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ABSTRACT 

 

In order to facilitate the extraction of quantitative data from 

live cell image sets, automated image analysis methods are 

needed. This paper presents an overlap-based cell tracking 

algorithm that has the ability to track cells across a set of 

time-lapse images based on the amount of overlap between 

cellular regions in consecutive frames. It uses the overlap to 

identify mitotic cells as well. This cell tracker is designed to 

be highly flexible, requires little user parameterization, and 

has a fast execution time. We demonstrate the performance 

of this tracker on NIH-3T3 mouse fibroblast cell line. 

 

Index Terms— overlap-based cell tracking, time-lapse 

cell imaging, cell motility, live-cell imaging 

 

1 INTRODUCTION 

 

Automated microscopy has facilitated the large scale 

acquisition of live cell image data [1,3,4]. However, 

obtaining quantitative data related to single cell behavior 

requires image analysis methods that can accurately 

segment and track cells. 

Many popular cell tracking techniques are based on 

complex probabilistic models. In [1] Gaussian probability 

density functions are used to characterize the selected 

tracking criteria. In [6] cells are tracked by fitting their 

tracks to a persistent random walk model based on mean 

square displacement. An important class of tracking 

techniques consists of level set methods [5,8]. They produce 

fairly accurate tracking results but are difficult to implement 

and are computationally expensive. The majority of the 

available techniques have a large number of parameters to 

adjust for every track. Therefore new, flexible techniques 

that can produce accurate tracking with small set of 

adjustable parameters are needed. 

Tools for automated live cell microscopy have made it 

possible to routinely collect large sets of time-lapse images 

under a number of experimental conditions and record 

changes in the cellular response. Our experience shows that 

when acquiring time-lapse images at intervals ranging from 

5 to 15 min, the movement of cultured mammalian cells 

between two consecutive frames will be relatively small. 

This means that between consecutive frames a typical cell 

will occupy nearly the same position. In order to effectively 

analyze large volumes of data (>10,000 images) an 

automated process is needed requiring little manual 

intervention and a simple, meaningful set of parameters. 

The overlap-based cell tracking software developed at 

NIST was designed with this goal in mind. It tracks cells 

across a set of time-lapse images based on the amount of 

overlap between cellular regions in consecutive frames. It is 

designed to be highly flexible and suitable for use in a wide 

range of applications, requires little user interaction during 

the tracking process and has a fast execution time. The 

algorithm is likely to work effectively under conditions 

where the change in a cell’s location from one frame to the 

next is relatively small. The core tracking algorithm is 

shown in Figure 1. 

 

Figure 1- Core algorithm 

In this paper, a general formulation of the motion 

tracking problem will be given, followed by a description of 

the input data and of the tracking criteria employed. The 

detection of mitotic cells will be described and some 

applications of the tracking software will be presented to 

further illustrate its capabilities. We will conclude with a 

summary of our results. 

 

2 PROBLEM STATEMENT 

 

Cell tracking techniques are used to obtain motion and life 

cycle behavior information about cells by following the cells 

of interest through multiple time sequential images. The cell 

tracking problem can be defined as: given a cell A from a 

current (source) image, identify the corresponding cell B, if 

any, in the subsequent (target) image. If cell A is tracked to 

B, then the two cells are the same cell at successive 

moments in time. This process involves examining all 

possible combinatorial mappings of the cells in a source 

image to the cells in the target image and finding the 

optimal mapping. 

The input to the cell tracker is a series of segmented 

images derived from the raw microscopy data. In our case 

we used masks derived from phase contrast images of NIH-

3T3 fibroblast shown in Figure 2. Many segmentation 

techniques exist in the literature; some are general purpose 



and others are specific to a cell line and/or image acquisition 

parameters. The specifics of the segmentation algorithm 

used in this project will not be addressed here and in general 

the NIST tracking algorithm can be used with any 

segmentation algorithm. It is important to note, however, 

that the reliability of the tracking outcome is highly 

dependent on the accuracy of the segmentation. 

 

Figure 2- NIH-3T3 fibroblast phase contrast microscopy image 

In what follows  refers to the  segmented image or 

mask with , where  is the total number of 

images. The segmentation process sets the background 

pixels in the mask to zero and pixels in a cellular region to a 

positive integer representing the cell number (Figure 3). The 

cell numbers are assigned to each segmented region starting 

at 1 and continuing incrementally until all segmented 

regions have been labeled.  is used to identify cell number 

 from the  image, with .  represents 

the total number of cells that are present in the  image. 

 

Figure 3- Segmented image of Figure 2 

 

3 THE OVERLAP BASED TRACKING CONCEPT 

 

The cell tracker computes a cost for each possible cell-to-

cell mapping based on some simple tracking criteria. The 

cost value gives a measure of the probability that cell  

from image  should be tracked to cell  in the 

subsequent image. The cost function has been defined so 

that the higher the cost value, the lower the probability that 

two cells should be identified as the same cell across frames. 

Before describing the tracking criteria, consider two 

consecutive segmented phase-contrast images superimposed 

on top of each other as shown in Figure 4. Note that 

individual cells do not significantly change position between 

consecutive frames. This suggests that the number of 

common pixels (the overlap) between a pair of cells can be 

used as the principal measure of cost. If two cells share a 

large number of overlapping pixels, then they are most 

likely the same cell in different images. If more than two 

cells overlap, we employ additional criteria to further refine 

the cost. For this technique to work reliably, the images 

must be acquired at a sufficient rate to minimize cell 

movement between successive frames. If the interval 

between images is too long, the cells might migrate great 

distances and will exhibit little or no overlap. 

 

Figure 4- Two consecutive images superimposed  

The cost function is defined as a sum of individual 

metrics. A mathematical statement of the cost function is: 

 
where: is the weight of the overlap term,  is an overlap 

metric,  is the weight of the centroid offset term, is a 

centroid offset metric,  is the weight of the cell size term 

and  is a cell size metric 

The mathematical representation of the cost function 

carries desirable properties such as differentiability and the 

ease of including additional tracking criteria via new terms. 

The metrics are defined in a way that lower values indicate a 

higher probability that the source and target cells are the 

same cell. Each metric is normalized between 0 and 1. A 

value of zero denotes a perfect match between a pair of 

cells: all pixels overlap, the centroids are in the same 

location and cells have the same size. The weights provide 

flexibility and allow tailoring for different cell lines and 

image acquisition conditions. For example if the motion of 

cells between frames is low and cells overlap greatly 

between consecutive frames then  should be set to a high 

value. If the cell size changes little between two consecutive 

frames then a larger weight can be given for the size term. 

 

3.1 The overlap metric 

 

The overlap metric for a source/target pair is a measure of 

the number of pixels two cells have in common between two 

consecutive frames. It is computed using the formula: 



 

where: 

 = the size in pixels of the source cell 

 = the size in pixels of the target cell 

 = number of common pixels to the two cells  

 

3.2 The centroid metric 

 

The centroid metric is a measure of the Euclidean distance 

between the centroids of the source and target cells between 

two consecutive frames. Let the width and height (in pixels) 

of a frame be represented by the symbols  and  

and denote the centroid coordinates (in pixels) of cell  in 

frame  by the symbols . The centroid metric for a 

source/target pair is computed as: 

 

 

3.3 The size metric 

 

The size metric measures the relative difference between 

source and target cell size in two consecutive frames. It is 

computed as: 

 

 

3.4 The cost matrix 

 

For each pair of consecutive frames the cost function is 

computed for all possible mappings of source and target 

cells. The resulting costs form a cost matrix as shown 

below. The cost matrix is used to choose the optimal 

tracking solution for the corresponding pair of frames. 

 

 

4 MITOSIS 

A cell divides into two daughter cells by the process of 

mitosis. For adherent cells, the process typically lasts 

approximately 80min during which the cell rounds then 

undergoes mitosis and cytokinesis [2]. Figure 5 illustrates an 

example of a mother cell that goes into mitosis in the first 

frame and divides in two daughter cells in the next one. The 

two images superimposed (Figure 6) reveal that the mother 

cell has an overlap with both daughter cells. 

The overlap-based cell tracker uses this information to 

detect mitotic cells between two consecutive images. In 

general, when mitosis happens, one mother cell  from 

image , is tracked to the two daughter cells  and  

in image . The cell tracker detects mitosis as follows: 1) 

The cost matrix is minimized column-wise forming a one 

row tracking vector. The cell tracker uses this vector to 

capture mitotic cells by looking for pairs of target cells that 

are tracked to the same source cell. 2) The overlap of each 

daughter cell is compared against a user-defined mitosis 

threshold. The cell tracker will record the mitosis event only 

if both overlaps meet the threshold. 3) The cell roundness of 

all potential mother cells is checked before mitosis. If a 

mother cell does not meet a user-defined roundness 

threshold, the cell tracker ignores the division. 

  

Figure 5- Example of a mitotic cell in two consecutive frames 

 

Figure 6- Superimposing image 1 (red) and image 2 (blue) 

 

5 TRACKING SOLUTION AND OUTPUTS 

 

After dealing with mitosis, the cell tracker will assign a 

track, when possible, between the remaining source cells 

and the remaining target cells. Tracks are assigned so that a 

source cell A can share a track with only one target cell B 

and vice versa. The unassigned source cells are considered 

dead (i.e., cells leaving the frame or mitotic mother cells) 

and the unassigned target cells are considered newborn cells 

(i.e., cells entering the frame from the borders or cells 

originating from mitosis). In order to achieve such a 

solution, the Hungarian algorithm [7] is applied on the cost 

matrix. By using this algorithm we are able to find an 

optimal solution that minimizes the sum of the above-

defined tracking costs for the remaining cells after dealing 

with mitosis cases. 

Once the individual cell mappings between consecutive 

frames have been computed, the frame-to-frame mappings 

are combined to produce a complete life cycle track of all 

the cells in the set of images. The sequential cell numbers 



that were assigned by the segmentation process for each 

frame are replaced by unique track numbers that identify the 

movement of each cell over time across the entire set of 

images. Therefore a unique track number  will be 

associated to each uniquely identified cell,  

where T represents the total number of unique cells found in 

the image set. The pixels in the images are relabeled to 

reflect the new track numbers such that when a given cell is 

assigned with a tracking number, the pixels from all images 

that belong to this cell will all have the same value. This is 

formally stated as follows. 

 

 

 

 

Figure 7 shows the tracking results for two consecutive 

frames based on the following weight combination found by 

trial and error to be:  The 

cells have been renumbered according to their global unique 

numbering. 

 

 

 

Figure 7- Tracking cells across frames 149-150 

Figure 8 shows one output of the cell tracker, the cell 

lineage. Every line represents the life of a cell. The length of 

a cell line is proportional to the length of its lifetime (15 min 

interval between consecutive frames). The cell lineage 

supports statistical analysis of the cells e.g. the number of 

descendant generations of a cell, the length of the cell cycle. 

Figure 8 also shows the centroid trajectories in 3D. This 

helps determine the cell motility. 

The average computation time for tracking 500 cells in 

a phase contrast NIH-3T3 set of 252 images (520x696 

pixels) of a MATLAB implementation on a single core 

Pentium 3.4 GHz 3 GB RAM is 47 s. This translates to an 

average speed of 5.36 frames/s. For more details about the 

cell tracker and its performance, consult the following URL: 

http://www.nist.gov/itl/idus/compbio. 

 

Figure 8- Cell lineage and 3D centroid trajectories 

 

6 CONCLUSION 

 

A highly flexible overlap-based cell tracking algorithm that 

requires little user parameterization and has a fast execution 

time was introduced. This cell tracker has the ability to track 

cells across a set of time-lapse images acquired at 

sufficiently high rates such that there is significant overlap 

between cellular regions in consecutive frames. This cell 

tracker is not dependent on any particular segmentation 

technique used to obtain the input data. 

The overlap-based cell tracker’s performance has been 

evaluated on a large set of NIH-3T3 fibroblast phase 

contrast microscopy images. Although the cell tracker has 

exceeded all our expectations, in the future we will formally 

compare manually segmented and tracked cells with those 

from the cell tracker as a validation of the underlying 

algorithm. 
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