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s high-frequency equipment becomes more sensitive, and as demands

: on measurement accuracy increase, it is no longer safe to assume that
hf << kT (h is Plank’s constant, f the frequency, k Boltzmann’s con-
stant, and T the temperature). This inequality underlies the famil-
iar Rayleigh-Jeans noise equation, P = kTB, which is the basis
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for virtually all noise measurements in electronics, so
it is appropriate to reexamine some of the fundamen-
tals of thermal noise and noise measurements, in-
cluding the basic conventions and definitions, and
even the definition of noise temperature itself.
Even such a seemingly innocuous quantity as
T, the reference temperature that occurs in
the definitions of noise figure and excess
noise ratio (ENR), is subject to change.
There are potentially significant dif-
ferences between common, old pro-
cedures, many written into IEEE
or other standards, and newer
procedures and conventions
being adopted by increasing
numbers of engineers and
scientists. Practices may
also vary by frequency
* range—for example,
between the micro-
wave and the opti-
cal. An understand-
ing of thermal noise
in the microwave,
millimeter-wave,
and submillime-
ter-wave bands
allows the engi-
neer to choose a
consistent set of
definitions and
procedures.
A judiciously
chosen set of defini-
tions can give results
not much different from
those obtained with the
older standard procedures,
while a less judicious choice
of definitions can lead to sub-
stantially different results. A good
example is the noise temperature of
an amplifier or receiver obtained by the standard
Y-factor method. Dgpending on whether one uses
the Rayleigh-Jeans or the Planck form for the noise
temperature, and whether or not one accounts for
the effect of vacuum (zero-point) fluctuations (see
“Thermal Noise at Absolute Zero”), one can get sig-
nificantly different results. There are differences
of opinion (even between the present authors) over
just how to include the vacuum fluctuations, but
as long as a given scheme is used consistently, the
results are the same. There is, however, a danger of
incorrect results if a given scheme is not used con-
sistently throughout a measurement or analysis.
In one sense, our discussion presumes that 1f/kT is
not small enough to ignore in a particular application.
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However, even if it is negligible, the fact that essentially
all computations are now done by machine means that
there is little reason not to use the correct, exact expres-
sions just to be safe, in case one wanders into a regime
where it matters.

Noise Temperature as a

Measure of Noise Power

It is appropriate to start this discussion by clarifying
what we mean by noise termperature, since this term
will be used throughout this article. The key to the
concept of noise temperature is the Rayleigh-Jeans
approximation to the available noise power spectral
density of a resistor

PR = KT, (1)

where k is Boltzmann’s constant (1.38065 X 1072 J/K)
and T is the absolute physical temperature of the resis-
tor. The Rayleigh-Jeans law is useful in the range of
temperatures and frequencies for which kf is sub-
stantially less than kT, hbeing Planck’s constant
(6.626068 X 10™*m?-kg/s).

The widespread use of the Rayleigh-Jeans appro-
ximation, with its simple association of a tem-
perature with a given noise power density, led to
the concept of noise temperature, even for active
devices or systems such as receivers whose noise
powers are not simply related to their physical tem-
peratures. There are basically two different ways
to define noise temperature, which can be called
the physical-temperature definition and the power
definition. In the physical-temperature definition,
the noise temperature is equal to the physical tem-
perature of a resistor whose thermal noise would
result in the given speciral density of (available)
noise power. With such a definition, the noise tem-
perature of a passive device is equal to its physi-
cal temperature. In the power definition, the noise
temperature is defined as the given spectral density
of (available) noise power divided by Boltzmann’s
constant. This latter definition is now the most
commonly used (except in the microwave remote-
sensing community), and it is the one we use in this
article. Thus, by definition, the noise temperature
is given by

P’l
T, = ? 4 (2)

where the subscript n indicates the noise tempera-
ture or spectral density of available noise power.
(It is interesting to note that the 1996 IEEE Stan-
dard Dictionary of Electrical and Electronic Terms [1]
(the most recent edition) defines noise temperature
both ways, as if they were equivalent.) In practice,
the power definition of (2) is much more convenient
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An understanding of thermal noise in
the microwave, millimeter-wave, and
submillimeter-wave bands allows the
engineer to choose a consistent set of
definitions and procedures.
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when dealing with amplifiers, although with this
definition, the noise temperature of a passive de-
vice such as a resistor is not exactly equal to its
physical temperature.

Available Noise Power from a Resistor

The Rayleigh-Jeans expression for the spectral density
of the available noise power from a resistor at physical
temperature T is given by (1). The Planck equation for
this quantity is

hf

KT

Kf ’
exp<kT> 1
This is widely considered to be the correct expression,
to which the Rayleigh-Jeans form is an approximation
valid for small values of if/kT. Equations (2) and (3)
are equivalent to the well known Nyquist equations
[2] for the noise voltage of a resistor at temperature T.
However, there is a further complication. In very-low-
noise systems or at very high frequency, the zero-point
vacuum fluctuations contribute significantly to the

overall noise of an amplifier or mixer. This vacuum
fluctuation term is given by

PPlanck =kT (3)

Although it is generally recognized that one must
account for the vacuum fluctuation term, there is no
general agreement on how this should be done. One
way is to include it in the resistor noise power [3] so
that the power available from a resistor takes the form

hf

kT h
PC—W — PPlanck + pvac = [T —kT___ + ;f (5)

hf 2
eXP(kT) 1

This is referred to as the Callen-Welton form [4].
Another method of dealing with P**is to treat it as a
separate input to an amplifier or other device [5]. As
shown in the following, the two methods yield the
same results in amplifier (or mixer) measurements.

By applying (2) to the three expressions for the
available noise power from a resistor at temperature

T, we get the corresponding expressions for the noise
temperature of a resistor.

T/ =T, 6)
i
Planck = T 7;1; , @)
exp<ﬁ> -1
and
hf
re-wap| — v ®

7 %
exp E -1 ,

Figure 1 shows the noise temperature of a resistor at

puac — h_f @ 100 GHz and 1 THz according to (6)—(8), as a function
2 of its physical temperature. The corresponding noise
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Figure 1. Noise temperature T, (left axis) and noise power spectral density (right axis) versus physical temperature for a
resistor, according to the Rayleigh-Jeans, Planck, and Callen-Welton equations, (a) at 100 GHz and (b) at 1 THz. (These
graphs can be scaled for other frequencies simply by scaling their axes by the ratio of frequencies.)
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Thermal Noise at Absolute Zero~The Vacuum Fluctuations

The classical vacuum is as
boring as possible; there's just
nothing there. The quantum
mechanical vacuum is far more

Minimum Noise Amplifier

,\or Mixer

Pou = hfGB

interesting; the vacuum is a
bubbling cauldron of virtual
particle-antiparticle pairs,
appearing and disappearing.
In its ground state, or lowest
energy state, even a simple
harmonic oscillator has a
nonzero energy, the zero-
point energy. Heuristically, the
uncertainty principle allows a
virtual pair to violate energy
conservation very briefly under
the condition AEAt = h/(2w).
While it is impossible to ex-
tract any energy from these
fluctuations (it is the lowest
possible energy state), the vacuum fluctuations can
affect a system connected to an external energy
source, such as an amplifier. In that case, the vacuum
fluctuations at the input are a source of noise
that gets amplified and appears at the output. At -
microwave frequencies, the effect is small, though not
always negligible. In optical amplifiers, the vacuum
fluctuations can be the dominant source of noise.
The lowest possible equivalent input noise of
an amplifier is (1—1/G)hf/2 W/Hz. With a resistive
load connected to the input of the amplifier, the
input noise contribution of the vacuum or zero-
point fluctuations is hf/2 W/Hz. If the source were
at absolute zero temperature, and the amplifier
had the lowest possible equivalent input noise,

power spectral densities are shown on the right axes.
There are distinct regions above and below physi-
cal temperature hf/2k. At temperatures substantially
above hf/2k, the Rayleigh-Jeans curve converges on
the Callen-Welton curve, while at temperatures sub-
stantially below hf/2k, both Planck and Callen-Wel-
ton curves become independent of temperature. At
all physical temperatures, the Callen-Welton curve
is above the Planck curve by exactly Af/2k (or hf/2 on
the power spectral density scale). Note that, contrary
to the widely held belief, the Rayleigh-Jeans curve
does not approach the Planck curve at high temper-
ature, but is always above it by almost if/2k on the
noise temperature scale. In the normally encountered
range of frequency and temperature, 1if/kT << 1 and
the Rayleigh-Jeans value of the noise temperature is
close to the Callen-Welton value and can be used with
little error. This is apparent in Figure 2, which shows
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Figure S1. Minimum possible noise of (a) a high-gain amplifier and (b) a
direct detector, with input terminations at absolute zero temperature.
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the total output noise power would then be
(G—"1)hf/2+Ghf/2=hf(G-1/2) as required by the
Heisenberg uncertainty principle. In the case ofa . |
high gain amplifier, the output noise power would be
hfG W/Hz, as shown in Figure S1(a).

The vacuum fluctuation noise is not detected bya .
direct detector (e.g., a detector diode, as in a power- - |

. meter). It is not possible to collect net power from

the vacuum fluctuations, which would violate the :
conservation of energy. This is indicated in Figure S1(b).~ .

References :
[51] Vacuum Energy. (2010). Wikipedia [Online]. Available: http:// -

Figure 2. Difference between the noise temperature and
the physical temperature, for physical temperatures 4 K,
77 K, and 300 K—Callen-Welton (red curves), and Planck
(green curves).
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There are basically two different ways
to define noise temperature—the
physical-temperature definition and
the power definition.

44

the difference between physical temperature and the
Callen-Welton and Planck noise temperatures as func-
tions of frequency for physical temperatures 4 K, 77 K,
and 300 K.

The Zero-Point Noise Term
and the Minimum Noise of an Amplifier
Before moving on, it is interesting to consider the
nature of the zero-point vacuum fluctuations. As
indicated in “Thermal Noise at Absolute Zero,”
the vacuum fluctuations are sensed by an ampli-
fier connected to an input resistor and contribute to
the output noise of the amplifier. However, a direct
detector (e.g., square-law or photon counter) will not
respond to the vacuum fluctuations. This may seem
to cast doubt on the physical reality of the vacuum
fluctuations, but their tangible nature is clear from
the radiation pressure they exert on conductors—the
Casimir force—which was measured directly in a
very elegant experiment by Lamoreaux in 1997 [6].
Essentially, when two conductors are brought close
together, the small spacing reduces the number of
electromagnetic modes in the space between them.
Vacuum fluctuations associated with each mode
exert a small radiation pressure on each conductor,
s0 as the number of modes between the conductors is
reduced there is less radiation pressure and a result-
ing net attractive force which can be measured with a
mechanical balance.

It is generally understood that the Rayleigh-Jeans

equation is a convenient approximation applicable over

the large range of frequencies and physical tempera-
tures familiar to most RF and microwave engineers.
There is also agreement that the Planck-plus-vacuum
or Callen-Welton form is correct for the input noise to
an amplifier with a passive termination at its input.
To shed more light on the role of the vacuum term,
it is informative to consider the fundamental physi-
cal limit on the equivalent input noise of an amplifier.
It is well established [7], [8] that the minimum pos-
sible equivalent input noise power spectral density
of an amplifier is (1 — 1/G)kf/2. This is a result of the
Heisenberg uncertainty principle, which also requires
that the minimum possible noise at the output of an
amplifier with high gain, connected to a source at
absolute zero temperature, is if W/Hz referred to the
input [8], [9]. This implies an additional input contri-
bution of if/2 from the source, which is provided by
the vacuum term.
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Opinions differ on how to treat this zero-point
vacuum contribution. One possibility (Scheme 1) is
to say that the vacuum fluctuations are necessar-
ily present at the terminals of a resistor, and there-
fore they should be included in the resistor’s noise
temperature [3], leading to the Callen-Welton form
for the resistor noise temperature (8). Another pos-
sibility (Scheme 2) is to say that, since the vacuum
fluctuations are present everywhere, including at
the terminals of a resistor, but their noise power is
detectable only through interaction with an active
device, it is more appropriate to include them with
the active device rather than with the resistor. In this
scheme they are treated as additional input noise
to the amplifier [5] (or other active device), and the
resistor’s noise temperature is given by the Planck
form (7). In either case, a vacuum contribution of
hf/2, referred to the input, is present at the ampli-
fier's output. Of course, it is also possible to ignore
the vacuum contribution entirely and use only the
Planck form. Although this is not strictly correct
at the input of an amplifier, it can be an acceptable
approximation at low frequencies. We shall see the
magnitude of the effect in the following.

Noise-Temperature Standards and
Measurement of One-Port Noise Sources

The primary noise-temperature standards used at
National Measurement Institutes (NMIs) are pas-
sive loads held at a constant, known temperature.
The noise temperature of the standard is calculated
from the Planck form, with corrections for losses
between the reference plane and the plane at which
the physical temperature is known. The common
practice at NMIs is to define the noise tempera-
ture by the power definition of (2) and to use the
Planck equation (7) for the noise temperature of a
passive device at physical temperature T. The vac-
uum term is not included in the noise temperature
of a noise source. Therefore, if one wishes to include
the vacuum fluctuations with the noise source (as
in Scheme 1), hf/2k must be added to the calibrated
noise temperature. Since if/2k = 0.24 Kat 10 GHz,
this is usually considerably less than the uncer-
tainty in the noise temperature of a one-port noise
source at typical calibration frequencies (50 GHz
and below).

Beyond the question of whether the calibrated
noise temperature includes the vacuum-fluctuation
term, there is the issue of whether the neglect of
the vacuum fluctuations compromises the accuracy
of the calibration process. We have not examined
in detail the procedures at all NMIs performing
noise-temperature calibrations, but general con-
siderations indicate that the ing¢lusion of vacuum
fluctuations has no effect (beyond the addition of
hf/2k to the calibrated noise temperature, if one
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so chooses). Basically, by using a radiometer, the
calibration process removes their effect. As a spe-
cific example, consider a total-power radiometer
with an isolator at its input, as described in [10].
The calibration procedure requires the radiometer
output power P to be measured with the load under
test (P =P,), a noise standard (P =P;), and a sec-
ond standard at ambient temperature (P = P,). This
gives two Y-factors: Y, = P, /P, and Yg = Ps/P,, from
which the noise temperature T, of the load under
test is deduced as

T,=T,+ (Y" — 1>(TS —1), ©)

Ys -1

where we have ignored inessential complications
due to mismatch and differing measurement paths.
The derivation of (9) neglects the vacuum fluctua-
tions, but it is straightforward to introduce them,
either by revisiting the derivation or by simply let-
ting T— T + hf/2k, as in Scheme 1. If we add the
vacuum-fluctuation term hf/2k to each noise tem-
perature on the right hand side of (9), the result is
simply to add hf/2k to T,, as discussed in the first
paragraph of this section. Thus, the radiometer
equation gives the correct value for the noise tem-
perature in Scheme 2, and it can be converted to the
value in Scheme 1 simply by adding hf/2k.

Simple Y-Factor Method of Measuring Noise Temperature

In the commonly used
Y-factor method for

. determining the noise >

Measurement of Amplifier

and Receiver Noise Temperature

We shall follow the approach used in [3] to compare
amplifier noise-temperature measurements made
assuming the Rayleigh-Jeans, Planck, and Callen-
Welton noise temperature formulas. The noise
temperature of an amplifier or (coherent) receiver
is usually measured using the Y-factor method, in
which hot and cold noise sources with known noise
temperatures are connected to the input of the
receiver and the ratio Y = Py /P.qq Of the receiver
output powers is measured—see “Simple Y-Factor
Method of Measuring Noise Temperature.” From
the Y-factor, the intrinsic noise of the receiver can be
deduced and expressed as an equivalent input noise
power density, an equivalent input noise tempera-
ture, or a noise figure. Using the power definition of
noise temperature (2), the noise power spectral den-
sity of the standard sources are kT and kTcqq- Let
the unknown equivalent input noise temperature of
the device under test be T, corresponding to power
spectral density kT,. Then

_ Te + Thot
—

= - 10
Te + Tcold ( )

from which

D'evice UnderTést

,\ R Pro= KGB(Ta + Thot)

temperature of an amplifier
or receiver, the output noise
power is measured with hot
and cold loads connected

to the input of the device
under test. The ratio of these
powers is the Y-factor

HotLoad, >

Noise Temperature Ty

Gain=G Noise Temp =T,
Measurement Bandwidth = B

(@)

Device Under Test ]
Pootg= kGB(T4 + Tcoia)

<
Ve Prot _ Tat That Cold Load, >
T Py Tat Teod Noise Temperature Tgog

From the measured Y-factor
the desired noise temperature
is obtained as

_ Thot = YTcold
AT y—1
Note that this requires noise temperature to be a
measure of noise power spectral density as opposed
to a physical temperature, a subtle but sometimes
significant distinction discussed in the article.
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Figure S2. Device under test with (a) a hot load and (b) a cold load at its input.
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In the normally encountered range of
frequency and temperature, hf/kT<1
and the Rayleigh-Jeans value of the
amplifier noise temperature is very
close to the Callen-Welton value.
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Thot = Y7ol

Te=—vy—71 (11)
Suppose, initially, that the noise temperatures of the
hot and cold noise sources were obtained from their
physical temperatures using the Planck formula
(7), as would be the case for noise sources calibrated at
a standards laboratory, and that vacuum fluctuations
were not included in the input power or noise temper-

ature. For this case (11) can be written

Planck — Tﬂ’atmk — YT{‘I’?‘;‘Ck .
17 = (12)

If we now use the Callen-Welton noise tempera-
tures (8) for the hot and cold noise sources, (11) can
be written

Thot YTcold R

e = Y-1

(13)

Since the Callen-Welton noise temperature differs from
the Planck noise temperature by exactly hf/2k, we can
substitute in (13):

hf
Thot = }I:g‘tan + - 2%k
and
i
TG = TR +
which gives
peon TR YTHE
¢ Y-1 2k
or
.
C-W — 7Planck _
T =T, % (15)

That is, the noise temperature of a receiver, measured
by the Y-factor method, is lower by exactly if/2k when
the noise temperatures of the hot and cold noise stan-
dards are obtained from their physical temperatures
using the Callen-Welton equation (8) than when the
Planck equation (7) alone is used. This is as expected
from a consideration of the zero-point vacuum fluctua-
tion noise hf/2k—when the Planck formula is used for
the hot and cold load noise temperatures, the vacuum
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term is not included as part of the input source and
must therefore be considered as part of T, the noise
temperature of the device under test. On the other
hand, when the Callen-Welton formula is used, the
vacuum term is included as part of the hot and cold
load noise and does not appear in T,.

If the noise temperatures of the hot and cold loads
are assumed equal to their physical temperatures (the
Rayleigh-Jeans approximation) as is common prac-
tice, the receiver noise temperature deduced from the
Y-factor measurement falls between the Planck and
Callen-Welton values. In the normally encountered
range of frequency and temperature hf/kT << 1 and
the Rayleigh-Jeans value of the amplifier noise temper-
ature is very close to the Callen-Welton value; this is as
expected from Figure 2.

In a lighter vein, those interested in noisemanship
will prefer to standardize on the Callen-Welton conven-
tion and include the zero-point vacuum noise as part
of the noise of the source, as this will always result in
lower receiver noise temperatures. For those bound to
the Planck convention by a standards laboratory affili-
ation, it is always possible to lower the quoted noise
temperature of an amplifier or receiver by regarding
the vacuum term as an additional input to the device
under test and subtracting it from the measured noise
temperature; but then they must remember to add it
back in any noise analysis.

It is straightforward to extend the preceding dis-
cussion to the noise parameters that characterize the
dependence of the noise temperature of an amplifier
or receiver on the impedance or reflection coefficient of
the load connected to the input. If the vacuum fluctua-
tions are included in the noise input to the amplifier,
either through Scheme 1 or 2, then the measured value
of Tin Will be smaller by hf/2k than the value obtained
if the vacuum fluctuations are not taken into account.

Noise in Mixers
It is not widely realized that an ideal double-sideband
(DSB) mixer need contribute no noise to a receiver. This
is true of mixers with ideal (e.g., exponential) diodes
and superconducting (SIS) tunnel junctions, and is pre-
dicted by quantum mixer theory [11], [12]. Although
shot noise is generated by current flowing in the mixer
diode, modulation of this noise by the local oscillator
waveform causes the upper and lower sideband com-
ponents of the shot noise to be correlated with the IF
component—see “Noise in Mixers.” When converted
by the mixer to the intermediate frequency, the corre-
lated components can cancel one another, resulting in
zero output noise from the ideal mixer with optimum
embedding impedances. The mechanism of this noise
cancellation is explained in more detail in [13]. The fol-
lowing discussion is based on that in [14].

From a quantum mechanical point of view, a mixer
is considered a linear amplifier but one that may
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Noise in Mixers

It may seem counterintuitive that a diode, operating
in a mixer with a substantial dc current, could
contribute no noise to a system. But for the ideal
case—a diode without series resistance in a mixer
circuit with appropriate embedding impedances—this
is true. It is a result of noise cancellation at the
intermediate frequency (IF) f, caused by the action of
the local oscillator (LO) waveform on the shot noise
generated at all sideband frequencies |fo % nfig| in
the pumped diode.

To understand shot noise in a mixer, it is helpful to
consider two steps: first, the generation of pulses of
shat noise in a diode driven by a local oscillator; and
second, the conversion of the frequency components
of that shot noise, at all sideband frequencies, to the IF.

Figure S3(a) shows the noise equivalent circuit
of a diode. The current i in the diode produces shot
noise according to the usual shot noise formula:
< /f > = 281'01Af.

Figure S3(b) represents the shot noise current
is(®) in the diode with a steady dc bias current ig. In
the frequency domain, the noise can be represented
as a multitude of pseudo-sinusoidal frequency
components, /s(f), each with its own amplitude and
phase. The amplitudes have a Gaussian distribution
and the phases are random. A typical component, at
frequency 7, is marked in red.

When the diode is periodically pumped at
frequency f,q by the local oscillator, the shot-noise
current is indistinguishable (in the time domain) from
the noise current in a dc-biased diode multiplied by
a periodic modulating function to produce the pulses
of shot noise shown on the left in Figure S3(c). This
multiplication in the time domain corresponds to a
convolution in the frequency domain; each of the
frequency components of the noise of the dc-biased
(unpumped) diode is convolved with the spectrum
of the periodic modulating function. The frequency
component at f, in Figure S3(b) thereby produces
components at all the sideband frequencies |fo *
nf,o|, which are correlated with one another and with
the original component at f,. This is depicted on the
right in Figure S3(0).

have multiple inputs (e.g, at fio * fir, 2fio * fir, ---)s
and is subject to the same minimum noise limit as
an amplifier with a single input [7]-[9]. To satisfy the
uncertainty principle, the minimum possible output
noise power spectral density of the complete system
(which includes the source resistors at absolute zero
temperature), referred to one input, is if W/Hz. To
" understand where this noise originates, it is helpful
to consider first a single-sideband (SSB) receiver con-
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Figure S3. (q) The noise equivalent circuit of an ideal
diode. (b) The shot noise current is(t) in the diode

with a steady dc bias current iy In the frequency

domain, this noise can be represented as a multitude
of pseudo-sinusoidal frequency components, Is(f). |
(¢) The current in the diode is modulated by the local ‘
oscillator, producing correlated components at the
sideband frequencies.

So far we have considered only the properties of :
the shot noise produced by the action of the local !
oscillator. When the correlated frequency components
of the pulsed shot noise are converted by the mixer ‘
to the IF, they can either increase the overall IF o
noise or decrease it, depending on their amplitudes
and phases. If the embedding impedances at the
sideband frequencies have appropriate values, the
resulting IF shot noise can approach zero.

For Further Reading on Noise Characterization
[S6] W. R, Bennett, Electrical Noise. New York, NY: McGraw-Hill, 1960.
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sisting of a simple DSB mixer with a resistive image
termination as shown in Figure 3. Half a photon,
hf/2k, of vacuum (zero-point) noise is present at the
upper and lower sideband inputs of the DSB mixer,
corresponding to one photon, if/k, when referred to
the input of the SSB receiver. If the Callen-Welton for-
mula is used to evaluate the noise of the resistors, the
vacuum noise is included as part of the noise of the
resistor. If the Planck law is used, one must remember
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Because the thermal noise in different  to add the hf/2 W/Hz or hf/2k K vacuum contribu-

resistors is not correlated, noise

tion from each resistor. The minimum noise of the
SSB receiver itself (excluding the contribution asso-

POWEI’S a“d l'IOiSG temPeratures are ciated with the source) is therefore just hf/2 W/Hz,

additive in the way familiar to those Or Tin = Hf/2k K.
accustomed to using the Rayleigh-

An interesting situation arises when the image
termination in Figure 3 is replaced by a short circuit

Jeans law. (or any reactive termination) as shown in Figure 4.
Then there is no resistance in the image circuit to

i R-= RS%\/\B» hfi2k | Image :
; Mixer IF.—D—L—" |
‘ i Toul.min = G-hilk

Signal

Source Hsg - hfi2k

Tamin = hi2k

1
Teys,min = G Toutmin = Ak

Figure 3. Minimum noise single-sideband receiver consisting of a double-sideband mixer
with a resistive image termination. All resistors are at 0 K. The vacuum (zero-point)
noise associated with the source resistance R contributes half a photon of noise, and

half a photon comes from the image termination R, With equal signal and image gains,
the minimum equivalent input noise of the single-sideband receiver is half a photon:

Tomin = Bf/2K.

S/C Image :

leuessaccamnunaanna . Mixer IF —{>—v———~
7-oul,min = G-hflk

Source F?S% = hfl2k Signal

! Tamin = hfi2k
Gains: Gg= G

i 1
i Tsysmin =3 Toutmin = hilk

Figure 4. Minimum noise single-sideband receiver consisting of a double-sideband mixer
with a short-circuit image termination. The source resistor is at 0 K. The zero-point noise
associated with the source resistance Rs contributes half a photon of noise, and half a
photon comes from the shot noise of the mixer. The minimum equivalent input noise of the
receiver is half a photon: Ty, = hf/2k.
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provide the half photon of
vacuum noise. In this case,
the reactive image termina-
tion affects the conversion
of shot noise from the image
frequency to IE, and there
can no longer be complete
cancellation of the shot noise
down-converted from the
signal and image frequencies.
Remarkably, nature arranges
that shot noise now accounts
for the necessary half photon
of noise referred to the input
of the receiver, a result pre-
dicted by Tucker’s quantum
mixer theory [11], [12].

A DSB receiver is often
used for broadband con-
tinuum measurements in
which both upper and lower
sideband input signals’ con-
tribute to the IF output. If
the sideband gains are equal,
this DSB mode of operation
has the effect of doubling the
receiver’s apparent radio-
metric gain and reducing its
equivalent input noise by a
factor of two relative to a SSB
measurement. An ideal DSB
receiver is shown in Figure 5.
It is apparent that the source
provides a half photon of zero
point noise in each sideband,
so the mixer need contribute
no noise to satisfy Heisen-
berg: the minimum possible
noise temperature of the DSB
mixer is zero.

Thermal Noise

in Networks and
Attenuators

The complex form of the Planck
and Callen-Welton equations
(3), (5) might be thought to
complicate calculation of the
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" familiar Rayleigh-Jeans law is

noise properties of cascaded
lossy networks and transmis-
sion lines. In fact, this is not
the case. Because the thermal
noise in different resistors is
not correlated, noise powers

and noise temperatures are
additive in the way familiar to

Source Rs% —~ hii2k

those accustomed to using the
Rayleigh-Jeans law (1). In cal-

USB

culating the noise at various
stages through a network it is

Source Hs% ~—~ hiff2k

LSB

simply required that the noise
temperatures of the elements
be used and not their physical
temperatures. The calculations

DSB
TR min = 0

DSB 1
sys,min = E_C'.;Tout,mln

Gains: Gygg = Gigg =G

Mixer |IF —|>—‘7-—o
E Toutmin = G-hilk

= Hfi2K boeno... DSB Tt !

then proceed just as when the

used. Note that this is a con-

Figure 5. A double-sideband receiver with eq;al upper sidel;clllnd ( LISB)and lower
sideband (LSB) gains. The source at the USB and LSB inputs is physically the same

sequence of using the POWeT  yosistor. 7ero point noise associated with the source provides halfa photon of noise in each
definition of noise tempera- juyyt, The mixer itself need not contribute any noise.

ture (2). If one were to use the
equivalent-physical-temperature definition, the noise
temperatures would not be additive; it would then be
necessary to convert them to powers, then combine the
powers, and finally convert the resulting power back to
an equivalent noise temperature.

The thermal noise of a resistor can be represented
in Thévenin or Norton form, as shown in Figure 6(a),
the familiar Nyquist form, and (b). The noise tem-
perature Ty is given as a function of the physical
temperature by (7) or (8). The Twiss theorem [15]
generalizes the Nyquist equations and states that the
thermal noise of a lossy reciprocal linear network at
a uniform physical temperature can be represented as
shown in Figure 6(c), in which the noise currents and
their correlations are given by < iyiy®*> = 4kTy
Re[Y;;] A?>/Hz. Again, the noise temperature Tyis
given by (7) or (8). When the Planck law (7) is used,
one must remember to add the hf/2k zero-point
noise before an amplifier. Using the Callen-Welton
law does this automatically.

The example in Figure 7 shows how, when the
Callen-Welton law (8) is used, the zero-point fluctua-
tion noise from a load is attenuated by an attenuator,
while the attenuator adds an amount equal to that lost,
thereby maintaining a noise temperature hf/2k at the
output regardless of the attenuation, as required by
thermodynamics. When the Planck law (7) is used, the
vacuum noise is omitted, but must be added in at the
input of any active device.

Noise Figure, Excess Noise Ratio, and the
Standard Reference Temperature, T,

The noise figure of an amplifier was defined by Friis
in 1944 as “...the ratio of the available signal to noise
ratio at the signal generator terminals to the avail-
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R% _< VE,>+ Fl% C) <i,%;>

<VZ> = 4KT\R V2/Hz <in® = 4kTy/R A/Hz
(a) (b)

<iA2,1> C) Y1 (><i,62>

Cl =I[<ininp] = 4 KTy Re[Yj]
©

Figute 6. Thermal noise equivalent circuits: (a) Thévenin
and (b) Norton equivalent circuits of resistors. (c) Twiss
equivalent circuit of a reciprocal two-port network. The
noise temperature Ty, is related to the physical temperature
by the Planck or Callen-Welton equations (7), (8).

Physical Temperature T=0 K

Attenuator
Gain=G

% L Z
(1-G)hfi2k

Bifoke = = = = mm e e - a2k

Figure 7. Effect of an attenuator on the vacuum fluctuation
noise of a load when the Callen-Welton law (8) is assumed.
The attenuator adds an amount of vacuum noise equal to
the amount it attenuates from the load.
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There is more than one correct way
to deal with noise effects, but it is
important to be consistent in one’s
approach and not to mix methods.

able signal-to-noise ratio at [the amplifier’s] output
terminals.” [16] The source temperature is not explic-

itly given, but Friis goes on to say: “...it is suggested -

that... the noise figure be defined for a temperature
of 290 K...” He does not say whether this is the physi-
cal temperature of the source or its noise tempera-
ture, but, as noise figure is a practical quantity to be
measured on equipment at room temperature in a
laboratory, the intent was almost certainly that the
physical temperature of the source be 290 K. As most
radio systems at that time operated at frequencies for
which Af << kT (that is, below a few hundred giga-
hertz), the distinction was of little consequence. From
the Friis definition,

F=(Si/N)/(S,/N,) = (1/G)(N,/Ny), ~ (16)

where (S;/N;) and (S,/N,) are the signal-to-noise
ratios at the input and output, and G is the available
gain of the component being measured. For a system
at 290 K physical temperature (16) can be expressed in
terms of the amplifier’s noise temperature T, as

F=1+ T4/Txn(290), (17)

where Ty (290) is the noise temperature of the input
termination at a physical temperature of 290 K. At very
high frequencies, forwhich if >> kT, Ty (290) = hf/2k,
which is also the minimum possible value of T4. Then,
from (17), Fpin = 2 (3 dB).

The definition of noise figure given in the 1957 IRE
Standards on Electron Tubes: Definitions of Terms [17]
has a subtle difference from the Friis definition in that
the input termination is required to have a noise (not
physical) temperature of 290 K. The definition given
by the current IEEE Standard Dictionary of Electrical and
Electronics Terms [1] is essentially the same:

... the ratio of (a) the total noise power per unit

bandwidth (at a corresponding output frequency)

delivered by the system into an output termina-
tion, to (b) that portion thereof engendered at

the input frequency by the input termination,

whose noise temperature is standard (290 K) at

all frequencies.

By this definition:

F=[Tn(290) + T4]/290. (18)
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In the RF and microwave bands hf << kT, so Ty (290)
can be taken as 290 K, and (18) gives the familiar noise
figure expression

F=1+Ta/290. (19)

At very high frequencies, for which hf >>kT,
Ty (290) =~ hf/2k, which is also the minimum possible
value of T,. Then, from (18), Fpin = hf/290k.

The difference between the Friis noise figure (17)
and the IEEE definition (18) is shown in Figure 8 for an
amplifier with the minimum noise temperature allowed
by the uncertainty principle, T4 = hf/2k. In the case of
an amplifier at 200 THz, e.g., an erbium-doped fiber
amplifier, Ty (290) = hf/2k = T min = 4,800 K. Then
Foninfrsiis = 1 +4,800/4,800=2 (3dB) and Fpynmes =
(4,800 + 4,800) /290 = 33 (15 dB).

While there is still debate in the photonics com-
munity [18] over the best definition of the noise figure -
of a photonic amplifier, it is generally agreed [19] that
the minimum theoretical noise figure for an optical
amplifier is 3 dB. It is clear from Figure 8 that this is
not consistent with the IEEE definition of noise figure,
while it is consistent with the Friis definition when
the source has a physical temperature of 290 K and
the Callen-Welton noise temperature definition (8) is
used. In 1999 it was suggested [3] that the IEEE noise
figure definition be modified to the Friis definition
described above. This universal noise figure definition
would differ to a negligible degree from the separate
definitions currently in use at low and high frequen-
cies, and would therefore not invalidate measurements
made under the old definitions in the RF, microwave,
millimeter wave, and submillimeter bands, or at opti-
cal wavelengths.

The standard reference temperature T, also occurs

in the definition of the excess noise ratio (ENR) of a

one-port noise source

T_To

T, (20)

ENR =

where T is commonly taken to be 290 K (ENR is usu-
ally expressed in dB: ENR(db) = 10log;o((T — T) / Tp))-
Again the question arises whether one should use the
physical temperature, the Planck form corresponding
to 290 K, or the Callen-Welton form corfesponding

" to 290 K. The common practice is to use the physical

temperature, that is, to use Tp = 290 K, independent
of frequency. This has the peculiar, but seldom noted,
consequence that a resistor at 290 K has an ENR (rela-
tive to 290 K)) that is greater than 0 if the Callen-Welton
form of the noise temperature T is used, and is nega-
tive if the Planck form is used. The ENR is usually used
for noise temperatures and frequencies at which the
vacuum fluctuations are negligible, but consistency
suggests that the same form of the noise temperature
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(Rayleigh-Jeans, Planck, or Callen-Welton) should be
used for T, as is used for T in the ENR.

Microwave Brightness Temperature

The brightness temperature in microwave remote
sensing and radio astronomy is closely related to
the noise temperature in microwave circuits and
systems. The brightness temperature is a measure
of spectral radiance [20]-[22], and its definition
raises the same issues raised by the definition of
noise temperature. The principal issue is whether
to define the brightness temperature as equal to the
physical temperature of a black body that would
give rise to the observed spectral radiance (simi-
lar to the physical-temperature definition of noise
temperature in Section 2), or to define the bright-
ness temperature directly as the spectral radiance
density divided by 2k/A? where A is the wavelength
and equal radiance is assumed in each polarization
[similar to the power definition of noise tempera-
ture (2)]. The common practice in the microwave
remote-sensing and radio astronomy communi-
ties [20]-[22] is to use the physical-temperature
definition, which could also be called the equivalent
blackbody temperature definition. This convention is
convenient because the quantity of interest is often
the physical temperature of the source of the radia-
tion, but there is also a significant drawback, which
we discuss below. As for a vacuum-fluctuation con-
tribution to the brightness temperature, the vacuum

fluctuations radiate no net power, and therefore this’

contribution is not included.
The problem with using the physical-temperature
definition for microwave brightness temperature is

that it must be converted to power or radiance before

performing most (exact) calculations. When combin-
ing radiation from different sources, for example, it
is powers that add incoherently, not equivalent black-
body temperatures (except in the Rayleigh-Jeans
approximation). Therefore, in order to add radiation
from different sources (exactly), it is necessary to con-
vert equivalent blackbody temperatures into powers
(radiances) and add those. Since integration is fun-
damentally an addition operation, the same applies
to integrals.

A related situation occurs at the interface be-
tween antenna and radiometer. Since noise tempera-
tures in the radiometer are defined with the power
definition (2), it would be necessary to convert the
antenna temperature to the power definition. Obvi-
ously, one could instead use the equivalent-physical-
temperature definition for the noise temperature in
the radiometer, but there is a good, even compeilling,
reason for using the power definition of noise tem-
perature in dealing with amplifiers or receivers. The
equation generally used to describe an amplifier’s
noise behavior is
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The primary noise-temperature
standards used at National

Measurement Institutes are passive

loads held at a constant, known
temperature.

12 I
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Figure 8. Minimum possible noise figure (in dB) of an
amplifier as a function of frequency. The red curve uses
the IEEE definition of noise figure in which the noise
temperature of the source is 290 K. The blue curve uses the
Friis definition with the source at a physical temperature
of 290 K. ‘ :

Tout = G(Tin + Ta)l (21)

where T, is the equivalent input noise temperature of
the amplifier, and G is the available-power gain of the
amplifier. The derivation and validity of this equation
rest on the equation for available power,

Pout = GPm + Pamp’ (22)

where P, is the output spectral noise power density
due to the amplifier. If noise temperatures are mul-
tiples of available spectral power density (21) follows
from (22) without any approximation. If instead one
insists on defining noise temperature as an equivalent
physical temperature, the exact equation for T, takes
the form

h 1
Tout = (_/>—
k 1
m(1 N —GA)

1 1 1

A=yt ey

which some might consider rather unwieldy. (The
1/2 in A is the vacuum-fluctuation term, which
could be subsumed into the T,term, as discussed
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in “Measurement of Amplifier and Receiver Noise
Temperature.”)

Thus, the situation in microwave remote sensing
is that the common definition of brightness temper-
ature, which is based on an equivalent blackbody
(physical) temperature, requires that the brightness
temperature be converted to power in order to do
any exact calculations, unless one wishes to work
with forms such as (23). If, on the other hand, a
power-based definition is used, the exact calcula-
tions can be performed in terms of the brightness
temperatures, but the brightness temperature does
not correspond exactly to a physical temperature.
(Of course, since most surfaces do not have unit
emissivity and zero reflectivity, they are not perfect
blackbodies, and the equivalent blackbody tempera-
ture also does not correspond exactly to the physi-
cal temperature.)

Conclusions

We have presented a close look at effects of order
hf/kT in noise measurements and in the definition
of noise quantities—noise temperature, noise figure,
etc. Given the perennial push to higher frequency,
lower noise, and smaller uncertainty, such effects
are becoming significant in an increasing number

of applications, and especially in radio astronomy -

where the noise temperature of a modern receiver
can be within a factor of a few of the quantum limit.
In particular, we have discussed issues arising from
the definition of noise temperature and the treat-
ment of contributions from vacuum fluctuations.
There is more than one correct way to deal with these
effects, but it is important to be consistent in one’s
approach and not to mix methods. A simple rule of
thumb for whether such effects may be significant
in a given application can be obtained by computing
Bfrax/k = (0.048 K/GHz) X fa, Where fr.is the
maximum frequency in the application. If fify./kis
laughably small compared to any noise temperature
or noise-temperature uncertainty in the application,
then one is probably safe in ignoring these effects
and using the old, approximate forms for the rele-
vant equations. On the other hand, it is always safe to
account for these effects and use the exact equations.
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