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ABSTRACT 

The Army Research Laboratory (ARL) Robotics Collaborative 

Technology Alliance (CTA) conducted an assessment and 

evaluation of multiple algorithms for real-time detection of 

pedestrians in Laser Detection and Ranging (LADAR) and video 

sensor data taken from a moving platform.  The algorithms were 

developed by Robotics CTA members and then assessed in field 

experiments jointly conducted by the National Institute of 

Standards and Technology (NIST) and ARL. A robust, accurate 

and independent pedestrian tracking system was developed to 

provide ground truth. The ground truth was used to evaluate the 

CTA member algorithms for uncertainty and error in their results. 

A real-time display system was used to provide early detection of 

errors in data collection.  

Categories and Subject Descriptors 

B8.2 [Performance and Reliability]: Performance Analysis and 

Design Aids; C.4 [Performance of Systems]: Performance 

attributes. 

General Terms 

Tracking, Algorithms, Performance, Measurement, 

Experimentation 

Keywords 

Unmanned ground vehicle, experimental design, ground truth, 

pedestrian tracking, metrics, perception, performance evaluation 

1. INTRODUCTION 
The ARL Robotics Collaborative Technology Alliance 

(CTA) conducted an assessment and evaluation of multiple 

algorithms for real-time detection of pedestrians in Laser 

Detection and Ranging (LADAR) and video sensor data taken 

from a moving platform in January 2009. In the assessment, the 

robot vehicle equipped with two pairs of stereo cameras, two sets 

of General Dynamics Robotic Systems (GDRS) LADAR and two 

sets of SICK1 lasers was driven by an operator through a straight 

route of approximately 240 m containing various configurations 

of eight moving pedestrians, four mannequins, four barrels, four 

cones, two trucks, two crates, seven tripods  and trees. In addition 

to the complexity of the environments, the variables included 

multiple robot vehicle speeds (30 km/h or 15 km/h) and 

pedestrian speeds (1.5 m/s or 3.0 m/s). The environment was 

intended to provide some Military Operations in Urban Terrain, or 

MOUT, characteristics. 

The objective of the experiment was to capture the data 

necessary to evaluate the performance of each CTA team’s 

algorithm, to provide data to support further development of 

algorithms, and to produce performance analyses based on the 

captured data to support obstacle avoidance planning. An Ultra 

                                                                 

1 Certain commercial equipment, instruments, or materials are identified 

in this paper in order to adequately specify the experimental procedure. 

Such identification does not imply recommendation or endorsement by 

NIST nor does it imply that the materials or equipment identified are 

necessarily the best for the purpose. 

 

This paper is authored by employees of the United States Government 

and is in the public domain.  
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WideBand (UWB) system [1] employed by the National Institute 

of Standards and Technology (NIST) provided position tracking 

(≈20 cm uncertainty) of the moving and stationary humans, the 

robot vehicle, and other objects. Improved performance of the 

CTA tracking and recognition algorithms has called for 

improvements in the ground truth solution. Processing techniques 

were developed and implemented to produce higher quality 

tracking solutions than those provided by the raw data captured by 

the ultra wideband system.  To address this, we developed a 

robust filter algorithm. To improve analysis of the performance of 

the CTA tracking systems, we also developed a temporally 

consistent algorithm for finding the correspondence between the 

ground truth data and the CTA tracking data. In addition, a 

display system was implemented to provide early detection of 

errors in data collection and to assist in data analysis. 

The paper is organized as follows: Section 2 presents a 

detailed description of the solution based on the UWB system for 

capturing the ground truth data. Section 3 introduces the filter and 

interpolation algorithms for improving the quality of the UWB 

data. Section 4 describes the visualization system for providing 

early detection of errors. Section 5 presents the correspondence 

algorithm for data analysis. Sections 6 and 7 present the 

performance metrics and analysis for evaluating the CTA 

algorithms. Finally, Section 8 provides a summary and 

conclusion.  

2. GROUND-TRUTH REFERENCE 

SYSTEM 

2.1 Ground Truth Setup 
NIST researchers have been working with an asset tracking 

system employing ultra wideband technology to  capture 2-D 

location and path data for robots, vehicles, and personnel 

operating within scenarios set up to evaluate robotic perception 

systems. The goal is to capture quantitative performance data 

referenced to ground truth positions and time to help compare and 

improve sensors and algorithms in both indoor and outdoor 

scenarios.  

The tracking system uses state of the art ultra wideband radio 

receivers posted around the perimeter of the scenario to track 

multiple static and dynamic targets with badge-size transmitters 

(see Figure 1). It works in open outdoor areas and indoor areas 

through certain types of walls, though overall accuracy can vary. 

NIST has performed system characterization tests in ideal 

conditions to determine the best possible 2D accuracy of the 

system, which is approximately 15 cm. We have used it to track 

vehicles and personnel throughout an area over 80 000 square 

meters with an average accuracy of approximately 20 cm and an 

update rate of approximately 50 Hz, which is sufficient for 

tracking vehicles at highway speeds. We have also used it to track 

robots through random mazes with plywood walls (non-line-of-

sight) achieving similar accuracies.  We have not been successful 

tracking through concrete walls, but have used additional 

receivers in hallways to compensate during indoor building 

deployments. The total number of dynamic and static transmitter 

tags used simultaneously thus far has been approximately 15 and 

30 respectively for marking obstacles and known fiducial points 

to check accuracy.  Setup time for a new site takes about 5 days.  

Returning to a previously setup site takes approximately two days 

for calibration prior to testing. 

(a) (b) (c)(a) (b) (c)
 

Figure 1.  (a)  shows a receiver deployed in the field atop a 

mast  centered over a known fiducial marker.  (b) shows the 

asset tracking system components, ultra-wideband radio 

frequency receiver (shown with integrated high-gain antenna), 

1 W transmitter tag, and 30 mW transmitter tag. c) shows 

Several badge tags attached to helmets to track personnel in 

the scenario. Typically two tags are placed on moving vehicles 

to identify orientation. 

  Figure 2 shows a plot of the tracking results for a ground truth 

system coverage and accuracy test on the January course 

configured at NIST.  Green and orange plots show the vehicle 

path and the other plots show pedestrian tracks. 

 
Figure 2. A calibration run with two transmitter tags mounted 

on a vehicle and two tags on each of two pedestrians to check 

coverage. 

2.2 Filter and Interpolation Algorithms for 

the Ground-Truth Data. 
The goal of the filter process is to remove outlier and error 

measurements from the ground-truth data. We identify outliers 

based on the maximum plausible speed of the tag. A polynomial 

least-squares algorithm filters the remaining data points. We then 

fit a spline through the filtered points to identify the tag’s position 

as a function of time. We interpolate the trimmed, filtered, and 

splined data at timestamps obtained from the CTA performers' 

data. This interpolated ground-truth is later used to establish 

temporal constraints for correspondence. 

The UWB position data contain anomalies that, while 

generally minor, diminish the usefulness of the data in subsequent 

evaluations and displays. The filter combines previous and 

subsequent readings to remove anomalies and identify a more 

accurate and timely position. For example, Figure 3 below is the 

UWB position data for tag A01D of Run3. The data show two 

significant anomalies: a gap in the center area and outlier points 

away from and along the track. 

The filter has three components: trim, filter, and spline.  The 

green dots represent the raw data that were trimmed as outliers. 

The red dots are the remaining raw data points. The white line is 

the result of the filter. And the blue points are the positions at the 

CTA timestamps based on a spline fit of the filtered points. 

 The filter’s trim component removes outlier data points. 

Physical constraints limit the distance that an UWB tag can move 

between readings. The trim component computes the velocity 
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between the current point and the last good point. The filter trims 

the current point when the velocity between these points is 

excessive. The filter checks subsequent points for a point that 

represents a reasonable velocity. The filter then uses that point as 

the last good point for subsequent evaluations. The filter passes 

the trimmed position list to the window component (see red in 

Figure 3).   

The filter component is based on the Savitsky-Golay 

algorithm [2]. Savitsky applies a polynomial least-squares fit to a 

set of points before and after the current point. The filtered value 

is the sum of the products of the points with an array of 

coefficients determined by the order of the algorithm (generally 3) 

and the size of the point set. The Savitsky algorithm relies on 

evenly spaced data. The gaps in the trimmed data would cause the 

Savitsky algorithm to inappropriately shift the data points. To 

compensate, our algorithm fills gaps in the trimmed data with 

linearly interpolated data points before applying the Savitsky-

Golay algorithm. Our algorithm discards the fill points prior to 

passing the data onto the spline component (see the white in 

Figure 3). 

The filter’s spline component is based on a cubic Hermite 

spline. The spline component identifies positions at a time of 

interest rather than at the time of data collection and allows 

researchers to determine the position of the UWB tag at times 

provided by  the CTA systems (see the blue in Figure 3). 

 

Figure 3.  Green is the raw data. Red is the trimmed data. 

White is filtered data. Blue is the interpolation data 

3. CTA REAL-TIME HUMAN DETECTION 

AND TRACKING ALGORITHMS 

 
In this experiment, six algorithms were included from the 

CTA. Five use LADAR sensing and one uses a vision system to 

provide data for the algorithms. During each algorithm cycle, the 

algorithm reports information about the detected humans. The 

report includes the number of detections, their locations, strength 

of detections, the time of detection, as well as vehicle status such 

as its location, speed, orientation, etc. All detections from the 

same algorithm cycle have the same detection time. The reports 

are collected and saved into files, one per algorithm.  

Reporting rate varies from algorithm to algorithm and may 

not be fixed within the algorithm itself. For example, an 

algorithm's cycle time may increase when the number of 

detections increases. 

In general, there are two data sets: ground-truth data and 

detection data. Detection data are the locations and detection 

times of all humans reported by a CTA algorithm, whereas 

ground-truth data are the corresponding UWB locations for the 

same time. 

Both the detection data and the ground-truth data are 

independently grouped with unique identifications (ID). For the 

ground-truth data, the group IDs are also referred to as the “tag 

ID". Different tag IDs always refer to different humans or physical 

objects. 

For the detection data, the group IDs are referred to as 

“tracking ID". With perfect CTA system detection and tracking 

performance, the number of tracking IDs would be the same as the 

number of tag IDs. In reality, the detection data can have more 

than one tracking ID for the same human due to occlusion or 

imperfect tracking capability of the algorithms.  

4. DATA VISUALIZATION FOR EARLY 

DETECTION OF ERRORS IN DATA 

COLLECTION. 

 
Data visualization is important for verifying the integrity of 

both the ground-truth data and the outputs of the CTA algorithms 

prior to, and during, the data collection. Bad data could arise due 

to sensor malfunction or unforeseen circumstances prior to or 

during the data collection. Since data collection is expensive, time 

consuming, and labor intensive, it is advantageous to detect bad 

data as soon as possible and prevent waste of resources. 

A software-based interactive viewer was developed for this 

purpose. The viewer uses various open source libraries and runs 

natively on Linux, Windows and Mac OS X. Figure 4 shows a 

typical screen-shot of the viewer displaying both the detection 

data from a CTA algorithm and the corresponding ground-truth 

data. An individual entity can be toggled on or off by clicking on 

its tag ID or tracking ID. 

168



 

Figure 4. CTAviewer screenshot showing both detection data 

and ground-truth. The left panel lists the tag ID and the right 

panel lists the tracking ID. An individual entity can be toggled 

on/off by its ID. 

Figure 5 and Figure 6 are examples of bad data.  The plots show 

the locations of two ground-truth tags mounted on a moving 

vehicle. The two tags were separated by about 1 meter and the 

vehicle drove at a constant speed.   

The viewer software allows us to quickly view and evaluate 

the data immediately after the each run and investigate the cause 

of any anomalies.  Problems in ground-truth can often be 

eliminated by placing more UWB receivers in the problematic 

areas. 

 

Figure 5. Correctable gaps in the ground-truth data. 

 

Figure 6. Uncorrectable severe distortion and gaps in the 

ground-truth data. 

5. MAP BETWEEN GROUND-TRUTH AND 

DETECTION 
All CTA teams output their results with time stamps which 

are used to synchronize to the UWB ground-truth data. Since each 

team has different output rates, the linear interpolation described 

in Section 2.2 is used to handle the different rates. All timestamps 

in the data collection systems come indirectly from a common 

clock source via a Network Time Protocol (NTP) server. All 

systems synchronize to the NTP server at the beginning of each 

run. A run lasts about 1 minute. This allows our data collection 

computers to stay synchronized to each other within 20 

milliseconds.  

All CTA algorithms output their results in a standard format, 

and are stored in Comma Separated Values (CSV) for viewing 

using the viewer described in section 3.  

The requirements for the performance evaluation of the CTA 

systems include: 

1. Timestamp correspondence between ground-truth and 

detection. 

2. Object/human correspondences between ground-truth and 

detection. 

3.  Definition and computation of metrics and measurements 

for performance evaluation. 

Establishing time correspondence between the ground truth and 

the detection system is important for resolving ambiguity that 

involves time. Finding a mapping between the ground truth 

objects and the objects detected by the CTA algorithms is crucial 

for evaluating the algorithms’ performance.  In Figure 7 using a 

nearest neighbor criterion, inside the red circle, the blue star T3 

will correspond to the yellow T2 circle since the distance is less 

than the distance to the  blue T3 circle. When time correspondence 

is established, the star T3 ground-truth will correspond to the 

ground truth represented by the blue T3 circle. The time 

correspondence algorithm will be described in section 5.1.  Before 

defining the metrics, it is necessary to have a good way of 

assigning detected objects to ground truth. The detail of the 

correspondence algorithm will be described in Section 5.2. The 

assessment of the performance of the CTA tracking systems 

required several measurements. These measurements will be 

described in Section 5.3. 
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Figure 7. The CTA data are represented by star shapes and 

the ground-truth data are represented by shaded circles. Tn  

represents the time n. It is sufficient to use time to match the 

closest detection ground-truth pair.  The outer circle around 

the ground-truth data indicates the threshold radius used for 

establishing a spatial constraint.  

5.1 Establish Time Correspondences between 

Ground-Truth and Detection Tracking. 
After the filtering and interpolation process, all ground-truth 

data are interpolated at timestamps compiled from all the 

detection data.  Two matching files are generated for each team - 

one containing the ground truth and the other containing the 

detection data.  These two matching files have the same number of 

entries.  Each entry contains a timestamp and information about 

object locations detected at, or interpolated to, that timestamp.  

Since the timestamps are matched, there is a one-to-one 

correspondence among the timestamps in the entries between the 

two files. 

5.2 Establish Object/Human 

Correspondences between Ground Truth and 

Detection Tracking 
Previously [3], correspondence was determined solely based 

on spatial constraints. One such constraint is the distance between 

the ground-truth and the detection data. Although spatial 

constraints are essential, they alone can not resolve ambiguities 

that arise when close data are taken at different times. Such 

ambiguity and an unnecessary spatial search can be avoided when 

we take the temporal consistency into account 

Several map correspondence algorithms [4][5][6][7] were 

investigated. The correspondence algorithm, adopted by 

Classifications of Events, Activities and Relationships 

(CLEAR)[8] evaluation workshop group, was  implemented. 

Using matched-pair data from Section 5.1, the algorithm 

computed the averaged error distances over the cluster with 

respect to each object. Clusters were associated with ground-truth 

objects based on a minimum average distance subject to meeting a 

3 m proximity threshold based on our experiments. In addition, 

we used velocity to differentiate stationary from moving objects. 

Clusters were then labeled as a human (moving), mannequin 

(stationary human), misclassification objects (moving or 

stationary), or false positive. The results of this correspondence 

procedure will be used for computing several measurements for 

the analysis of the human detection in the following section. 

5.3 Post Process the Data Acquisition files for 

Human Detection Analysis 
In order to analyze the CTA tracking algorithms correctly and 

accurately, post processing of the data is necessary. CTA 

algorithms differed in cycle time ranging from 7 Hz to 20 Hz.  At 

the end of each algorithm cycle, each algorithm reported detection 

information such as positions and velocities of the humans. The 

underlying assumptions for the outputs of the algorithms included 

the following: 

- Only obstacles seen and classified as human were reported. 

- Unique identification numbers were assigned to individual 

algorithm detections within a run. 

- Algorithms demonstrated tracking of an individual by 

maintaining the same ID in successive frames. 

- Algorithms also reported velocity of the detected humans. 

Since we only instrumented the ground-truth data in the 300 

m x 150 m test area, all detections are excluded if they occurred 

outside the test area. The correspondence algorithm described in 

Section 5.2 found the correspondence between the detections and 

the ground-truth based on location and time stamp. Detections 

were compared with all the ground-truth objects on the course. 

Absolute error distances were computed, summed, and averaged 

over the cluster with respect to each course object. The absolute 

velocity error between detection and ground truth objects was also 

computed and averaged over the cluster. Clusters were associated 

with a ground-truth object based on minimum average distance 

subject to meeting a 3 m proximity threshold. Using velocity to 

establish stationary/moving objects, clusters were then classified 

as a human, mannequin, misclassification, or false positive. Other 

values were reported in the post processing. For example, reports 

included the distance from the moving vehicle at the time of first 

detection for individual detections within the common ID cluster, 

the shortest distances and velocities, and dispersion measures for 

distance and velocity.    

 

6. PERFORMANCE METRICS 
Post processing of the data above results in a spreadsheet for each 

algorithm with metrics for analysis. A record is formed for each 

algorithm-reported human. Each algorithm assigns an identifier to 

an entity on the course classified by the algorithm to be a human. 

All information related to that algorithm identification is 

condensed to a single record. This record may hold information 

from many cycles of the algorithm. Post processing determines 

whether that entity is, in truth, a human or mannequin (true 

positive), another known course entity not human or mannequin 

(misclassification), or an unknown course feature with no 

associated ground-truth (false positive). Distinctions are also 

made between moving and stationary entities and various classes 

of nonhuman entities (e.g., barrels, cones, crates). Field notes 
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describe test conditions under which the data were collected, 

absolute and relative positioning of the robot platform and 

detected entities recorded at the time detections first occurred for 

an identification, time and cycle number indicators of the 

persistence of detection, or the accuracy of the algorithm 

classification decision.  

7. EXPERIMENTS AND PERFORMANCE 

EVALUATION 
The purpose of this section is to outline  the experiment and 

to illustrate the importance of the ground truth system in 

assessment of the algorithms. A complete analysis is not given. 

The principal experiment consisted of thirty-two runs conducted 

at the south end of Center Drive on the NIST campus (Figure 9). 

An autonomous vehicle platform, with sensors and algorithms on 

board as discussed above, was driven south to north over an 

approximately 240 m run. Scripted scenes with human motion, 

mannequins, and course clutter were sensed and interpreted and 

reported by the algorithms in real time. Eight humans were 

present in each run, four to either side of the road. Four moved in 

a manner parallel to the road, three at 45 degrees toward the road, 

and one perpendicular toward the road. Three parallel runs were 

receding from the platform and one was approaching. Among the 

45 degree runs, all were approaching the road, but only the run to 

the right was approaching the vehicle. 

Movements of the humans were choreographed and timed to 

ensure that regardless of test conditions the scene sensed remained 

consistent across runs. See Figure 8. All humans were upright in 

the principal experiment. Excursion runs not reported here 

explored other postures and group movement patterns. 

 

Figure 8. Human paths relative to platform route. The units 

are in meters. 

Test conditions were formed based on three factors: platform 

speed, human speed and course clutter. The platform was driven 

at either 15 km/h or 30 km/h, humans moved at 1.5 m/s or 3.0 

m/s, and the course was cluttered to approximate MOUT 

complexity or was open except for the human movers.  The test 

conditions were allotted equally in accordance with a 2^3 factorial 

design with 4 replications per condition. Under the MOUT 

conditions only, 8 mannequins, 4 barrels, 4 cones, 2 crates, and 2 

trucks were included on the course. Seven NIST tripods were on 

the course for all 32 runs. Figure 9 shows a view of the course 

during a MOUT run. 

The assessment of algorithms focuses on the questions of what an 

algorithm saw, when it saw it, and how long the sighting 

persisted. These questions will be pursued for each algorithm and 

in the context of the experimental conditions under which the data 

were collected. The ground-truth system allows definitive answers 

to these questions. We share some preliminary high-level results 

to illustrate performance. 

 

Figure 9. Right side of course during a MOUT run. 

Table 1 summarizes the performance of the six algorithms in 

terms of detections, misclassifications, and false positives over the 

complete set of 32 runs. Entries are percentages except for the 

false positive entries, which report the number per run. Note that 

true positives are in bold, and false positives are in italics. All 

other entries show the algorithm misclassification of other course 

entities as human. At a high level, this table addresses what was 

seen. 

Table 1. Algorithm performance expressed in terms of the 

percentage of course entities detected and the number of false 

positives per run. 

 CTA Algorithm 

Object 

Type  

Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 

Human(%) 97.3 90.8 98.4 98.0 89.5 85.7 

Mann.(%) 10.2   - 97.7 98.4 91.4 62.5 

Cones(%) 0.0   - 4.7 0.0 65.6 0.0 

Barrels(%) 14.1   - 54.7 70.3 89.1 0.0 

Crates(%) 46.9   - 100.0 90.6 100.0 50.0 

Trucks(%) 25.0   - 100.0 25.0 100.0 75.0 

Tripods(%) 1.3 46.7 53.6 60.7 58.9 29.8 

False 

Positives 

29.8 77.9 155 37.3 29.8 1.3 

 

Performance varies widely across algorithms. While some 

demonstrate a high probability of detection, misclassification of 

other course entities is clearly a problem. Moreover, the number 

of false positives recorded, if not addressed, ultimately would 

provide a greater challenge for dynamic planning in an 

autonomous mode. 
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In Figure 10, a boxplot (with mean) is shown for the distance 

between the platform and the target entity at the time of first 

detection. This distance is as perceived by the algorithm, but 

generally this does not vary greatly with the actual ground truth. 

Detections (green), misclassifications (yellow), and false positives 

(red) are shown. There are differences according to the type of 

obstacle. Tripods and trucks (Trks), for example, tend to be 

recognized in the neighborhood of 30 m away; whereas humans 

are detected on average at more than 50 m away. Confidence in 

this graph is based on the ground-truth system. A similar graph 

exists with actual distances based on the ground-truth, but a 

distance for false positives requires the algorithm-produced 

values. In this fashion, the question of when entities were seen is 

addressed. 
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Figure 10. Boxplots of distance from platform to targets 

detected by the algorithms for different object types. 

Figure 11 shows a boxplot for the duration of time all entities of a 

certain type were tracked. Ideally, humans and mannequins would 

be tracked persistently; whereas, other entities would not. 
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Figure 11. Boxplots of duration of tracking for different object 

types. 

From Table 1 we learn that high detection rates are accompanied 

by higher than desired misclassification rates and numbers of false 

positives. The intent of examining data in Figure 11 is to 

determine if persistent tracking requirements might greatly reduce 

false alarms and misclassifications while retaining a high level of 

detection. In this case, at least 75 % of the false positives fall 

below the 25th percentile for humans and mannequins detected, 

suggesting persistent tracking may reduce false positives. 

However, tracking of misclassified entities would not be greatly 

influenced. 
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Figure 12. Scatterplot of  false positive locations for Alg4. 

Ground-truth allows a definitive decision on false positives. 

Figure 12 shows the false positives recorded for ALG4 over the 

32 runs of the experiment. The path of the vehicle (black) and the 

false positive locations (red) are shown. As part of the analysis, 

the cause of false positives (e.g., bushes, trees, high grass) will be 

pursued.  

One of the most advantageous features in the measurement 

technology employed here is the time sequenced display of 

detection. For individual runs, it is necessary to drill down into 

the data to investigate anomalies more carefully. A static display 

in Figure 13 shows a run for ALG4. Labels over the points for the 

path of the vehicle indicate when a specific moving human was 

detected during the run. The moving human is also plotted. In this 

instance, there are replicates for some of the moving humans (e.g., 

MUH4). This tells us that multiple unique identifications were 

assigned to this human. For some reason, the algorithm judged the 

human to be a different entity at different time. One possibility is 

occlusion, as might be the case here when MUH4 was obscured 

from view by crates during a MOUT run. Although informative, 

the static display does not reveal the same detail as movies of the 

run as it unfolds. The CTA Viewer illustrated in Figure 4 is 

critical to detailed analysis. 

308340308330308320308310308300308290308280

4332900

4332850

4332800

4332750

4332700

Easting

N
o
rt
h
in
g

MHU8

MHU8
MHU4

MHU4MHU3
MHU7

MHU4

MHU6
MHU3

MHU2MHU1
MHU2MHU5

MHU8 MHU8

MHU4
MHU4

MHU3 MHU7
MHU4

MHU6

MHU3

MHU2
MHU1

MHU2 MHU5

Human Detection (Alg 4, Run 17)

 

Figure 13.  Human detection for run 17 using ALG4. 
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8. CONCLUSION 
We presented details of several components of a system for 

determining performance of sensors and perception algorithms 

tasked with detection, tracking, and classification of moving and 

fixed objects, including pedestrians, around a moving robot 

vehicle. We presented a filter algorithm developed to improve 

ground-truth data for analysis. In addition, we developed a group-

based correspondence between ground-truth and detection for 

data analysis and performance evaluation. 

From an analysis perspective, the advances in measurement 

technology of good ground truth data improve the assessment 

process markedly. The ground truth precision provides an 

objective evaluation of the results reported by the algorithms. It 

makes possible the exact tracking of moving entities on the 

course, essential given the planned assessment of the “detection 

and tracking” purposes of the algorithms. This was previously not 

possible. The CTA viewer has proven to  not only be a useful tool 

in visual analytics, but has also provided an instant check during 

the conduct of the experiment as to whether or not data are being 

collected and whether systems are in good calibration. 
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