable choice as long as
the underlying process {X(t)} does not change states too fast.
In other words, the SNR determines the minimum D needed
for averaging out the noise and for the decision rule to meet
any required performance level, if Z were a binary r.v. The
decision rule would still perform well if min(1/λ, 1/μ) is well
above this minimum D. Its performance is characterized by
pj|i = P (X̂(D) = j|X(D) = i), for (i, j) ∈ {0, 1}2. The SU
will transmit over the channel for W seconds, if at the end
of the D-second sensing period it decides the channel is idle.
Otherwise, it will not use the channel.

III. REWARD-PENALTY MODEL

& BAYESIAN FRAMEWORK

We assume the SU earns $r per second while using the
channel without causing interference for the PUs and has
to pay a fine of $f per second while using the channel
and interfering with the PUs. In other words, when the SU
transmits over the channel, it earns $r per second while
X(t) = 0 and has to pay a fine of $f per second while
X(t) = 1. In addition, the SU will pay a per-incident fine
of $F for each instance of interfering with the PUs. Referring
to Figure 2, naturally the SU would neither have any revenue
nor pay any fine, if as a result of sensing the channel it decides
a PU is using it, i.e. X̂(D) = 1, and hence does not use the
channel during the ensuing transmission slot.

The idea behind the first fine is as follows. Suppose the
SU starts transmitting over the channel and after a while a
PU starts to use the channel also. If the SU somehow had the
capability to detect the arrival of the PU and would stop using
the channel, then it ought not to be fined as much as if it didn’t
have that capability and kept using the channel and interfering
with the PU. One way for the SU to detect the arrival of a PU
after starting to use the channel is through use of a control
channel over which the SU is informed of such important
events. This would probably require the presence of other SUs
in the network that help each other with distributed spectrum
sensing, a topic that is beyond the scope of the present paper.

We assume that r > 0, f ≥ 0, and F ≥ 0. We further
assume that f and F cannot be simultaneously set to zero,
because in that case the optimal strategy for the SU is to
use the channel all the time without sensing it at all, and
that makes the problem trivial. One may wonder why we
introduced two types of penalties. The answer is that there are
no OSA or cognitive radio networks deployed yet. Hence, the
issue of what reward / penalty structure is appropriate needs
to be discussed. We have provided flexibility in this choice by
offering a formulation that handles both penalties. Two special
cases of interest are f = 0 and F = 0, which correspond to
the scenarios where only one of the penalties survives and is
used.

We propose a Bayesian framework for maximizing the
average per unit time net profit of the SU. Specifically, the
goal of this paper is to maximize

Λ = E[R] =
1
T

1∑
i=0

πi p0|i E
[
R|X(D) = i, X̂(D) = 0

]
(3)

where R is the net profit of the SU based on the reward-
penalty model described above. Note that there are no terms
corresponding to p1|0 and p1|1 in Equation (3), because the SU
will simply not use the channel when it decides that X̂(D) =
1, and hence its net profit would be zero in such instances. Λ
is a function of several variables, namely, N , λ, μ, S, N0, r,
f , F , D, W , and τ . It actually turns out that the dependence
of Λ on N and λ is through λ̄ = Nλ. Similarly, Λ depends
on S and N0 through the SNR. Hence, Λ is a function of nine
variables instead of eleven!

The primary goal of this paper is to maximize Λ as a func-
tion of (D, W, τ ), given the other six independent variables ( λ̄,
μ, SNR, r, f , and F ). This essentially determines the optimal
strategy for the SU in the sense of maximizing its average per
unit time net profit. It may turn out that the optimal strategy
is not to use the channel under any circumstances. This may
happen for a number of reasons, e.g. if the penalties (f and F )
are large compared to the reward rate r. It would be interesting
to determine in which regions of the three-dimensional rfF -
space the SU is better off not using the channel at all. That
is, what price/penalties would make an opportunistic use of
the channel unprofitable even with an optimal strategy for the
SU?

IV. ANALYSIS

In this section we derive an expression for Λ and make
some remarks about maximizing it. As shown in Equation (3),
we need analytic expressions for four terms in order to com-
pute Λ, namely, p0|0, p0|1, E

[
R|X(D) = 0, X̂(D) = 0

]
, and

E
[
R|X(D) = 1, X̂(D) = 0

]
. We first address the problem of

deriving expressions for the conditional expected net profits
and then the two conditional probabilities. In order to do the
former, we decompose R into two terms, the contribution R̂
of the per-second reward r / penalty f and the contribution R̃
of the per-incident penalty F . It is clear that R = R̂ − R̃.



A. Contribution of Per-Second Components to Net Profit

If the SU decides to use the channel during the transmission
slot [D, T ], then we can write

R̂ =
∫ T

D

[r − (r + f)X(t)] dt = rW − (r + f)
∫ T

D

X(t)dt,

and hence, for i = 0, 1, we can write

E
[
R̂|X(D) = i, X̂(D) = 0

]

= rW − (r + f)E

[∫ T

D

X(t)dt

∣∣∣∣∣ X(D) = i, X̂(D) = 0

]

= rW − (r + f)
∫ T

D

E
[
X(t)|X(D) = i, X̂(D) = 0

]
dt

= rW − (r + f)
∫ T

D

E [X(t)|X(D) = i] dt

= rW − (r + f)
∫ W

0

E [X(t + D)|X(D) = i]dt

= rW − (r + f)
∫ W

0

E [X(t)|X(0) = i]dt,

where in the third line we have interchanged the order of the
integral and the expectation, the Markov property has been
used in the fourth line, the fifth line is the result of a change
of variable in the integral, and the last line is due to the time-
homogeneity of the transitions in the Markov process {X(t)}.
Since X(t) is a 0-1 binary r.v., E[X(t)] = P (X(t) = 1).
Hence,

E
[
R̂|X(D) = 0, X̂(D) = 0

]
= rW − (r + f)

∫ W

0

P (X(t) = 1|X(0) = i)dt (4)

The integrand in the last equation is a transition probability
of a birth-death random process. It is given by (see e.g. [24],
Page 150)

P (X(t) = 1|X(0) = i) =
λ̄

λ̄ + μ

(
1 − e−(λ̄+μ)t

)
+ ie−(λ̄+μ)t

Using this result in Equation (4) leads to

E
[
R̂|X(D) = i, X̂(D) = 0

]
(5)

=
μr − λ̄f

λ̄ + μ
W +

((1 − i)λ̄ − iμ)(r + f)
(λ̄ + μ)2

[
1 − e−(λ̄+μ)W

]

B. Contribution of Per-Incident Penalty to Net Profit

Let L(t) denote the number of times the PUs use the channel
during the interval [D, D + t). Then

E
[
R̃|X(D) = 0, X̂(D) = 0

]
= FE [L(t)|X(D) = 0]

= F
∞∑

n=1

nP (L(t) = n|X(D) = 0)

�= Fg(t)

To compute this expectation, we introduce the following
conditional probabilities for t ≥ 0 and n = 0, 1, 2, . . .:

an(t) �= P (L(t) = n, X(D + t) = 1|X(D) = 0)

bn(t) �= P (L(t) = n, X(D + t) = 0|X(D) = 0)

It is obvious that a0(t) = 0 and b0(t) = e−λ̄t. Now consider
the following Kolmogorov’s forward equations:

ȧn(t) = −μan(t) + λ̄bn−1(t) ; n = 1, 2, 3, . . .

ḃn(t) = +μan(t) − λ̄bn(t) ; n = 0, 1, 2, . . . ,

where ȧn(t) and ḃn(t) denote the derivatives of an(t) and
bn(t), respectively. Taking Laplace transform of the above
equations, we get:

sAn(s) = −μAn(s) + λ̄Bn−1(s) ; n = 1, 2, 3, . . .

sBn(s) = +μAn(s) − λ̄Bn(s) ; n = 0, 1, 2, . . .

The second equation implies that

An(s) =
s + λ̄

μ
Bn(s) ; n = 1, 2, 3, . . .

Plugging this into the first equation leads to

Bn(s) =
λ̄μ

(s + λ̄)(s + μ)
Bn−1(s) ; n = 1, 2, 3, . . .

Given that B0(s) = 1/(s + λ̄), we get, for n = 1, 2, 3, . . .,

Bn(s) =
(λ̄μ)n

(s + λ̄)n+1(s + μ)n

An(s) =
(λ̄μ)n

μ(s + λ̄)n(s + μ)n

Note that g(t) =
∑∞

n=1 n [an(t) + bn(t)]. Taking Laplace
transform of this identity yields

G(s) =
∞∑

n=1

n [An(s) + Bn(s)]

=
s + (λ̄ + μ)
μ(s + λ̄)

∞∑
n=1

n

[
λ̄μ

(s + λ̄)(s + μ)

]n

The infinite series in the last equation converges to
λ̄μ(s+λ̄)(s+μ)

s2(s+(λ̄+μ))2
, if ||(s + λ̄)(s + μ)|| > λ̄μ, where ||.|| denotes

the magnitude of a complex number. Therefore,



G(s) =
λ̄(s + μ)

s2(s + (λ̄ + μ))
,

and taking inverse Laplace transform of this equation we get

g(t) =
λ̄μt

λ̄ + μ
+

λ̄2

(λ̄ + μ)2

[
1 − e−(λ̄+μ)t

]
; t ≥ 0

and hence,

E
[
R̃|X(D) = 0, X̂(D) = 0

]
(6)

= F

{
λ̄μW

λ̄ + μ
+

λ̄2

(λ̄ + μ)2

[
1 − e−(λ̄+μ)W

]}
Using a similar technique, it can be shown that

E
[
R̃|X(D) = 1, X̂(D) = 0

]
(7)

= F

{
λ̄μW

λ̄ + μ
+ 1 − λ̄μ

(λ̄ + μ)2

[
1 − e−(λ̄+μ)W

]}

Finally, since R = R̂ − R̃, combining Equations (5) (with
i = 0) and (6), we get

E
[
R|X(D) = 0, X̂(D) = 0

]
(8)

=
μr − λ̄(f + μF )

λ̄ + μ
W +

λ̄(r + f − λ̄F )
(λ̄ + μ)2

[
1 − e−(λ̄+μ)W

]
,

and combining Equations (5) (with (i = 1) and (7), we get

E
[
R|X(D) = 1, X̂(D) = 0

]
(9)

=
μr − λ̄(f + μF )

λ̄ + μ
W −μ(r + f − λ̄F )

(λ̄ + μ)2

[
1 − e−(λ̄+μ)W

]
−F

C. Computation of p0|0 and p0|1
The r.v.’s Z and Ñ , as defined in Equation (2), are condi-

tionally independent given X(0) = i, for i = 0, 1. In addition,
Ñ and X(D) are independent. Hence, for i = 0, 1,

p0|i = P (Z + Ñ ≤ τ |X(D) = i)

=
∫ ∞

−∞
fÑ (τ − z)FZ(z|X(D) = i)dz

= Q

(
1 − τ

σ

)
+

∫ 1

0

e−
(z−τ)2

2σ2

σ
√

2π
FZ(z|X(D) = i)dz, (10)

where the last line is due to the fact that FZ(z|X(D) = i) is
zero if z < 0 and one if z ≥ 1, and

Q(x) �=
∫ ∞

x

1√
2π

e−u2/2du ; x ∈ IR

In order to compute FZ(z|X(D) = i), we use the fact that
{X(t)} is time-reversible. Therefore, FZ(z|X(D) = i) =
FZ(z|X(0) = i). Takács’s work on sojourn times in stochastic
processes [25] is exactly what’s needed here. In fact, he

computes the cumulative distribution function (CDF) of the
sojourn time in the case where the two r.v.’s characterizing
sojourn to states ’0’ and ’1’ have any general probability
distributions. As a special case, he considers the case where
the sojourn times are exponentially distributed, as in this paper.
The results for 0 ≤ z < 1 are as follows:

FZ(z|X(D) = 0) = e−λ̄D(1−z)

[
1 +

√
λ̄μD(1 − z) × (11)

∫ Dz

0

e−μy

√
y

I1

(
2
√

λ̄μD(1 − z)y
)

dy

]

FZ(z|X(D) = 1) = 1 − e−μDz

[
1 +

√
λ̄μDz × (12)

∫ D(1−z)

0

e−λ̄y

√
y

I1

(
2
√

λ̄μDzy

)
dy

]

where I1(.) is the Bessel function of order 1 for imaginary
arguments. Note that the first CDF has a jump discontinuity
of size e−λ̄D at z = 0 and the second one a jump discontinuity
of size e−μD at z = 1. Also note that

FZ(z|X(D) = 0) ≥ FZ(z|X(D) = 1) ; z ∈ IR (13)

Since this fact is rather intuitive, a formal proof is not
provided.

Let Δ(τ ) �= p0|0(τ ) − p0|1(τ ). It is obvious that −1 ≤
Δ(τ ) ≤ 1, for all τ ∈ IR. Furthermore,

Δ(τ ) =
∫ 1

0

e−
(z−τ)2

2σ2

σ
√

2π
[FZ(z|X(D) = 0) − FZ(z|X(D) = 1)]dz

Using Equation (13) in the latter implies that Δ(τ ) ≥ 0, for all
τ ∈ IR. Hence, 0 ≤ Δ(τ ) ≤ 1, for all τ ∈ IR. It is also true that
Δ(τ ) tends to zero as τ → ∞ or τ → −∞. Finally, we show
that Δ(τ ) achieves its maximum value at some τM ∈ (0, 1).
The existence of the maximum is obvious. We show that it
lies in the interval (0, 1) by setting the derivative of Δ(τ ) to
zero, which leads to

0 =
∫ 1

0

(z − τ )e−
(z−τ)2

2σ2

[FZ(z|X(D) = 0) − FZ(z|X(D) = 1)]dz

This equation cannot have a root τ ≤ 0, because the integrand
would be nonnegative for all z ∈ [0, 1] and positive for some
z ∈ (0, 1]. Similarly, it cannot have a root τ ≥ 1, because
the integrand would be nonpositive for all z ∈ [0, 1] and
negative for some z ∈ [0, 1). These facts about Δ(τ ) are used
in maximization of Λ.



(a) D∗ = 0, τ∗ = +∞, W∗ = +∞ (f=0.02, F=0.5)

(b) D∗ = 0.9, τ∗ = 0.4, W∗ = 4.12 (f=0.2, F=1)

(c) D∗ = 0, τ∗ = −∞, W∗ = 0 (f=0.5, F=2)

Fig. 3. SU profit with optimal values for τ and W for a given D

TABLE I
NETWORK PARAMETERS

Parameters Value

N 5
λ 0.002/sec
μ 0.2/sec

SNR 10 dB
r $0.02/sec
f $0.2/sec
F $1.0

V. NUMERICAL RESULTS

We used MATLAB1 to compute the Λ. Given a set of values
for the parameters r, f , F , λ, μ, and SNR, we can find
the values for D, τ , and W that maximize the average per
unit time profit for the SU and the corresponding profit. This

1Disclaimer: The National Institute of Standrads and Technology does not
endorse any commercial software product mentioned in this article.

provides insight into how the network behaves and performs
as a function of various network parameters. It also allows
the SU to adjust the parameters that are under its control,
namely D, τ , and W . We also use two other metrics to assess
the performance of the network considered in this paper with
the strategy used by the SUs. The first one quantifies the
degradation in the PU that has been used in some papers,
such as [26]. Basically, it is a measure of the fraction of time
the SU interferes with the PUs while the latter are using the
channel. Let the r.v. I denote the time duration over one SU
sensing and transmission cycle T that the SU inteferes with
the PUs. I is given by

I =
{ ∫ T

D
X(t)dt ; if X̂(D) = 0

0 ; otherwise

and its expectation is given by

E[I] =
1∑

i=0

πi p0|i E
[
I|X(D) = i, X̂(D) = 0

]
,

Following a procedure similar to the calculation given in
Section IV.A, it can be shown that

E
[
I|X(D) = i, X̂(D) = 0

]
=

λ̄

λ̄ + μ
W − (1 − i)λ̄ − iμ

(λ̄ + μ)2

[
1 − e−(λ̄+μ)W

]
Note that on the average the PUs would use the channel
uninterfered 100π1% of the time, if the SU were not present.
Therefore, we define the throughput efficiency of the PUs as

γP = 1 − E[I]/T

π1

The second metric is the throughput efficiency γS for the
SU. It is the fraction of time the SU manages to use the channel
without causing interference to or being interfered by the PUs.
Ignoring the effect of erroneous transmissions due to channel
noise, if the data transmission rate of the SU is rS bits per
second (bps), then its throughput would be γS rS bps. The
derivation for γS is similar to that used for γP earlier. Let the
r.v. TS denote the time duration over one SU cycle T that the
SU manages to transmit data without any PUs on the channel.
TS is given by

TS =
{

W − ∫ T

D
X(t)dt ; if X̂(D) = 0

0 ; otherwise

and its expectation is given by

E[TS ] =
1∑

i=0

πi p0|i E
[
TS |X(D) = i, X̂(D) = 0

]

However,

E
[
TS |X(D) = i, X̂(D) = 0

]
= W−E

[
I|X(D) = i, X̂(D) = 0

]
Finally, γS is defined by



Fig. 4. Maximum SU profit vs. r

Fig. 5. Maximum SU profit vs. f

γS =
E[TS ]

T

Note that γP and γS both take values in [0, 1], but the
normalization for these metrics is different. In the case of γP

the normalization is basically with respect to the fraction of
time the PUs would ordinarily (i.e. in the absence of the SU)
use the channel. On the other hand, γS = 0.7 means that the
SU manages to use the channel 70% of the time without being
interfered by the PUs.

Without getting into the details, our numerical procedures
first maximize the SU average profit for a given sensing
period D by appropriately choosing the threshold τ and the
transmission period W . Let τ ∗ and W ∗ denote the optimum
values for these SU-controllable parameters. Figure 3 presents
Λ(τ∗, W ∗), γS(τ∗, W ∗), and γP (τ∗, W ∗) as functions of D
under three scenarios with common values for parameters N ,
λ, μ, SNR, and r set to, respectively, 5, 0.002/sec, 0.2/sec,
10dB, and $0.02/sec. In this figure and all the figures that
follow, Λ, γS , and γP have been plotted with, respectively,
solid red, dashed blue, and dotted green lines. The difference
between the three scenarios is that the values of the penalties
f and F are increased from the first scenario to the thrid
one, as shown in the captions for Figures 3a-3c. In Figure 3a,
the reward to penalty ratio is large, and we can see that the
maximum profit is always a positive constant as a function
of D. The optimum values for τ and W are τ ∗ = +∞ and

Fig. 6. Maximum SU profit vs. F

Fig. 7. Maximum SU profit vs. λ

W ∗ = +∞. This result indicates that the SU should use the
channel forever without any time spent on channel sensing.
This may sound unusual, because typically the PUs would
not tolerate being interfered by SUs on a continuous basis.
The fact that the SU can afford to behave in this manner is
due to the fact that the reward for using the channel is too
high compared to the penalties for interfering with the PUs.
The problem of setting the reward rate and the penalties is
beyond the scope of this paper. In the case of a moderate
reward to penalty ratio, such as in the second scenario (Figure
3b), we can see that the maximum profit is $11.26/hr and
is achieved at just one value for D. The optimal values for
D, τ , and W are given in the caption for the figure. One
interesting conclusion from this figure is that it is possible
for the SU to transmit data in an opportunstic manner and
achieve γS = 0.65 without causing too much interference
for the PUs (γP = 0.7). For a small reward to penalty
ratio, Figure 3c shows that the maximum attainable profit
is zero, and τ∗ = −∞ and W ∗ = 0, which indicates that
the SU would never use the channel since the reward rate
is not commensurate with the penalties imposed. These three
scenarios confirm that the pricing structure has a major effect
on the SU strategy.

Next we investigate the impact of the parameters r, f , F ,
λ, μ and SNR on the maximum attainable SU profit and the
corresponding throughput efficiencies for the SU and the PUs.
Since the objective of our analysis is to find the optimal
sensing period D∗, sensing threshold τ ∗, and transmission



Fig. 8. Maximum SU profit vs. μ

Fig. 9. Maximum SU profit vs. SNR

period W ∗ that maximize the SU average profit Λ, we plot
Λ∗ = Λ(D∗, τ∗, W ∗) as a function of the six parameters
mentioned above. We also plot the throughput efficiencies
γ∗

S = γS(D∗, τ∗, W ∗) and γ∗
P = γS(D∗, τ∗, W ∗). Table I

shows the default values of these parameters. In each of the
Figures 4-9, we set five of these parameters to their default
values and plot Λ∗ (solid red line), γ∗

S (dashed blue line), and
γ∗

P (dotted green line) as functions of the remaining parameter.
Figure 4 shows Λ∗ and γ∗’s as functions of r, and it shows
that Λ∗ increases almost linearly with r. Figures 5-6 plot Λ∗

and γ∗’s as functions of f and F , respectively. We can see that
Λ∗ (γ∗

P ) is maximized (minimized) when f = 0 or F = 0, and
it decreases (increases) afterwards and drops to zero (saturates
at one) when these penalties are sufficiently large. Figures 7-8
show Λ∗ and γ∗’s as functions of λ and μ, respectively. We can
see that Λ∗ (γ∗

P ) decreases (increases) with λ and increases
(decreases) with μ. These are due to the facts that channel
utilization by the PUs increases with λ and decreases with μ.
Figure 9 shows Λ∗ and γ∗’s as functions of SNR. The results
demonstrate that Λ∗ increases with SNR, because the SU is
able to make a more reliable decision on channel occupancy
by the PUs.

VI. CONCLUSIONS

In this paper we have proposed an economic model for
OSA of a primary network by a SU. We have considered
an idealized and simple model for SU spectrum sensing
and detection of PU activity. We have optimized the net
profit of the secondary user as a function of various network

parameters. In particular, we have found the optimum values
for duration D of sensing, the threshold τ the spectrum sensing
decision rule uses, and the duration W of channel use. We
have presented numerical results of the above optimization
problem. The results show under the correct circumstances,
the SU can coexist with the PUs. In other words, the SU can
get a reasonable fraction of time to transmit over the channel
opportunistically without causing undue interference to the
PUs. It all depends on the network and pricing parameters

There are many ways in which this work can be extended.
It would be nice to extend the results to the case of a
PU network with K channels and to allow a multitude of
SUs. Another direction is to find the optimum detector for
the AWGN-corrupted signal model for the SU. Yet another
desired improvement is a realistic propagation model from
a PU transmitter to an SU receiver. It is also desirable to
consider practical MAC protocols for the PUs, what queueing
discipline they use if they don’t get access to their network
due to increased PU traffic or if their transmissions collide
with SUs opportunistically using the channel.
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