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Abstract
RATIONALE: Early detection of tumor response to therapy is a key goal. Finding measurement algorithms capable of
early detection of tumor response could individualize therapy treatment as well as reduce the cost of bringing new
drugs to market. On an individual basis, the urgency arises from the desire to prevent continued treatment of the
patient with a high-cost and/or high-risk regimen with no demonstrated individual benefit and rapidly switch the pa-
tient to an alternative efficacious therapy for that patient. In the context of bringing new drugs to market, such algo-
rithms could demonstrate efficacy in much smaller populations, which would allow phase 3 trials to achieve
statistically significant decisions with fewer subjects in shorter trials. MATERIALS AND METHODS: This consensus-
based article describesmultiple, imagemodality–independentmeans to assess the relative performance of algorithms
for measuring tumor change in response to therapy. In this setting, we describe specifically the example of measure-
ment of tumor volume change from anatomic imaging as well as provide an overview of other promising generic
analytic methods that can be used to assess change in heterogeneous tumors. To support assessment of the relative
performance of algorithms for measuring small tumor change, data sources of truth are required. RESULTS: Very short
interval clinical imaging examinations and phantom scans provide known truth for comparative evaluation of algo-
rithms. CONCLUSIONS: For a given category of measurement methods, the algorithm that has the smallest measure-
ment noise and least bias on average will perform best in early detection of true tumor change.
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Introduction

General Problem Description and History Review
Strategies for disease response assessment must be useful in a wide

range of cancers, encompassing a large variety of image-based measure-
ments and many different treatment options. Chemotherapy and
neoadjuvant chemotherapy treatment protocols vary across the world
and may include group protocol studies for novel agents or combina-
tions, the application of best therapy in multicenter clinical trials, and
many instances of therapy given off-study to individual patients.Many
therapy plans now include surgery or radiation as additional therapy
options. New biologic response modifiers (so-called targeted therapies)
for diseases such as lung cancer have received increased interest recently.
These generally less-toxic agents are targeted to affect the tumor blood
supply or other critical pathways in cancer cell growth, differentiation,
or metastatic processes. The end point of such therapies may not be
cancer regression but stasis, that is, tumor growth cessation. Therefore,
measures of tumor size may be an inappropriate early measure to evalu-
ate useful change. For example, subtle changes in image-based mea-
sures in the cancer such as density, tumor margin alterations, or
other pixel-based features may signal a useful response at an early stage
of therapy; tumor blood flow may be an important measure for tumor
vasculature–based changes; and metabolic changes may be measured by
PET—all these changes preceding any change in tumor volume.
Critical to the image-based evaluation of either tumor growth or

shrinkage (or some of the more subtle features mentioned already)
in response to therapy is a much-improved understanding of the
three-dimensional anatomic/pathologic structure of cancers. Current
assessments based on two-dimensional pathology slides indicate that
malignant cells occupy only a fraction of a tumor nodule’s volume,
whereas the remainder consists of inflammatory cells, edema, fibrosis,
or necrosis. Understanding the three-dimensional structure of cancer
pathologically is critical to the evaluation of three-dimensional imaging
modalities. Future response assessment protocols could then target spe-
cifically the cancer component of a tumor.
The current standard method to measure tumor response using im-

aging is referred to as Response Evaluation Criteria in Solid Tumors
(RECIST), which is based on unidimensional, linear measurements
of tumor diameter [1–5]. In promoting the summed linear measure-
ment of a limited number of target tumors, RECIST offers a sim-
ple approach that requires minimal effort. The RECIST guidelines,
however, presume that tumors are spherical and change in a uniform
symmetric manner. In actuality, tumors do not necessarily grow sym-
metrically; different portions may grow at different rates [6]. Significant
variability in the RECISTmeasures exists among different observers [7–
10], and published work generally focuses on the surrogate of “best
overall response” with only a few methods addressing other end points
such as “time to progression” and “disease-free survival.” As a therapy
response measurement procedure, RECIST maps linear data into an
established set of four discrete categories: complete response, partial re-
sponse, stable disease, and progressive disease. These categorical bins,
however, are quite coarse with most trial analyses critically pivoting
on partial response (defined by a 30% linear sum reduction) and pro-
gressive disease (defined by a 20% increase in tumor dimension).
Furthermore, if the cancer volume is mostly inflammation, then linear
size change alone may give a false impression of therapy response (the
inflammation was reduced, but the cancerous component was not); in
fact, a tumor may slightly increase in size after initiation of therapy
because of inflammatory reactions—although a beneficial response is
occurring. As a consequence of observer measurement variability and
the expectation that newer therapies will not cause initial size reduction,
change in tumor volume is likely inadequate to assess early response to
any therapy. Therefore, to improve the accurate assessment of response
and to reduce observer variability, other lesion characteristics that may
be tracked across temporally sequential scans are required. New im-
aging techniques and associated new image-processing algorithms allow
for early assessment of response to therapy and are being introduced
into human clinical trials as outcome measures.

In 2001, a National Institutes of Health working group’s consensus
was published defining a biomarker as a “characteristic that is objec-
tively measured and evaluated as an indicator of normal biologic pro-
cesses, pathogenic processes, or pharmacologic responses to therapeutic
intervention” [11]. Further, “a biomarker that is intended to substitute
for a clinical endpoint” was defined by the same working group as a
“surrogate endpoint”—in cancer clinical trials, the accepted criterion
standard for clinical end point is overall survival. In a further paper
[12], various subgroups of biomarkers are described including prog-
nostic, predictive, and surrogate end point biomarkers. It is possible
that imaging can provide biomarkers for all three of these functions,
but only if the image-based measure is very well characterized, as in-
dicated in these series of papers. As imaging matures as a measurable
modality, we would propose an expanded definition of a biomarker as
follows: A biomarker is a validated disease characteristic which can be
reliably measured in a cost-effective, repeatable and generalizable manner,
and which acts as a meaningful surrogate for disease presence, absence,
activity, or outcome in individuals or groups with the disease process. Ex-
amples include questionnaires, biochemical measures in various bio-
logic fluids, or image based metrics. Many disease processes have an
established phenotype, but a phenotype is not necessarily a good
biomarker, and these two terms are therefore not interchangeable. This
expanded definition includes the notion that, to be useful in health-
care, validated biomarkers should have the additional properties of
being cost effective and generalizable, that is, capable of being imple-
mented at multiple sites with uniform results.

In this paper, we summarize a recent initiative to develop a consensus
approach to the benchmarking of software algorithms for the assess-
ment of tumor response to therapy and to provide a publicly available
database of images and associated meta-data. The Reference Image
Database to Evaluate Response to therapy in cancer (RIDER) project
is generating a database of temporally sequential computed tomography
(CT), magnetic resonance imaging (MRI), and positron emission to-
mography (PET) scans of subjects with cancer collected longitudinally
during the course of nonsurgical cancer therapy [13]. The database will
also include phantom images of synthetic tumors and short-interval pa-
tient scans for the evaluation of the variance and bias of change analysis
software algorithms. This project evolved from the Lung Image Data-
base Consortium, which is finishing the creation of a publicly available
database of annotated thoracic CT scans as a reference standard for the
development, training, and evaluation of computer-aided diagnostic
methods for lung cancer detection and diagnosis [14,15].

The RIDER project was initiated in 2005 as a collaboration among
the National Cancer Institute’s (NCI) Cancer Imaging Program, the
NCI’s Center for Bioinformatics, the National Institute of Biomedical
Imaging and Bioengineering, and the Cancer Research and Prevention
Foundation, with information technology support from the Radiolog-
ical Society of North America. The RIDER project was designed and
continues to evolve through a consensus process among members of
the RIDER steering committee composed of academic researchers,
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program staff at NCI, and members of the Cancer Biomedical Informat-
ics Grid, National Institute of Biomedical Imaging and Bioengineering,
the Food and Drug Administration (FDA), and the National Institute
of Standards and Technology. The broad purpose of the RIDER project
is to 1) develop a public resource of serial (i.e., temporally sequential)
images acquired during the course of various drug and radiation therapy
trials across multiple centers so that change analysis software algorithms
may be optimized and benchmarked before use in future trials and 2)
enable the development of appropriate evaluation strategies for these
new algorithms. The data that will be available to academic researchers
and to the device and pharmaceutical industries will include images
from CT, MRI, and PET/CT along with relevant metadata. Images of
physical phantoms and patient images acquired under situations in
which tumor size or biology is known to be unchanged (in which the
“true” change is known to be zero) also will be provided and will play
a key role in the assessment of software algorithm performance. The
RIDER project will highlight the importance of creating standardized
methods for benchmarking software algorithms to reduce sources of
uncertainty in vital clinical assessments such as whether a specific tumor
is responding to therapy.

The longer-term goal of RIDER is to help identify image-based bio-
markers to measure cancer therapy response. Such biomarkers could
potentially be adopted in clinical trials submitted to the FDA for regu-
latory approval. Further, such image-based biomarkers could be used
to more easily validate other biomarker algorithms in development,
such as those from genomics, proteomics, or metabolomics projects.
In addition, the Centers for Medicare and Medicaid Services seek evi-
dence to support informed reimbursement decisions for image-based
biomarkers that may eventually be used clinically. Consequently, the
RIDER project is expected to accelerate 1) FDA approval of both
software-based response assessment algorithms and therapeutic agents
evaluated through clinical trials that use such algorithms and 2) re-
imbursement of Centers for Medicare and Medicaid Services for sub-
sequent therapeutic decisions made using such software algorithms.
(Text for General Problem Description and History Review is an edited
version of Armato et al. [13].)

Specific Focus on Early Detection of Change
Early detection of tumor response to therapy is a key goal. Finding a

measurement algorithm capable of early detection of tumor response
could individualize therapy treatment as well as reduce the cost of bring-
ing new drugs tomarket. On an individual basis, the urgency arises from
the desire to prevent continued treatment of the patient with a high-cost
and/or high-risk regimen with no demonstrated individual benefit and
rapidly switch the patient to another therapy that may increase treat-
ment efficacy for that patient. In the context of bringing new drugs to
market, such algorithms could demonstrate efficacy in much smaller
subject populations, which would allow phase 3 trials to achieve statis-
tically significant decisions in shorter durations with fewer subjects.

The emphasis placed on the word “early” implies that most interest
exists near the measurement regime of zero change, that is, the detec-
tion of truly small changes from whatever algorithm and parameter set
is used and measured. Given that a tumor has a change trajectory over
time, for a first-order approximation valid for a short interval, we need
only the first two terms of a Taylor series [16] to model the change
trajectory, that is, the nodule’s current state and its initial time rate of
change. Clearly, the patients’ oncologists in cases of an individual’s
health care, or clinical trial designers in the case of drug efficacy studies,
are motivated to choose the smallest imaging interval that accurately
(ratio of true calls over all calls) assesses the presence or absence of real
change. From detection theory, we understand that our ability to detect
small changes rests on the signal-to-noise ratio (SNR), alternatively de-
scribed as effect size to variance. As this ratio increases, we migrate from
the condition of being able to detect changes in large populations by
averaging to the condition of using fewer subjects until we are able to
detect such changes in an individual with clinically useful statistical ac-
curacy. Whereas in most cases we can increase the effect size and thus
improve the SNR by increasing the interval between imaging examina-
tions, we would much prefer to use as short an interval as possible. In
the limit as the interval between imaging examinations approaches zero,
we see that we are indeed operating near the regime of zero tumor
change, and it is the noise (variance) in this regime that limits our ability
to see small real changes (effect size) in short-interval examinations.

Given the large task required to implement thesemeasurements across
a broad spectrum of algorithms and measurement parameters in search
of optimal combinations, this consensus group of authors addressing
issues facing construction of the RIDER database has focused on ways
of estimating a measurement algorithm’s noise, that is, variance, under
the condition of no change across several modalities and measurement
techniques. Arguably, the most realistic and useful data sets representing
zero change come from subjects with known tumors who are imaged,
removed from scanner, and then are rescanned within a very short time
frame.We refer to these interval examinations as “coffee break” examina-
tions. These data sets then contain all of the realities of imaging within a
short time window with whatever modality was used, that is, imaged
tissue contrast-to-noise, patient motion artifacts, repositioning errors,
and so on, that will be encountered in the real world. In addition, because
the time interval between these scans is on the order of hours or less, we
can safely assume that we know the truth, that is, there are no macro-
scopic changes to the tumor in the interval between these two examina-
tions. Therefore, measurement of nonzero change by any algorithm
using these coffee break data sets is an error. Note that data sets with
expert annotations are not used as truth due to their demonstrated var-
iability in segmentation and thus lack of certainty in associated change
assumptions [9,17]. An alternative to collecting these coffee break ex-
aminations that contain all sources of short-term noise for an estimate
of the null hypothesis against which treatment effects must be compared
is the collection of a large database of treatment trials along with clinical
end points that can be modeled to determine the sources of potentially
multiparametric covariance; we suggest that the collection of coffee break
data may be far more efficacious at much lower collection cost.

Materials and Methods

Assessing the Measurement of Tumor Volume Change from
Anatomic Imaging

Many parameters could be exploited to measure tumor change.
There are physical parameters that already have either established or
suggested relationships to cancer including density, diffusivity, and elas-
tic moduli. In addition, there are shape and composition parameters
including volume, spicularity (typically quantified as the ratio of surface
area to volume), heterogeneity, and vascularity (typically quantified as
number of vessels intersected per unit area in a histology section). The
following section describe methodologies only for assessing the accuracy
of measuring tumor volume change as rendered in anatomic imaging.
In the simplest case, the same techniques can be used for assessing
accuracy of measuring other parameters, but should these parameters
have interactions, the measurement methods will require the use of



Translational Oncology Vol. 2, No. 4, 2009 Quantitative Imaging for Tumor Response to Therapy Meyer et al. 201
multiparametric estimators such as generalized linear models (GLMs)
potentially including mixed effects models that are not addressed herein.
By way of introduction to the problem of measuring volume change

of tumors, we describe three of possibly many methods of implement-
ing such measurements. The purpose here is to show the generality of
the possible solutions as well as to view the following discussion from
a common viewpoint, that is, primarily that of the quantification of
tumor volume change. Consider the following two of many possible
methods for estimating tumor volume change:

A. Currently, the standard method of measuring change is the se-
quential segmentation of the tumor in interval examinations
followed by subtraction of the value of the tumor volume of
the previous examination from that derived from the current
examination. This double segmentation is an indirect method
in that volume change is not measured directly and will de-
pend on the accuracy or consistency of the segmentation and
the change assessment paradigm [18,19].

B. Registrations that map the same, possibly complex, tumor geom-
etry between two different interval examinations can be per-
formed with the volume change estimated directly

(a) by the product of the resulting anisotropic scaling factors
for affine geometry or
(b) by integrating the Jacobian [20], that is, the spatially varying,
local determinant of the first partial derivatives of the deforma-
tion otherwise called local scaling, over the region of support of
the deformation created by nonlinearly warping the early tumor
to look like the later.

These are direct approaches that incorporate partial volume
effects and inhomogeneities within lesions that are ignored by
binary segmentation approaches.
In the following discussion of volume change, we are fundamen-
tally addressing directly the problem of quantifying volume change.
When we discuss random error variance or bias, we are not referring
to just the segmentation problem that may or may not precede more
sophisticated estimates of volume change but rather to the entire
change analysis methodology.
Components of Error
In every problem, we face two basic components of error:

A.Variance, σ 2, is a quantitative estimate of the random variability of
the data about its mean in repeated measurements associated with
noise from various sources, for example, data sensors and subse-
quent measurement methods, and is estimated as shown here

σ2 = E ∑
N

i¼1
xi � x̂ð Þ2 = ðN � 1Þ

� �

Here xi represents one of theN discretemeasurements wemake to
compute the quantity within the brackets as an unbiased estimate
of the variable’s variance, x̂ is the estimate of the discrete data’s
mean, and E is the estimate of the quantity inside the brackets
asN approaches infinity. The quantity (xi − x̂) is the noise or error
term from the expected mean estimate. Thus, we estimate vari-
ance by computing the terms inside the brackets, that is, the
sample variance, for an N large enough to give us a sufficiently
low noise estimate of the true variance for our purposes. Precision,
a qualitative term frequently used in radiologic literature, is quan-
tified by the measurement of SD, σ, also called standard un-
certainty, which is the square root of variance. Precision improves
as the SD and variance of the repeated measurements decrease.

For example, if we need to measure the length of an object with a
cloth measuring tape, we can measure the object multiple times and
calculate the variance of themeasurement.Here, the variability could
be due to several components of error, for example, themeasurement
tool can be randomly stretched by differing amounts, each time we
place the beginning of the tape at slightly different positions, and so
on. These differences between repeated measurements can be char-
acterized by the variability about the mean, that is, the variance; the
smaller that variance is, the more precise these measurements are said
to be.

B. Bias is a quantitative estimate of systematic measurement error,
that is, even if the random error were zero, the measured num-
ber would be systematically different from the truth if bias
were nonzero. Examples of this include systematic over/under
estimation of some measured property (again, such as volume).
Accuracy, a qualitative term also frequently used in radiologic
literature, is quantified by the measurement of bias. Accuracy
improves as the measured bias decreases. The measurement of
bias is discussed in more detail in the section on estimating
variance and bias for the case of no volume change.

Continuing the previous cloth tape analogy, all measurements
would be positively biased, that is, longer, if the cloth tape we
used had been unknowingly cut off at the beginning of the tape
by 1 inch. Thus, we could average many measurements to reduce
the variance and improve the precision, but still be wrong (biased
or inaccurate) by 1 inch.

For tumor change measurements, we will begin with the assumption
that for similar physical imaging characteristics and subject setup, the
variance and bias estimates are likely dependent on the size of the tumor
as well as its complexity which includes factors such as heterogeneity,
shape, and location; specifically, the derived parameters that describe
each of the errors may in general be a function of these enumerated
independent parameters.

In most experiments, we observe both effects simultaneously as they
are not easily separated and only through the collection of sufficient data
and the use of statistical analysis techniques such as GLMs with selected
mixed effects are we able to separate estimates of error components. Such
models are especially important when the measured quantities are truly
changing with time. The modeling is complicated by having to choose
the specific mixed effects and degrees of freedom (DOF). Owing to the
model’s large DOF, the amount of test data needed and collected under
known conditions also increases. When a single measured quantity is
stationary, as in the section on Estimating Variance and Bias for the Case
of No Volume Change, we can also approach the problem as a simpler,
ordered discovery of the two separate components.

Estimating Variance and Bias for the Case of No Volume Change
In the following discussion, we will describe an ordered quantification

of both random error and bias around the operating point of no change.
This is a crucial operating point because in many practical clinical
applications, we wish to discover real change in as short a time interval
as possible to affirm or refute the assumption that the applied therapy is
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effective. The urgency arises from the desire to prevent continued treat-
ment of the patient with a high-cost and high-risk regimen with no
demonstrated benefit as well as from the need to rapidly switch an in-
dividual patient to another therapy that may increase individual efficacy.
Thus, measurement noise observed in the case of no change for a spe-
cific patient is a sample of the null hypothesis that must be quantified
before we can determine with some stated probability that any mea-
sured change represents true change.

Estimating variance for the case of no volume change. Under the
simplifying assumption that the random error is additive, we can es-
timate its variance by using input data sets where we know the un-
derlying truth is no change. There are two main types of experiments
to be considered here: “coffee break” studies, that is, very short in-
terval examinations, and longitudinal studies, both used for gathering
input data sets from which we can estimate variance.

(a) Coffee break studies
In a coffee break study, the time interval between scans is small

compared with the time required for the tumor to changemacroscop-
ically, that is, the subject is scanned more than once in a given session
or day. Requirements for these studies typically include a special pro-
spective image acquisition protocol with local institutional review
board approval, the acquisition of no more than two scans per patient
owing to radiation or contrast dose considerations and use of the same
scanner for both scans so that confounding effects such as scanner
calibration drift, change of physical scanner, change in image ac-
quisition, or reconstruction protocols are minimized. Although these
efforts may seem overly constraining to be required in clinical prac-
tice, to achieve clinical measurements of early tumor change during as
short an interval as 1 to 2 weeks, patients should be reassigned to the
same scanner with the same specified image acquisition protocol de-
spite any implementation difficulties. We would expect that maxi-
mum sensitivity to the measurement of change would be obtained
under these conditions because of the reduced number of possible
noise sources. Although performance of repeated imaging on manu-
factured phantoms may provide useful information about imaging
equipment variations such as calibration drift, obtaining this imaging
on patients is advantageous for predicting variance in clinical applica-
tions such as measuring tumor change. Because of a variety of factors
including homogeneity of the background, simplistic shapes of sim-
ulated tumors and lack of interfering adjacent structures such as pen-
etrating vessels, using physical phantoms to estimate the variance of
image-derived parameters will, as a rule, underestimate the variance of
image-derived parameters obtained in clinical practice, but such
phantoms will have use in estimating bias as described later.
(b) Long-term clinical surveillance studies

A second possible source of input data sets for estimating variance
is imaging examinations taken during multiple quarterly, semiannual,
or annual intervals in which no statistically significant trend is ob-
served. We would expect to find more random variability in the mea-
surement of tumor change in this setting due to effects unrelated to
tumor change such as long-term physiological change in the subjects
and scanner changes, for example, different 1) scanners, 2) acquisition
protocols, and 3) hardware and software owing to upgrades including
image reconstruction algorithm changes. The main advantage of this
approach is that cases may be retrospectively selected from clinical ar-
chives and special prospective institutional review board protocols
would not likely be required. The difficulty here is that 1) the analy-
sis of these longitudinal data to verify that the tumor volumes are
statistically stationary over time is slightly more complicated than
the simplistic analysis we describe for the coffee break data, and
2) we are only studying tumors that are stable and these tumors are
not necessarily representative of cancers as a whole. Because stable
tumors are generally more homogeneous than tumors that are rap-
idly growing, the measurement task may be simpler and the variance
reduced compared with that obtained in malignant tumors. In ad-
dition, because these tumors may actually be slowly changing, these
data may be useful for testing the relative comparison of algorithm
variance using the estimator σ̂TS

2 described later.

Although we are limiting our consideration to the measurement of
change near the operating point of no change, we need tomake themea-
surement of variance for tumors of differing sizes. There is significant
evidence from manual and semiautomatic segmentation that SD and
therefore variance is a function of tumor size; see [17]. Thus, we need
a source of truth data, for example, coffee break examinations, which
contain a spectrum of scanned tumor sizes to characterize the perfor-
mance of the change measurement analysis for different size tumors.

Because sample variance is a noisy measurement of the underlying
distribution’s variance, we will need many measurements of tumors
with no size change. There are two possible approaches to increase
the number of observations of variance to approximate the variance of
the underlying distribution.

(c) For every patient with N interval examinations of a tumor
that is conservatively judged to show no change, we can compute
N ! / ((N − 2)! × 2!) different but partially correlated, interval pairs
of examinations from which we can estimate the variance of change
measurements; DOF will need to be adjusted to account for the cor-
relation in the data pairs.
(d ) Because estimates of random error are potentially dependent on
tumor characteristics (e.g., shape, content, surroundings, volume,
acquired voxel size), we should only use interval examinations con-
taining tumors of similar characteristics that are conservatively
judged to show no change. These variance estimates can then be
aggregated to decrease our confidence limits for estimating the un-
derlying population variance for tumors characterized by that spe-
cific volume and constitutive complexity.

The estimate of the random error’s variance may be sensitive to the
estimator used, particularly in case of an error in classifying a tumor as
having no size change. For example, for measurements Xi with mean
X�, the obvious estimator is the sample variance determined by:

σ̂2 =
1

N � 1
∑
N

i¼1
Xi � X̄ ̄ð Þ2

which is exactly the same estimator as

σ̂U
2 =

1
N ðN � 1Þ ∑

1≤i<j≤N
Xi � Xj
� �2

;

a U statistics–based estimator [21] as suggested in (c) above. However,
estimators σ̂ and σ̂U are valid only under the assumption that there
is no change and will be biased if the tumor varies with time. Other
model-based methods are more appropriate should the tumor’s volume
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vary with time. For long-term clinical surveillance studies of slowly
varying nodules, the estimator σ̂TS should be less heavily biased and
can be justified based on simple assumptions on the nodule growth
and the homogeneity of the variance:

σ̂TS
2 =

1
2ðN � 1Þ ∑

2≤i≤N
Xi � Xi�1ð Þ2

Robust estimation is especially useful for small data sets when out-
liers may make a big difference. Huber [22] and Hoaglin et al. [23]
give extensive discussion of the pros of robust estimation in practice.

Estimating bias for the case of no-volume change. Once the ran-
dom error’s variance has been approximated, we can explicitly compute
the number of observations we must obtain to test for the presence of
a bias effect at some stated level of significance. The number of ob-
servations (experiments performed to measure the bias) depends on
the variance of the previously determined random error distribution,
the size of the bias effect we wish to measure and the probability that
we will measure such an effect, that is, reject the null hypothesis, at a
stated level of confidence. The required number of observations, that is,
measurements of volume change, increases as

(a) the size of the bias we wish tomeasure decreases for a fixed variance,
(b) the variance as measured above for the random error compo-
nent increases for a fixed bias, or
(c) the power, that is, likelihood of detecting the change at the given
level of significance, increases (an interactive demonstration of powering
a test is available at: http://wise.cgu.edu/power/power_applet.html).

The measurement of bias is important because if present it will lead
to a propensity for false-positives/negatives, depending on whether the
change measurement bias is positive/negative, respectively. As the name
implies, bias is a systematic error whose cause can be discovered and
removed or at least modeled and ameliorated.

Estimating Variance and Bias for the Case of True
Volume Change
The determination of bias and variance in the presence of true volume

change is needed if we want a completely generalized statistical charac-
terization of a measurement method. Note that if we want to quantify
volume change, not simply determine whether there was or was no
change, the truth data required for this task are more difficult to obtain.
Because estimates of bias and variance in volume change may be depen-
dent on tumor volume as well as tumor volume change (along with other
characteristics such as shape, type, acquisition/reconstruction protocols,
and possible motion), we will want to regress both bias and variance as
a function of both tumor volume and tumor volume change through
GLMs. Truth data for this task can only be known from manufactured
phantoms; a method for obtaining volume change truth for real tumors
is difficult and has yet to be defined for RIDER. Here, the “coffee
break” null change paradigm for real patient scan data is of little use be-
cause the “truth” of tumor size is not known (only the null change in
tumor size is known); instead, we need estimates of true change from
other accurate sources.
The key issue is that we currently have no measurement method that

will provide the true change in size of an actual tumor. For real tumors
that do change in size between interval scans, we are restricted to using
image measurements made by expert radiologists, and this measure-
ment method is itself subject to bias and random error [9,17]. The only
way we can obtain scans with known truth for size change is to scan
manufactured phantoms with known tumor characteristics and differ-
ent sizes or to embed simulated, mathematically defined tumors in ac-
tual patient scan data; the critical concern here is how well such
phantoms represent real tumors and their growth. To summarize:

A. Phantom studies could be used to obtain measurement bias for
phantom tumors both for expert radiologists, assuming the phan-
toms are representative of real tumor characteristics, and computer-
basedmeasurement systems.However, the phantomsmust represent
as closely as possible the properties of clinical cases in terms of
tumor signal intensities, sizes, shapes, etc. At least initially, we will
assume that the measurement variance for tumors that do change
size will be a linear combination of the no-change variances mea-
sured at the initial and final sizes of the tumor; as mentioned ear-
lier, owing to reduced complexity typically seen in phantom data,
we would expect the variance in measurement error of tumors
that do change size to be affected. In addition, although not per-
fect, the phantom data may still serve as a means for comparing
the relative performance of most algorithms.

Monte Carlo simulation studies provide stochastic models of
imaging systems and could also be helpful. For the case of x-ray–
based imaging, recent advances in simulation tools [24] allow the
generation of images with realistic statistical properties by track-
ing the transport of particles from the x-ray source through the
object of interest to the detector. Monte Carlo simulation can be
used to generate thoracic CT images of realistic anthropomorphic
phantoms while controlling for variables such as image acquisi-
tion parameters, nodule characteristics, and the complexity of
surrounding structures. Such simulation packages potentially
could be developed for other modalities.

B. We may conduct studies with real tumors to compare the re-
sults between expert radiologists and computer methods; how-
ever, the truth will not be known.

C. We can compare the results for random error between the phan-
tom and real tumor experiments to examine if (at least for a se-
lected subset of real tumors) the phantom results are comparable.
Given some level of agreement, we may be able to conjecture
(and potentially establish by later statistical analysis of large stud-
ies) that the bias results from the phantom experiments are pre-
dictive of the bias for real tumors.

These weak assumptions lead us to believe that the data col-
lection and analysis required for accurate clinical estimates of var-
iance in the presence of real change will be very expensive.
General Overview of Methods Useful for Assessing
Tumor Change

In the preceding section, methods for assessing the relative perfor-
mance of algorithms specifically for measuring tumor volume change
for the purpose of early assessment of tumor response to therapy were
discussed.Whereas the use of volume was explicitly examined, we could
use exactly the same techniques to examine any other single parameter,
for example, average mass, elasticity, etc., and the same techniques for
assessment of performance would apply, that is, the measurement of
variance and bias. There is, however, an explicit difference between
volume and most other single parameters: volume is necessarily a
singular, summary parameter whereas other parameters have tumor-
dependent, heterogeneous spatial distributions of values within that
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volume which can be characterized in several ways including a one-
dimensional histogram of its values and the histogram’s summary statis-
tics, that is, mean, variance, skew, kurtosis, and other higher moments.

The function of the sparsely filled Table 1 is to demonstrate the rela-
tive relationships of some different outcomes analysismethods and com-
puted parametricmodels previously contributed to NCI’s public archive
https://imaging.nci.nih.gov/ncia/, now called the National Biomedical
Imaging Archive, through the efforts of previous RIDER groups as well
as a few related methods previously published.

As seen in the rows of the Outcomes Analyses, Table 1, most pro-
cessing is first subjected to segmentation, that is, defining the volume
of interest (VOI) for further processing as the volume of clinical inter-
est. Registration commonly follows segmentation in that registration of
the whole, complex set of organ systems is very computationally inten-
sive and challenging given that some organs deform and slide along slip
walls, for example, lung compression and slippage along the pleural
surface of the rib cage. Thus, registration of the lung alone is far simpler
than attempting to register the lung and chest wall simultaneously
owing to the discontinuity of velocity vectors at the pleural surface.
Hence, registration of a segmented lesion with itself across interval ex-
aminations is typically preferred.

After segmentation and registration, differing outcomes analyses are
applied to the following potential change descriptors for detecting/
measuring response to therapy:

A. Volume: In the case of estimating a tumor’s volume change, two of
the methods we discussed in the previous section are shown in
Table 1 in the second set ofmajor columns from the right.Whereas
the imaging modalities associated with volume estimation are typi-
cally those of CT and MRI owing to better spatial resolution,
segmentation-based implementations can be applied to PET and
single photon emission computed tomography (SPECT) as well.

The method of tumor segmentation followed by summing the
volume of voxels inside a VOI yields a single numeric characteriza-
tion of the volume of the tumor in the examination; subtraction of
the results for any two interval examinations yields a single numeric
characterization of the tumor’s volumetric change. Although this
method that can includemanual as well as many sophisticated semi-
automatic methods is the current method of choice of most groups
for computing volume change, we have referenced only two papers
here [18,19].Note that thismethod yields only a single number, not
a spatial distribution that can be summarized by other singlemetrics,
such as themean; because none of the other parametric methods we
will discuss yields only a single number, the remainder of this row
has been grayed out.

Another method we described previously that directly measures
volume change is based on registration of the earlier inter-
val examination onto the later. Assuming that the information con-
tent of the imaging modality is sufficient to support accurate
registration, such methods provide a spatial distribution of local
scale changes over the volume of the reference tumor as represented
by the Jacobian matrix, that is, the determinant of the first partial
derivatives of local change in all cardinal directions. The resulting
scale distribution yields local measures of heterogeneous volume
changes if they exist. Again we cite only a few reference examples
using such methods [20,25,26].

B. Uptake: In PET, biologic chemists have had significant success
in tagging specific physiological metabolites with radiotracers.
Normalized standard uptake values (SUVs), calculated typically
as the ratio of measured radioactivity concentration to injected
Table 1. Shows Possible Ontological Relationships between Outcomes Analysis Methods (Leftmost Columns) and Parametric Models (Topmost Rows) Computed from Associated Modalities.

The numbers in the cells of this table correspond to bibliographic reference numbers cited herein which relate to the specified data and outcomes analyses pairings. By no means is this table offered as an
exhaustive review of published methods/data.
rCBF indicates relative cerebral blood flow.
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dose divided by patient body weight, are proposed for quanti-
fying tumor response to therapy [27]. In the accompanying
article as well as in a predecessor article [28], Kinahan et al. de-
scribe methods of PET quality control and measurement for
assuring that measured SUV changes are related to the tumor’s
physiological changes in response to therapy. The accompa-
nying article additionally describes useful test data contributed
to the RIDER data collection that help define tumor change
effect sizes that are required to identify a meaningful change.
Because SUV is a spatial distribution of values over the seg-
mented tumor, its measurement is typically reported as the
maximum and/or the mean and SD of the underlying one-
dimensional histogram of values within the delineated VOI.

C. Perfusion:
(a) Many perfusion models exist, but in dynamic contrast en-
hancement (DCE) MRI, a simple, often used model is the
two-compartment model: one compartment for the intravascular
input contrast concentration, and the other for the extravascular-
extracellular compartment. Common assumptions here are that
the current gadolinium-based contrast agents do not penetrate
cells and that the intravascular concentration of contrast only con-
tributes to contrast enhancement in the extravascular-extracellular
compartment by passive diffusion. The relationship between the
change in signal amplitude due to T1 relaxivity and contrast con-
centrationmust first be established to convert voxel amplitudes into
contrast concentrations. Then from Fick Law, the time rate of
change for contrast material in the extracellular tissue is driven
by the difference between the two concentrations, that is, the input
from intravascular plasma and the loss from the tissue surround-
ing the capillaries back into the plasma. For a two-compartment
model, this statement is typically written in equation form as

∂Ct

∂t
= KtransCp � kepCt

where C t(t) is the time-dependent extracellular tissue concentra-
tion, Cp(t) is the time-dependent plasma concentration, K trans

is the rate coefficient for contrast flow from the plasma into the
tissue, and kep is the rate coefficient in the opposite direction. Be-
cause these rates are due to passive diffusion mechanisms through
the capillary endothelial cells, that is, no active “pumps,” and vol-
ume normalization is applied, we can derive that kep = K trans/ve,
where ve is the fractional extracellular-extravascular volume and
vp is the fractional blood plasma volume; see Tofts et al. [29]. Com-
puting coefficients from differential equations is very sensitive to
noise so a more robust approach is to model the time integral
of the equation given above, which converts the solution to the
convolution of K transCp(t) with the kernel e�kept , that is, CtðtÞ =
Ktrans∫CpðτÞe�kepðt�τÞdτ, where noise is now attenuated owing to
the averaging of the integral. Computing the coefficients for this
simplified model is still fraught with some difficulties, for exam-
ple, picking a good model of the plasma input function to de-
termine the convolution kernel as well as attempting to avoid
numerical instabilities in the discrete implementation of the con-
volution. Here, additional noise reduction can be achieved using
the singular value decomposition in the discrete modeling of the
convolution integral and elimination of the smaller eigenvalues in
formulating the inverse [30].
(b) A simpler modeling approach is that the temporal integration
of the T2* relaxivity change in the first pass of an intravenous
bolus contrast injection at each voxel in brain yields the relative
cerebral blood volume (rCBV) change [31] under the assumption
that the blood-brain barrier is intact, or in cases of fenestration,
that appropriate deconvolution modeling is used [32,33]. The
relative mean transit time (rMTT) is obtained from the integral
of the time-weighted concentration normalized by rCBV, and
thus relative cerebral blood flow is defined by the ratio rCBV/
rMTT. Owing to the rapid time rate of change of blood flow,
dynamic susceptibility contrast MRI sampling is accomplished
using rapid acquisition sequences such as echo-planar imaging.
A detailed pictorial review accompanied by equations of these
concepts and others that follow is provided in Jackson [34].

Whereas MRI acquisition methods to obtain data in support of
computing perfusionmodels described in sections (a) and (b) above
were described, CT, PET, and SPECTare all capable of capturing
images sufficiently rapidly to derive meaningful coefficients for
modeling perfusion in section (a) as described by Tofts. But only
CT and MRI are readily capable of the increased acquisition rates
necessary to derive coefficients for the model in section (b) above.
Coefficients for models described in both sections (a) and (b) can
be computed on a voxel-by-voxel basis; thus, outcomes analyses
can be computed in a number of ways. A good review of methods
for perfusion (as well as diffusion) MRI is presented in Provenzale
et al. [35]. By far, most outcomes analyses for perfusion coefficient
models use summary statistics from VOIs to report a mean and
standard error of the VOI mean (SEM); necessarily limited refer-
ences to these approaches are included herein [36–41].

More to the point of this article’s emphasis, tumor change anal-
ysis in perfusion is often computed as the change in these summary
statistics with t-tests performed to assess whether the treatment ef-
fect measured was different than the null hypothesis. In the case
that there are multiple VOI pairs for an interval examination from
which change is assessed, or where each voxel pair in registered
interval data sets is treated as a separate “VOI,” the statistical test
must be corrected for false-positives arising from multiple com-
parisons. If the one-sided level of significance were picked at α =
0.05 and the null hypothesis were true, that is, there was no tumor
change, approximately 5 of 100 voxels would test as positive, that
is, falsely changed, simply because we applied the test 100 times
to the null Gaussian distribution. Good descriptions of possible
correction methods (Bonferonni, family-wise error rate, false dis-
covery rate, etc.) for multiple comparison tests are presented in
Wiens [42], Perneger [43], and Genovese et al. [44]. A correction
must be applied wherever multiple comparisons occur for the
stated P values to be meaningful, whether related to perfusion dif-
fusion or other metrics.

D. Diffusion:
In vivo assessment of organ system and tumor apparent diffusion
coefficient (ADC) measures is available using MR diffusion-
weighted imaging (DWI or DW-MRI). The formula for com-
puting ADC in the direction of the diffusion gradient is

ADC = ln Slð Þ � ln Shð Þ½ � = bh − blð Þ

where Sh and S l are the high and low signal amplitudes of
the isotropic DW images corresponding to the use of bh and
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bl, respectively, where the high and low bx values are a function
of the applied amplitude of the diffusion sensitizing gradient
pulses, as well as the temporal duration and temporal separation
of the pulses. Owing to the dipole nature of the coils used to ap-
ply the diffusion gradients, the results are anisotropic for all but the
case where bl = 0, which is isotropic because there is no diffusion
gradient applied. Many gradient directions can be acquired [45]
subject to scan time constraints to improve the resulting SNR. Sin-
gular value decomposition of the amplitude response of all these
components at each voxel yields the amplitude response for each of
three principal axes, that is, the eigenvalues (λ1, λ2, λ3). The sin-
gular value decomposition result is the complete summary of all
excitations at each voxel, but the fractional anisotropy (FA) is a
normalized scalar that is commonly used to characterize the vari-
ation in the eigenvalues for each voxel. FA is expressed as
FA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 λ1 � λð Þ2 + λ2 � λð Þ2 + λ3 � λð Þ2� �p

=M where M is the
vector magnitude, that is,M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 + λ22 + λ23

p
and λ is the mean

of the eigenvalues, that is, λ = (λ1 + λ2 + λ3) / 3. Note that FAvaries
between the limits of 0 and 1; 0 is obtained for the isotropic diffu-
sion case (as in a pure cyst where λ1 = λ2 = λ3 = λ), whereas FA = 1 is
obtained in the most anisotropic condition, that is, only one of the
three principal axis magnitudes is nonzero (approximated by a
straight segment of white matter tract in brain).

Alternative outcomes analyses. Instead of using manually drawn mul-
tiple VOIs as the only means to approximate following spatial changes
in the same tumor across interval examinations, registration of the in-
terval data sets can be implemented to reduce the increased variance
associated with manual misplacement of VOIs drawn on interval exam-
inations. More importantly depending on the accuracy of its implemen-
tation, registration is capable of supporting voxel-by-voxel change
analysis. After registration, a single VOI may be used on registered in-
terval examinations to limit voxel-by-voxel analysis to, or generate sum-
mary statistics from, registered differences considered important by the
investigator. Such registered differences may come from the same en-
hancing region as used to define a VOI on a registered T1-postGad
series that has been mapped, that is, warped to, the series (one or more)
of analytical interest. Summary statistics, typically mean and variance,
can be compiled
A. from the one-dimensional histograms of values from the VOI
registered onto the pretherapy and posttherapy examinations
and compared for statistically significant changes, or

B. from two one-dimensional histograms of values from the VOI
registered onto two pretherapy baseline examinations to sam-
ple baseline noise; see [46,47] in Table 1 as examples. The ex-
periment described in these references assesses the repeatability of
measurements across patients for which we expect no difference,
for example, between two baseline examinations acquired during
a short interval. Bland and Altman [48] first described an appro-
priate method of making this assessment in their study based on
plotting the difference between a pair of measurements on the
same subject versus the mean of the two measurements. The
95% confidence interval for these differences is the definition of
repeatability, that is, ±2σ or two times the SD of the differences,
that is, repeatability improves as the SD and thus variance decrease.
Importantly, the same study of Bland and Altman also describes in
a similar fashion how to measure and characterize agreement be-
tween two methods, an assessment often mistakenly attempted
through correlation or regression.

C. Further, the voxel-by-voxel analysis can consist of a two-dimensional,
co-occurrence plot of the registration-paired voxel values, or its
joint density histogram constructed by summing the number of
co-occurrences in bins. This is just the usual t-test with the ex-
ception that the distribution is now two-dimensional instead of
the usual one-dimensional distribution that we commonly use.
The somewhat hidden issue here is what are the DOF of the
estimate of the mean, that is, how many independent samples
contributed to its computation? Typically, in acquisition of func-
tional MRIs, the number of acquired data points (whose in-
dependence is also based on slice profiles) in k-space is zero
padded and interpolated up to some desired array display matrix
size several times larger than the actual data acquisition matrix.
These data acquisition parameters can be gleaned only by careful
reading of the data’s DICOM header; but even then, additional
vendor signal-processing specifics may remain hidden in vendor-
specific encoded DICOM header regions. Clearly, when the data
have been interpolated, either by theMR vendor or in the process
of registration, the DOFs of the estimate of the mean are only
indirectly related to the number of data samples. The multipliers
associated with vendors’ signal processing and user’s interpolation
associated with registration for voxel-by-voxel analysis must be
used to correct DOF [49].
Summary statistics for the voxel-by-voxel analysis may be ex-

pressed by one or more of the following metrics:

(a) displacement of the joint mean relative to the covariance of
the mean’s null distribution, which, for this case, is tested for
significance by the multivariate version of Student’s t-test also
known as Hotelling’s T test,
(b) Kullback-Leibler (KL)–directed “distance” [50] between the
treatment effect and null distributions (this metric is sensitive to
any differences between the two distributions), or
(c) percent change (%change) of tumor voxels that have a signifi-
cant change in perfusion above a threshold, for example, the two-
tailed 95th percentile determined from the null distribution.

In (b) above, the KL-directed distance metric is defined as the
log-weighted, average distance from distribution p1(a) to distri-
bution p2(a), that is,

∫p1 að Þln p1ðaÞ
p2ðaÞ

� 	
da:

Note that this definition is sensitive to small differences in the
two distributions wherever they occur but is weighted to be more
sensitive near the mode of p1(a). In clinical applications, p1(a)
could be that of the treatment effect and then p2(a) could be
the null distribution. Note that this measure is not intrinsically
symmetric, that is, the “distance” from p1(a) to p2(a) is typically
not the same as from p2(a) to p1(a) when we exchange 1’s and 2’s
in the definition but can be made symmetric by taking the aver-
age of both directed distances. The KL-directed distance metric
can obviously be applied to any number of variables, for example,
the univariate version as shown in the definition above assumes
the variable a is a scalar, but a could be a vector as well.

In (c) above, under the assumption that the VOI encom-
passes primarily the tumor, estimates of percent change are
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accomplished by applying a threshold to the treatment effect
distribution where the threshold’s parametric value is defined
by selecting a percentile on the null distribution, for example,
the 97.5th percentile to minimize false-positives. By measuring
the percentage of the treatment effect above that threshold and
subtracting the percentage expected for the null distribution, for
example, 2.5% for the 97.5th percentile suggested above, the
percent of voxels that have significantly changed in the tumor
can be reported and their spatially coherent loci in the tumor
demonstrated [51–54]. Further, given the current chaos in at-
tempted change analysis generated from perfusion data, there is
some hope from recent results [55] that suggest that the voxel-
by-voxel analysis may more accurately support detection of
change in heterogeneous tumors (such as glioblastoma multi-
forme) than simple, mean histogram VOI analysis applied in cur-
rent practice.
Recommendations

Coffee Break Examinations as Sources of Truth for Assessing
Relative Algorithm Performance in Measuring Early
Therapeutic Tumor Response
Defining truth in realistic, complex data sets is difficult except in

the case of multiple, short-interval examinations, that is, coffee beak
examinations. Previously, expert physician annotations have been the
accepted standard, but recent studies suggest that even among recog-
nized experts, the variance of annotations is significantly large such
that the expense for obtaining sufficient data to observe small stan-
dard error of the mean expert trends is prohibitive. Thus, sources of
truly known imaging “truth” in realistic, complex settings are invalu-
able. Despite the costs of scanning including increased radiation burden
for CT, PET, and SPECT, such known truth can be obtained from
multiple short-interval examinations on consented patients where the
known truth is that no macroscopic change in the tumor can have oc-
curred in the sufficiently short interval between scans. The use of inter-
val examinations having uncorrelated or even partially correlated noise
contributes to the knowledge of the covariance of the null hypothesis
distribution and thus allows probabilistic limits to be set on the chance
that the observed outcome represents real change versus noise.
Without such data, the only apparent other option for investigators

is to gather large population databases with low-noise outcome mea-
sures of truth such as length of disease-free survival or complete patho-
logic response. These databases typically need to be accumulated from
a minimum of 50 subjects so that part of the database may be used
for training the change detection algorithm and the remainder of the
database may be used for testing through application of the tuned
algorithm; bootstrapping may be used [56,57]. For univariate data,
the test typically consists of finding an optimal cut point using receiver
operating characteristic (ROC) analysis on the training data set com-
ponent of the database, which can then be applied to a separate test
set for unbiased assessment of performance [58,59]. Much larger data-
bases (e.g., 200 or more subjects) are typically required to achieve suf-
ficiently small confidence limits for the area under the curve (or Az) of
the ROC to see statistically significant changes between competing
algorithms. The number of subjects required is large because experi-
mental truth gathered outside carefully designed clinical trials is itself
noisy because clinical treatments across multiple subjects are typically
not uniform owing to differing surgical and other unplanned life-
saving interventions that can significantly alter individual patient out-
comes but obfuscate the effects of the initial therapy and associated
image-based change analysis used to define early therapeutic response.
For multivariate analyses, ROC techniques can be supplanted by use
of GLM regression.

The concluding assumption is that it is likely more cost-effective to
collect multisubject, multiple short-interval coffee break examinations
on which we can measure the variance for the null condition across
competing algorithms for detecting early change, than it is to essentially
perform a small (∼200 subjects) phase 2 study to obtain the necessary
database to test the algorithms for efficacy. The noise in these larger
studies may also be increased owing to a multitude of other clinical
and multi-institutional factors not rigorously controlled such as varia-
tion in scanners across institutions, slight variations in scanning proto-
cols, medications, and so on.

Experimental Design Evolution for Measurement of Tumor
Volume Change from Anatomic Imaging: Start with
Well-Controlled Experiments

In estimating variance and bias in the measurement of tumor volume
change around the operating point of no volume change observed with
coffee break data sets, the number of measured parameters is likely de-
pendent on a number of factors including tumor size, structural com-
plexity (e.g., inhomogeneity, shape, surroundings), the extent of change
(in terms of size and morphology), and possible changes in scanner
parameters between scans; that is, the problem space is of high dimen-
sionality with respect to lesion size and complexity and scanner settings.
Given realistic limitations on the number of available, finite input data
sets, it will be necessary to assess complexity and control the number of
variables to obtain statistically meaningful results. Investigators should
initially consider pilot experiments that focus on a small number of
selected points in this problem space (e.g., well-defined lesions of clini-
cally meaningful size and size change with well-defined margins and
very similar scanner parameters). Such experiments should provide
insight on how to conduct experiments to characterize error for real
lesions in the larger problem space.

In quantifying the accuracy of measuring true lesion change we will
also need to know bias at “operating points” other than the no-volume
change point described immediately above. As a first-order approxima-
tion, we can scan simple spherical phantoms of known volumes, and
by using different combinations of phantom tumors for “early” and
“late” interval pairs, we can evaluate multiple combinations of volume
and volume change operating points. Both low and high contrast-to-
noise acquisitions should be examined. Because the variance of the
random error component for these measurements should be relatively
small owing to the structural simplicity compared with the coffee break
examinations, the ability to see small bias should be relatively easier to
observe. Irregularly shaped tumor phantoms, for example, those with
spiculations and random orientations in the field of view could be used
to increase the complexity of the phantom measurement setting to
more closely approximate outcomes in real data sets.

Measurement of Tumor Change from Voxel-by-Voxel Analysis
May Be Necessary for Heterogeneous Tumors

All of the points discussed in the preceding paragraphs are valid for
this topic as well. Additionally for heterogeneous tumors, change analy-
sis based on one-dimensional histogram summary statistics accumu-
lated over the volume of interest of the tumor may be misleading.
Consider trying to measure response changes in a heterogeneous tumor
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where the changes over different regions of the tumor both increase
and decrease with respect to the parameter’s mean such as might be
observed where therapeutic intervention is successful in some com-
partments while tumor growth temporarily continues in other, more
isolated compartments. Under such conditions, changes in the sum-
mary statistic (mean or other moments such as variance, skew, and
kurtosis) would be attenuated, and the detection of such changes, if
present, would be less likely. Under these conditions, tracking of
changes in individual tumor compartments supported by voxel-by-voxel
change analysis has the possibility of demonstrating such confound-
ing effects.

Discussion
The initial focus of the search for algorithms that provide early image-
based markers of tumor change in response to therapy will likely use

A. the “coffee break” study paradigm, that is, multiple short-interval
baseline examinations, to find algorithms yielding minimal mea-
surement variance while observing data from the null change
condition, and

B. physical or simulated known phantom scans to demonstrate
adequate measurement accuracy, that is, small bias, for small
effect sizes.

In addition to discovering which algorithms are low-noise estima-
tors of tumor change and thus optimally suited to detect early change,
in practice

C. we must also control other sources of noise that have the poten-
tial to be much larger sources of variance. Such sources include
differences in image acquisition protocols, patient positioning,
and physiological condition, which can create differences in
the apparent response of the tumor not related to its biology/
physiology. Further,

D. systematic quality control programs appropriate for the image-based
biomarkers must be implemented to allow assessment of, and cor-
rections for, scanner variations over time and across upgrades.

The motivation for these issues and modality-specific issues are
discussed in more detail in the editorial and three companion articles
of this issue [60–63]; modality-independent issues are enumerated in
the Appendix.
Appendix: Modality-Independent Sources of Bias
and Variance

Introduction
There are many factors common to most medical imaging modalities

that affect our ability to measure tumor change with little bias or vari-
ance error. In this appendix, we enumerate some of those factors in
the context of measuring tumor volume change and discuss possible
methods of mitigation. We list them here as separate factors with the
understanding that there are likely significant interactions between dif-
ferent sources of random error, that is, their factors will have nonzero
covariance. Generalization of the principles discussed here to the mea-
surement of parameter changes other than volume is relatively straight-
forward. Modality-specific examples are presented in the companion
articles [61,62,63].
Sources of Bias and Variance

Patient-related.

(a) Motion: sources of voluntary and involuntary patient related
motion include respiration, cardiac pulsatility, peristalsis, pain, stiff-
ness, seizures, muscular twitching, prolonged discomfort, and so
on. Clearly, all motion during imaging contributes to the acquisition
of nonanatomic data sets such as those with extended or shortened
organs and tumors [64]. Whereas breath holding is often practiced,
breath holding at the same level of inspiration across interval scans is
less frequently imposed. Interval imaging at the same respiratory
phase is important because many abdominal organs move surpris-
ingly large distances driven by respiration, for example, the prostate
can move as much as 1 cm cranial-caudally [65]!
(b) Abnormalities: body habitus changes between examinations
can affect signal attenuation of all modalities. Competing, concom-
itant disease such as inflammation may mimic tumor progression,
whereas varied use of medications, for example, corticosteroids be-
tween interval examinations can change inflammation and result in
cellular swelling.
Image analysis–related. Each measurement method for quantifying
tumor volume change, whether based broadly on subtracted segmen-
tations or registration, will likely have its own characteristic variance
and bias. The following describes many of the variables that affect each
of the two different volume change estimation methods:

(a) for subtracted segmentations

(i) changing choices of manual, semiautomatic, or fully auto-
matic segmentation,
(ii) changing tuning parameters of semiautomatic or fully auto-
matic segmentation algorithms: for example, thresholding, re-
gion growing, level sets, and associated penalty functions, and
(iii) measurement software version changes

(b) for registration-based estimates, the DOFs for the geometry
model are limited by the mutual information content between the
two interval examinations where the mutual information varies lo-
cally and is affected by

(i) local SNR, and
(ii) tumor structural decorrelation over time, that is, different
tumor compartments arise or decay during temporally under-
sampled imaging intervals; shorter imaging intervals would ob-
serve these changes where longer intervals will miss the stages of
demise of older and creation of newer subcompartments.
Mitigation Efforts
Level of breath hold can be partially or fully achieved several ways

that vary from asking the patient to hold their breath, for example, at
full inspiration (this is an example of partial control), to measure-
ment of tidal phase through a flow meter, which actuates a valve
to enforce breath holding [66]. Other possibilities include cardiac
and respiratory gating of the image acquisition system or list mode
acquisition where provided by the vendor followed by gated reconstruc-
tion and registration of the differently gated cycles.
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The basic principle in change analysis is that whenever possible, keep
all potential sources of bias and variance unchanged between interval
examinations, that is, use the same segmentation method for both in-
terval examinations, and if the segmentation method is semiautomatic
or fully automatic, continue to use the same tuning parameters for both
examinations. Use the same scanner with the same technical protocol
and consistent patient factors (contrast dose, rate of delivery, flush, in-
jection site, breath hold, table position, etc.). The scanner should have a
rigorous quality assurance program in place to ensure consistent per-
formance, and technical protocols should be user-locked.
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