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Abstract: This study compared random and t-way combinatorial inputs of a network simulator, to 
determine if these two approaches produce significantly different deadlock detection for varying network 
configurations. Modeling deadlock detection is important for analyzing configuration changes that could 
inadvertently degrade network operations, or to determine modifications that could be made by attackers 
to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random 
generation of inputs. In this study, we compare random with combinatorial generation of inputs. 
Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at 
least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly 
all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all 
deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way 
interactions adds no additional information that would not be obtained by testing all 5-way interactions. 
While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot 
be known in advance, covering all t-way interactions may be more efficient than using random generation 
of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network 
simulation. Achieving the same degree of coverage provided by 4-way tests would have required 
approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for 
detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these 
results and implications for modeling and simulation. 

Background 

A number of studies have shown combinatorial 
methods to be highly effective for software 
testing (e.g., [3],[6],[16],[8]. The effectiveness of 
combinatorial test methods rests on the 
observation that a significant number of events 
in software are triggered only by the interaction 
of two or more variable values. By including 
tests for all 2-way, 3-way, etc., interactions, the 
test set should be able to detect events that 
occur only with complex interactions. The 
complexity of discrete event simulation suggests 
that, as with software testing, combinatorial 
methods may be effective for finding events 
triggered only by rare multi-way interactions of 
input values. In this paper, we compare the 
effectiveness of combinatorial versus random 
generation of inputs in a grid computer network 
simulation for finding configurations that lead to 
deadlock. 

The key enabler in combinatorial testing is a 
covering array that covers all t-way 
combinations of parameter values, for a desired 
strength t. Covering arrays are combinatorial 

objects that represent interaction test suites. A 
covering array, ( ; , , is an N x k array, CA N t k v) , 
where k is the number of variables, and v is the 
number of possible values for each variable such 
that in every N x t subarray, each t-tuple occurs at 
least once, then t is the strength of the coverage 
of interactions. Each row of a covering array 
represents a test, with one column for each 
parameter that is varied in testing. Collectively, 
the rows of the array include every t-way 
combination of parameter values at least once. 
For example, Figure 1 shows a covering array that 
includes all 3-way combinations of binary values 
for 10 parameters. Each row corresponds to one 
test, and each column gives the values for a 
particular parameter. It can be seen that any three 
columns in any order contain all eight possible 
combinations (000, 001, 010, 011, 100, 101, 110, 
111) of the parameter values. Collectively, this 
set of tests will exercise all 3-way combinations of 
input values in only 13 tests, as compared with 
1,024 for exhaustive coverage. 

The primary goal in the simulation is to study the 
behavior of the system with different input 
configurations. For example, a network simulation 
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2 

may investigate the effect of configurations on 
packet rate, delay, or potential for deadlock in 
the network, just as.a production line simulation 
may study the effects of changing line speed, 
interconnection between workstations, and 
buffer size on the number of items that can be 
produced per hour. 

Figure 1: 3-way covering array for 10 
parameters with 2 values each 

In this study we compare random and 
combinatorial testing of a network simulator, to 
determine if these two test approaches produce 
significantly different deadlock detection in the 
simulation. Using deadlocks as events of 
interest makes evaluating program responses 
straightforward and unambiguous. Numerical 
results such as packet rates or delays are not 
considered, but could be the subject of a future 
investigation. The two test modes – random or 
combinatorial – are compared using a standard 
two-tailed t-test for statistical significance. 

Experimental Evaluation 

This work investigates the hypothesis that 
combinatorial test suites will detect significantly 
more deadlocks than random test suites of the 
same size, for interaction strengths of t = 2, 3, 4. 

Independent and Dependent Variables: The 
independent variable in this study is the type of 
testing used, either t-way combinatorial or 
random. The dependent variable is the number 
of deadlocks detected. 

Subject Application and Test Suites: 
Software under test for the experiment was 
Simured [13], a multicomputer network simulator 

developed at the University of Valencia. The 
software is available in C++ and Java versions, for 
both Linux and Windows. The core command line 
code (not including user interface or graphical 
display) consists of 2,131 lines of C++. Simured 
provides a simulation of the switching and routing 
layers for a multicomputer, allowing the user to 
study grid computer configurations to investigate 
the effect of topologies and configurable 
parameters on routing, timing, and other variables 
of interest. W e used the C++ command line 
version of this software, compiled with gcc and run 
on 64-bit processors under Red Hat Enterprise 
Linux V4. No modifications were made to the 
Simured software. 

Table 1: Simured configuration parameters and 
test values used 

Parameter Values 
1 DIMENSIONS 1,2,4,6,8 

2 NODOSDIM 2,4,6 

3 NUMVIRT 1,2,3,8 

4 NUMVIRTINJ 1,2,3,8 

5 NUMVIRTEJE 1,2,3,8 

6 LONBUFFER 1,2,4,6 

7 NUMDIR 1,2 

8 FORWARDING 0,1 

9 PHYSICAL t, f 

10 ROUTING 0,1,2,3 

11 DELFIFO 1,2,4,6 

12 DELCROSS 1,2,4,6 

13 DELCHANNEL 1,2,4,6 

14 DELSWITCH 1,2,4,6 

Simured provides a set of 14 parameters that can 
be set to a variety of values in a configuration file 
that is read by the simulator. Parameters and 
possible values used are shown in Table 1. The 
total number of possible configurations with these 
parameter values is 3.1 x 107 . Larger values are 
possible for a number of parameters, but would 
require extensive run time on a large system. 

Evaluation Metrics: Test suites were evaluated 
according to the number of deadlocks detected. 
We also compare the percentage of t-way 
combinations covered for the random test suites 
of equal size, and determine the number of 
random tests needed to provide 100% coverage 
of the respective t-way combinations. (By 
definition, a covering array provides 100% 
coverage of t-way combinations.) 



 
 

        
         

      
     

       
       

       
       

          
        

         
       

        
     

       
        

     
 

       
       

       
       

      
       

 
   

 
      

          
       

        
        

           
         

       
       

          
         

       
         

     
       

       
       

     
 

         
       

       
         

        
        

       
       
        

      

      
   

 
    

   
        

           
       

       
       
        
       

        
        

        
      

       
 

      
    

   
     

       
       
       

 
     

   
     

         
       
       

 
 

       
     

 
 

  
 

  
  
  

 
        

       
        

         
         

         
      

      
          
       

         
      

      

Threats to Validity: Clearly there are limitation 
on the extent to which these results can be 
generalized to other applications. While 
previous comparisons of combinatorial and 
random testing focused on fault detection, this 
study evaluates these methods with respect to 
deadlock detection in a simulation. Some 
implications of this difference are discussed in 
the analysis of results, in Section 4.2. A second 
difference is the nature of the software under 
test. Simured is a small but complex program 
that is not assumed to have characteristics 
similar to other application domains. Network 
simulation requires extensive calculations for 
statistics such as packet transmission rates and 
delays, and is not directly comparable to other 
types of software. 

While the issues raised above should be 
considered in evaluating results, we believe that 
the experiment has identified a number of 
factors that can be usefully considered when 
deciding whether to use random or 
combinatorial testing for a particular problem. 

3 Testing Procedure 

Covering arrays that include all t-way 
combinations for t = 2, 3, and 4 were generated 
using the IPOG algorithm [11], which produces 
compact test suites. Test suites for the 
configuration shown in 0 included 28, 161, and 
752 tests for t = 2, 3, and 4 respectively. 
Random test suites matching the sizes of the 2, 
3, and 4-way combinatorial test suites were 
produced using the standard C library rand() 
function, producing one test at a time with a call 
to rand() for each variable value. In generating 
random test sets, the rand() function was 
initialized with a call to srand() to seed the 
pseudo-random number generator from the 
system clock. From these tests, configuration 
files were generated for Simured and the 
command line version of Simured invoked with 
each configuration file. 

Each test set was executed for 500, 1000, 2000, 
4000, and 8000-packet simulation runs. For 
combinatorial testing, one test suite run was 
conducted for each of the five packet counts and 
three interaction levels (28, 161, and 752 tests, 
for a total of 4,705 simulations). Random 
generation produces a different test set with 
each test generation run. For random testing, 
eight runs at each combination of packet count 
and interaction level were conducted (37,640 

simulations), and the average deadlock detection 
calculated. 

4 Results and Analysis 

4.1 Test Results 
Results for the two test modes were compared 
with a standard t-test for paired samples. Table 2 
shows the number of deadlocks detected using 
tests produced from IPOG versus the average 
number of deadlocks detected with an equal 
number of randomly generated tests. Values for 
random test detection represent the average of 
eight runs with randomly generated tests at each 
combination of interaction level and packet count. 
Table 3 gives the two-tailed probability of a 
difference between the numbers of deadlocks 
detected by combinatorial and random testing. 

Table 2: Deadlocks, combinatorial vs. random 
Deadlocks Detected – combinatorial 

t Tests Packets 
500 1000 2000 4000 8000 

2 28 0 0 0 0 0 
3 161 2 3 2 3 3 
4 752 14 14 14 14 14 

Average Deadlocks Detected – random 
t Tests Packets 

500 1000 2000 4000 8000 
2 28 0.63 0.25 0.75 0. 50 0. 75 
3 161 3.00 3.00 3.00 3.00 3.00 
4 752 10.13 11.75 10.38 13.00 13.25 

Table 3: t-test results for difference between 
random and IPOG generated tests 

Interaction Two-tailed 
strength probability 

2 .0035 
3 .1778 
4 .0235 

For pairwise testing (t = 2), combinatorial testing 
detected slightly fewer deadlocks than an equal 
number of random tests, and the difference is 
statistically significant. At interaction strength t = 3 
the difference between the two test methods is not 
statistically significant. At t = 4, however, the 
covering arrays produced by IPOG detected 
significantly more deadlocks than an equal 
number of random tests. In the next section we 
consider some possible reasons for the variation 
in effectiveness of these two test methods. Two 
important considerations should be noted about 
the difference in deadlocks detected: 



 
 

     
      

      
        

       
 

    
      

          
     

        
       

      
      

       
       

       
      

      
        

          
       

         
      

       
        

       
       

       
       

         
         

         
      

        
          

        
        

          
        

      
          
         

       
        
     

 
       

     
      

       
        
        

        
       

       
          

      
        

     
         

      
         

         
 

       
      

          
       

          
         

       
      
         

        
        
        

  
 

        
         

      
     

      
        

         
        

        
          

        
       

       
       

         
       

           
       

       
      

      
         

 
 

       
         

      
        
         

       
       

       

combinatorial methods found more deadlock 
configurations, but also consistently found 14 
deadlocks for the most complex (4-way) 
interactions, while there was a great degree of 
variation among the random configurations. 

4.2 Analysis of Results 
In considering explanations for the results, 

we first note that there can be a number of 
differences between the simulations conducted 
in this work and software testing in other 
application domains. In many applications, such 
as databases or web applications, different 
parameter values may result in different 
execution paths within an application, but the 
amount and complexity of processing is often 
similar for many different inputs. Network 
simulation, by contrast, may exhibit wide 
variations in processing depending on whether 
the input configuration is a small network of 
simple topology, or a large, complex one. This 
difference was observed in widely varying run 
times (not reported in this paper), and may also 
contribute to the distribution of deadlocks 
detected at the three interaction levels. 
Previous work (see Section 1) has found that 
increasing values of t detect progressively fewer 
faults, even in cases where combinatorial testing 
performed no better than random tests. 
Pairwise testing (t=2) often detected 70% to 
more than 90% of faults, while 3-way tests found 
roughly 10% to 20% of faults, and 4-way to 6­
way tests typically detected less than 5%. This 
distribution is essentially reversed for the 
Simured testing (see Table 2), with 0%, 18%, 
and 82% of deadlocks detected at t=2, 3, and 4 
respectively. This result is not unexpected. 
Faults can be triggered by combinations of any 
of the variables in a program. Even though a 
large set of variables may be directly or 
indirectly involved in triggering deadlocks, the 
set can be expected to be much smaller than the 
total number of variables in a program. With 
deadlocks occurring in roughly 2% of simulation 
runs, larger test sets would be expected to 
locate more deadlocks. 

In addition to the “reverse” relationship between 
deadlock detection and interaction strength, 
another interesting finding was that pairwise 
tests detected slightly fewer deadlocks than the 
same number of random tests. Careful analysis 
shows that there is in fact a combinatorial 
explanation for this result, which we discuss in 
the remainder of this section. 

Because a significant percentage of events can 
only be triggered by the interaction of two or more 
variables, one consideration in comparing random 
and combinatorial testing is the degree to which 
random testing covers particular t-way 
combinations. Any test set will also cover a 
certain proportion of possible (t+1)-way, (t+2)-way, 
etc. combinations as well. Tables 4 and 5 
compare this coverage for the Simured test inputs. 

We also analyzed the average percentage of t-
way combinations covered by 100 randomly 
generated test sets of the same size as a t-way 
covering array generated by IPOG, for various 
combinations of k = number of variables and v = 
number of values per variable. Table 6 shows the 
combination coverage of an equivalent number of 
randomly generated tests for t=2,3,4. For 
example, row 2 shows that a covering array with 
30 tests covers all 2-way combinations for 10 
variables with 4 values each, but 30 randomly 
generated tests cover only 84.6% of all 2-way 
combinations. 

The coverage provided by a covering array versus 
a random test suite of the same size varies 
considerably with different configurations. An 
important practical consideration in comparing 
combinatorial with random testing is the 
effectiveness of the covering array generator. 
Algorithms have a wide range in the size of 
covering arrays they produce, but all are designed 
to produce the smallest array possible that covers 
all t-way combinations. It is not uncommon for the 
better algorithms to produce arrays that are more 
than 50% smaller than other algorithms. 
Comparisons show that there is no uniformly 
“best” covering array algorithm [10]. Algorithms 
vary greatly in the size of combinatorial test suites 
they produce, so the comparable random test 
suites will also vary in the number of tests. 
Random testing may produce results similar to 
combinatorial tests produced by an algorithm that 
generates a larger, sub-optimal covering array, 
because the correspondingly larger random test 
set has a greater probability of covering the t-way 
combinations. 

A covering array algorithm that produces a 
compact array, i.e., a minimal number of tests, for 
t-way combinations may also include fewer (t+1)­
way combinations because there are fewer tests. 
Note that at t=2 (pairwise), an equal sized random 
test set covers more 4-way and 5-way 
combinations, which may explain why the random 
tests detected more deadlocks than the t=2 



 
 

      
      
       

        
       

          
      
        

       
        

       
       

       
         

       
 

      
   

      

      
      
      

 
      

  
   

 
 

    

      
      
      

 
      

          

 
 

 

 
 

 

 
 
 

  
 

 

 
 
 

  
 

 

 
 
 

        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        

         
       

        
       

        
       

          
          

      
        

          
       

         
          
         

         
         

        
             

         
       

         
         

      
         

  
 

        
     

      

 
 

 
 
  

 
  

 
  

        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        

     

 
      

      
       

  
 

covering array. Almost paradoxically, a sub­
optimal algorithm that produces a larger 
covering array may be more effective because 
the larger array is statistically more likely to 
include t+1, t+2, and higher degree interaction 
tests as a byproduct of the test generation. This 
result demonstrates that the smallest possible 
array is not necessarily best for testing purposes 
if higher strength interactions are not also 
tested. It also suggests that covering array 
generation algorithms that fill “don’t care” values 
(those for which all combinations have already 
been covered) with random values may provide 
better test results by covering a larger number of 
t+1, t+2, and higher degree combinations. 

Table 4: Combination coverage of
 
IPOG t-way tests
 

t 2-way 3-way 4-way 5-way Avg 

2 1.00 .758 .429 .217 0.601 
3 1.00 1.00 .924 .709 0.908 
4 1.00 1.00 1.00 .974 0.994 

Table 5: Combination coverage, random tests 
size = 
t-way 

2-way 3-way 4-way 5-way Avg 

2 .940 .735 .499 .306 0.620 
3 1.00 .942 .917 .767 0.906 
4 1.00 1.00 .965 .974 0.985 

Table 6: Combination coverage of an 
equivalent number of random tests 

Vars 

Vals 
/ 

Var 

IPOG 
tests 
t=2 

Rand 
2-way 
covg 

IPOG 
tests 
t=3 

Rand 
3-way 
covg 

IPOG 
tests 
t=4 

Rand 
4-way 
covg 

10 2 10 94.1 20 94.3 42 93.2 
10 4 30 84.6 151 90.6 657 92.3 
10 6 66 85.6 532 91.6 3843 94.8 
10 8 117 83.8 1214 90.6 12010 94.7 
10 10 172 82.1 2367 90.6 29231 94.6 
15 2 10 93.9 24 96.2 58 97.5 
15 4 33 88.1 179 94.1 940 97.5 
15 6 77 88.6 663 95.4 5243 98.2 
15 8 125 86.1 1551 95.2 16554 98.2 
15 10 199 86.4 3000 95.0 40233 98.2 
20 2 12 96.5 27 97.3 66 98.6 
20 4 37 90.9 209 96.2 1126 98.8 
20 6 86 91.3 757 97.0 6291 99.2 
20 8 142 91.3 1785 96.9 19882 99.2 
20 10 215 88.4 3463 96.9 48374 99.2 
25 2 12 95.9 30 98.5 74 99.2 
25 4 39 92.1 233 97.5 1320 99.4 
25 6 89 91.8 839 97.9 7126 99.6 
25 8 148 90.3 1971 97.9 22529 99.6 
25 10 229 90.0 3823 97.8 54856 99.6 

Now consider the size of a random test set 
required to provide 100% combination coverage. 
Table 7 gives the ratio of randomly generated 
tests to combinatorial tests for the variable/value 
combinations. For example, for 10 variables with 
2 values each, random generation requires 1.80, 
3.05, and 3.57 times as many tests as a covering 
array to cover all combinations at t=2, 3, and 4 
respectively. For most covering array algorithms, 
the difficulty of finding tests with high coverage 
increases as tests are generated. Thus even if a 
randomly generated test set provides better than 
99% of the coverage of an equal sized covering 
array, it should not be concluded that only a few 
more tests are needed for the random set to 
provide 100% coverage. Table 7 shows that the 
ratio of random to combinatorial test set size for 
100% coverage exceeds 3 in most cases, with 
average ratios of 3.9, 3.8, and 3.2 at t = 2, 3, and 
4 respectively. In other words, using random tests 
to obtain coverage of all t-way combinations 
required more than three times as many tests as 
were needed when using a covering array. Thus 
combinatorial testing offers a significant efficiency 
advantage over random testing if the goal is 100% 
combination coverage. 

Table 7: Ratio of random to combinatorial 
tests for 100% combination coverage 

Var 
Vals/ 
var 

2-way Tests 3-way Tests 4-way Tests 

IPOG 
Tests Ratio 

IPOG 
Tests Ratio 

IPOG 
Tests Ratio 

10 2 10 1.80 20 3.05 42 3.57 
10 4 30 4.83 151 6.05 657 3.43 
10 6 66 5.80 532 3.73 3843 3.48 
10 8 117 4.26 1214 4.46 12010 4.39 
10 10 172 4.70 2367 4.94 29231 4.71 
15 2 10 2.00 24 2.17 58 2.24 
15 4 33 3.67 179 3.75 940 2.73 
15 6 77 3.82 663 3.79 5243 3.26 
15 8 125 4.41 1551 4.36 16554 3.66 
15 10 199 4.72 3000 5.08 40233 3.97 
20 2 12 1.92 27 2.59 66 2.12 
20 4 37 3.78 209 2.98 1126 3.35 
20 6 86 3.35 757 3.39 6291 2.99 
20 8 142 4.44 1785 4.73 19882 3.00 
20 10 215 4.78 3463 4.04 48374 3.25 
25 2 12 2.83 30 2.33 74 2.35 
25 4 39 3.08 233 3.39 1320 2.67 
25 6 89 3.67 839 3.44 7126 2.75 
25 8 148 5.71 1971 3.76 22529 2.72 
25 10 229 4.50 3823 4.32 54856 3.50 

Ratio Avg. 3.90 3.82 3.21 

The analysis suggests two significant advantages 
for combinatorial methods in simulations where 
interactions between input variables are likely to 
be important: 



 
 

      
      

      
     

           
         

      
        

         
        

     
       

        
  

 
      

         
        

        
        

      
       

 
   

 
        

      
        
     

          
       

        
      

        
       

        
      

        
     
       

      
       

       
 

      
        
       

       
          

       
      

        
        

      
        

       
    

 
       
         

        
 

 
 

          
      

         
        

        
       

         
         

      
        

       
           

       
         

       
        

             
      

          
            

        
        

        
           

       
     

          
      

     
         

       
      

           
           

      
     

       
           

         
       

         
       

      
         

         
      

   
          

        
     

        
            

          
       
   

          
       

      
     

Significantly fewer tests required to provide 
100% combination coverage for a particular 
interaction strength. Depending on problem 
size, random generation requires approximately 
2 to 6 times as many test inputs as a covering 
array to cover all combinations (Table 7). While 
random generation will cover a significant 
portion of the data space, sometimes 99% or 
more (Table 6), this may often not be adequate 
in practice. The network simulation described in 
previous sections illustrates that combinatorial 
methods can detect rare interactions that may 
be missed with an equal number of random 
inputs. 

Better coverage of higher strength interactions. 
As shown in Table 4, a covering array for 
interaction strength t is likely to provide better 
coverage of t+1, t+2, etc. combinations than an 
equal number of random tests. This 
characteristic provides a greater chance of 
detecting events triggered by rare combinations. 

5. Conclusions 

For the simulation program tested in this study, 
pairwise tests detected slightly fewer deadlocks 
than an equal number of random tests, but 4­
way combinatorial testing produced better 
results than an equal number of random tests. 
Analyzing the random test sets suggests a 
number of reasons for these results. Although 
pairwise tests covered all 2-way combinations 
and an equal number of random tests covered 
fewer, the random tests covered more 4-way 
and 5-way combinations, and thus had a greater 
probability of triggering deadlocks that depended 
on 4-way or 5-way interactions. However, the 4­
way combinatorial tests covered significantly 
more 4-way combinations (100% vs. 96%) and 
also provided equal 5-way coverage compared 
with the corresponding random test set, and 
found more deadlocks as well. 

This result demonstrated that the smallest 
possible array is not necessarily best for testing 
purposes if higher strength interactions are not 
also tested. When using t-way combinatorial 
testing, it can be helpful to evaluate the test set 
for coverage of t+1 and higher interaction 
strengths. Methods of combining combinatorial 
and random tests may also be effective, as 
proposed in [2],[1]. These results also suggest 
that covering array algorithms may provide 
better test results by filling “don’t care” values 

with random (rather than constant, sequential, or 
other non-random) values. 

Note: Reference to commercial products or trademarks 
does not imply endorsement by NIST, nor that such 
products are necessarily best suited to any purpose. 
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