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Plan

• “Schrödinger cat” making experiment

• State of quantum state tomography

• Our work

– stopping criterion

– improved maximum likelihood algorithm

– approximate confidence intervals

• Preliminary cat state data 
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“Schrödinger Cat” States
• (I’m talking about the) state of a single harmonic oscillator.
• superposition of two coherent (or “displaced vacuum”) states

• |+〉 has only even numbers of photons.
• |-〉 has only odd numbers.
• 〈+| -〉=0

• This type of Schrödinger cat states have been made in a light field 
trapped in a cavity, microwaves in a superconducting resonator, 
motion of a trapped ion, traveling light wave (others?)

• With photon (or phonon) numbers < 10.
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“Schrödinger Cat” States
• (I’m talking about the) state of a single harmonic oscillator.
• superposition of two coherent (or “displaced vacuum”) states

• This type of Schrödinger cat states have been made in a light field 
trapped in a cavity, microwaves in a superconducting resonator, 
motion of a trapped ion, traveling light wave (others?)

• With mean photon (or phonon) numbers < 10.

coherent state
superposition of 
coherent states

〈n〉=4
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How to Make Cat States

• Original cat making scheme:

– Use Kerr effect Hamiltonian

• Current materials have too much absorption and too small 
χ, but there is hope for EIT methods.

• We need to make cats with a specific optical mode shape, 
and Kerr effect interactions will disturb the mode.

α 2n̂χ αα i+−

χ
π
2

=t

Yurke and Stoler

PRL 57, 13
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Lower Order Nonlinearity + Post Selection

Glancy and Vasconcelos

arXiv:0705.2045
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Photon Subtraction
click

ideal photon 
subtracted state

perfect cat state 
|α|2=0.8

( )zŜ• Make squeezed light by 
degenerate down conversion. 
ωpump→2ωsqueezed

• Send through beam splitter.

• Trigger on observing a photon.

• Works like heralded single 
photon source, but with stronger 
squeezing ~3dB.

Ourjoumtsev et al.
Science 312, 83



10

Photon Subtraction
click

ideal photon 
subtracted state

perfect cat state 
|α|2=0.8
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Our Photon Subtraction

• Subtract two or more photons

• Using superconducting transition edge sensor (TES) photon 
number resolving detectors.
– efficiency ~ 90%
– dark counts limited by black-body radiation

• Subtracting more photons makes a higher fidelity, larger 
cat, using less squeezing.

• Four Data Sets:
– n=1 by avalanche photo diode (APD) 
– n=2 by APD
– n=2 by TES
– n=3 by TES

n=2, 3
x

φ



12

Measure by Homodyne Detection

• Vary local oscillator phase φ, observe x.
• Record N pairs: {(xm, φm)|m=1…N}.
• Calibrate system efficiency η=ηoptηpdηmmηdc

– ηopt=optical components 94.0% ± 0.5% 

– ηpd=photo-diodes 97.6% ± 2.2% 

– ηmm=mode-mismatch 95.0% ± 0.5% 

– ηdc=dark current 97.9% ± 0.1%

• η ~ 85% ± 3%

Local Oscillatorφ

x
ω 2ω

η

Lvovsky & Raymer
quant-ph/0511044
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Forward Measurement Model

• Relate measurement 
probabilities to 
quantum state ρ:

φ

x

η
ρ

( ) ( )[ ]ρφφ ,Tr xxP Π=

• Π(x,φ) is an element of a continuous POVM.

– |x〉 is the harmonic oscillator position eigenstate in 
photon number basis.

– e-iφa†a is the phase evolution operator.

– En(η) are the Kraus operators for photon loss.

( ) ∑ +−=Π
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Do Quantum State Tomography

• Using set of observations {Πm = Π(xm,φm)|m=1…N}, and

• infer state ρ.
• Choose tomography school:

– linear inversion

– maximum likelihood

– Bayesian inference

– maximum entropy

( ) ( )[ ]ρφφ ,Tr xxP Π=

Paris & ehá ek (editors)
Quantum State Estimation
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Maximum Likelihood

• Likelihood function:

• Loglikelihood function:

• Maximize L(ρ) to find ρ.
• Respect ρ’s constraints: hermitian, Tr(ρ)=1.
• L is convex.

( ) ( )( )∑
=

Π=
N

m
mmn

1

Trlog ρρL
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RρR Maximum Likelihood

• Iterative scheme:

– begin with ρ0=N(I)=maximally mixed state

– at each step i, compute

– find next ρi+1 = N(RiρiRi)
– at maximum likelihood point ρML = N(RMLρMLRML)

• R is positive and hermitian, so each ρi is also hermitian
and can be normalized to have trace 1.

• The “diluted algorithm”, in which R→I+εR, will increase L
if, and ε is small enough. 

• In practice ε→∞.

( ) ( )∑
= Π

Π=
N

m im

m
iR

1 Tr ρ
ρ

ehá ek et al.
quant-ph/0611244
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RρR Virtues
• Always returns a density matrix.

• Has a clear method to incorporate measurement noise by 
adapting Πm’s.

• No need to parameterize ρ or use constraint equations.

• Simple implementation.
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RρR Desiderata
• Stopping criterion

• Faster convergence

• Confidence region for ρ
– or confidence intervals for observables of ρ.
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RρR Stopping Criterion

• Just do “a lot” of iterations?

• Compare likelihood found at each iteration?

• Compare fidelity (or trace distance?) between states at 
each iteration?

• We would like to bound the maximum likelihood using our 
knowledge of the current ρ.
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RρR Stopping Criterion

• Consider subsequent ρ’s:

• Expand L to first order in ε:

• What σ will maximize L(ρ’)?  σ=|ψ〉〈ψ|, where |ψ〉 is the 
eigenvector of R with the largest eigenvalue.

( )ρσερρ −+=′

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) NR

RR

εσερρ
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ρ
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RρR Stopping Criterion

• L is convex, so L(ρ)+r≥Lmax

• ∴ stop iterations when r is small.

( ) ( ) [ ]
( ) ( ) r

NR

ερρ
ρερρ

+≈′
−+≈′

LL

LL )))((eigmax(
L

ε
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Lmax

L(ρ)
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RρR Stopping Criterion

• Bound is not very tight.

• Bounding LML is good, but I wish we had a bound on the 
difference between ρi and ρML.

( )ρLL −≥ maxr

≤10 photons, 40,000 measurements
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Regularized Gradient Ascent

• Can we find an algorithm that converges faster?

• Strategy:

– use traditional ideas of gradient ascent,

– trust region / quadratic approximation of L,

– over-parameterize ρ to make optimization 
unconstrained.

– To stay within trust region, restrict step size of each 
iteration.
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Regularized Gradient Ascent

• Parameterization of ρ:

• A may be any matrix.

• Ensures ρi+1 is a density matrix.

• Increases parameter space from d2-1 to 2d2, where d is 
Hilbert space dimension.

( )( )( )†2121
1 AA iii ++=+ ρρρ N
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Regularized Gradient Ascent

• Quadratic approximation of L:

– ρi+1 = ρi + ∆, where ∆ is 2nd order in A.

– Write A as a 2d2 element real vector    . 

• Choose maximum step size:

• Maximize LQ(ρi+1) subject to constraint             :

• λ is a Lagrange multiplier, which we set to λ=max(eig(M))
and increase if necessary.

( ) ( ) ( ) ( )
( )

2

1
1Q Tr

Tr

2

1
Tr ∑

=
+ 









Π
∆Π−∆+≈

N

m im

m
miii nR

ρ
ρρ LL

A
r

( ) ( ) AMAAv TT
ii

rrrr

2

1
1Q ++≈+ ρρ LL

AAs T
rr

=
AAs T
rr

≥

( ) ( ) vMIA
rr

12 −−= λλ



26

Regularized Gradient Ascent

1. Choose step size s=1.

2. From ρi, calculate v, M.

3. λ=max(eig(M)),

4. Check step size: if                       , increase lambda and 
goto 3.

5. Calculate new 

6. If (exact) L(ρi+1)≤L(ρi), reduce s and goto 4.

( ) ( ) sAA T ≥λλ
rr

( ) ( ) .2 1vMIA
rr −−= λλ

( )( )( ).†2121
1 AA iii ++=+ ρρρ N
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RGA vs. RρR Competition

• If stopping r is small enough, RGA is faster.

• For high dimensions RρR can be faster for larger r.

10 photons, 2,000 measurements 10 photons, 20,000 measurements

20 photons, 2,000 measurements 20 photons, 20,000 measurements

RρρρρR

RGA

30 RρR/RGA 17 RρR/RGA

126 RρR/RGA 69 RρR/RGA
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RGA & RρR Cooperation
• Use RρR for time equal to one RGA iteration, then switch 

to RGA.

10 photons, 2,000 measurements 10 photons, 20,000 measurements

20 photons, 2,000 measurements 20 photons, 2,0000 measurements

RρρρρR

RGA

Coop.
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Parametric Bootstrap

1. Use experimental data {(xm, φm)|m=1…N} to find ρML.

2. Use ρML to simulate B new data sets, each of which uses 
the same {φm|m=1…N}.  For each φm, sample from 

3. For each simulated data set, infer {ρML
(b)|b=1…B}.

4. Use {ρML
(b)|b=1…B} to calculate parameter of interest F(ρ).

5. Obtain distribution of F(b)=F(ρML
(b)).

( ) ( )[ ]ML,Tr ρφφ mm xxP Π=



30

Parametric Bootstrap

• Resampling for fidelity with ideal cat state:

• Resampling is biased toward lower fidelity with pure 
state. 

• We also see bias toward less negative Wigner function 
values.

subtracting 1 photon

324,510 measurements

B=100 data sets

Long red line is maximum 
likelihood.

Shorter red lines mark 
central 68 percentile.



31

Parametric Bootstrap

• Resampling for fidelity with ideal cat state:

• Resampling is usually biased toward lower fidelity with 
pure state. 

• We also see bias toward less negative Wigner function 
values.

subtracting 2 photons

41,223 measurements

B=100 data sets

Long red line is maximum 
likelihood.

Shorter red lines mark 
central 68 percentile.
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Parametric Bootstrap

• Resampling for fidelity with ideal cat state:

• Resampling is biased toward lower fidelity with pure 
state. 

• We also see bias toward less negative Wigner function 
values.

subtracting 3 photons

1087 measurements

B = 100 data sets

Central red line is 
maximum likelihood.

Outer red lines mark 
central 68 percentile.
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Parametric Bootstrap

• Resampling for fidelity with ideal cat state:

• Resampling is biased toward lower fidelity with pure 
state. 

• We also see bias toward less negative Wigner function 
values.

subtracting 3 photons

1087 measurements

B = 800 data sets

Central red line is 
maximum likelihood.

Outer red lines mark 
central 68 percentile.
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Bias Correcting Parametric Bootstrap

• Can we correct for the bias?

• Given: F(ρML)=FML, P(F|ρML), FML
(l), FML

(u)

FML

P(F)

FML
(l) FML

(u)

Efron
Canadian J. Statistics 9, 139

J. Amer. Statist. Assoc. 82, 171
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Bias Correcting Parametric Bootstrap

• Can we correct for the bias?

• Given: F(ρML)=FML, P(F|ρML), FML
(l), FML

(u)

• Hypothesize ρ0, a candidate for the true state ρT.

• Imagine F(ρ0)=F0, P(F|ρ0), F0
(l), F0

(u).

FML

P(F)

FML
(l) F0F0

(l) F0
(u)FML

(u)
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Bias Correcting Parametric Bootstrap

• Can we correct for the bias?

• Given: F(ρML)=FML, P(F|ρML), FML
(l), FML

(u)

• Hypothesize ρ0, a candidate for the true state ρT.

• Imagine F(ρ0)=F0, P(F|ρ0), F0
(l), F0

(u).

• Assume P(F|ρ0) = P(F-f0|ρML).

FML

P(F)

FML
(l) F0F0

(l) F0
(u)FML

(u)
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Parametric Bootstrap

• Resampling for fidelity with ideal cat state:

• Resampling is biased toward lower fidelity with pure 
state. 

• We also see bias toward less negative Wigner function 
values.

subtracting 3 photons

1087 measurements

B = 800 data sets

Central red line is 
maximum likelihood.

Outer red lines mark 
central 68 percentile.
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Parametric Bootstrap

• Resampling from state “close” to maximum likelihood

• Histograms look similar, but clearly P(F|ρ0) = P(F-f0|ρML) is 
not exactly true.

subtracting 3 photons

1087 measurements

B = 800 data sets

Central red line is fidelity 
of state used to generate 
data.

Outer red lines mark 
central 68 percentile.
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Bias Correcting Parametric Bootstrap

• Can we correct for the bias?

• Given: F(ρML)=FML, P(F|ρML), FML
(l), FML

(u)

• Hypothesize ρ0, a candidate for the true state ρT.

• Imagine F(ρ0)=F0, P(F|ρ0), F0
(l), F0

(u).

• Assume P(F|ρ0) = P(F-f0|ρML).

FML

P(F)

FML
(l) F0F0

(l) F0
(u)FML

(u)
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Bias Correcting Parametric Bootstrap

• Can we correct for the bias?

• Given: F(ρML)=FML, P(F|ρML), FML
(l), FML

(u)

• Hypothesize ρ0, a candidate for the true state ρT.

• Imagine F(ρ0)=F0, P(F|ρ0), F0
(l), F0

(u).

• Assume P(F|ρ0) = P(F-f0|ρML).
• If ρ0 is a good hypothesis, F0(l)<FML<F0

(u)

FML

P(F)

FML
(l) F0F0

(l) F0
(u)FML

(u)
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Bias Correcting Parametric Bootstrap

• What are the allowed locations for F0, such that
F0

(l)<FML<F0
(u)?

• FML+F0-Fo
(u)<F0

FML

P(F)

FML
(l) F0F0

(l) F0
(u)FML

(u)
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Bias Correcting Parametric Bootstrap

• What are the allowed locations for F0, such that
F0

(l)<FML<F0
(u)?

• FML+F0-Fo
(u)<F0<FML+F0-Fo

(l)

FML

P(F)

FML
(l) F0F0

(l) F0
(u)FML

(u)
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Bias Correcting Parametric Bootstrap

• What are the allowed locations for F0, such that
F0

(l)<FML<F0
(u)?

• FML+F0-Fo
(u)<F0<FML+F0-Fo

(l)

• Because P(F|ρ0) = P(F-f0|ρML),

– F0-Fo
(u)=FML-FML

(u)

– F0-Fo
(l)=FML-FML

(l)

• ∴ 2FML-FML
(u)<F0<2FML-FML

(l)

FML

P(F)

FML
(l) F0F0

(l) F0
(u)FML

(u)
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Bias Correcting Parametric Bootstrap

• What are the allowed locations for F0, such that
F0

(l)<FML<F0
(u)?

• FML+F0-Fo
(u)<F0<FML+F0-Fo

(l)

• Because P(F|ρ0) = P(F-f0|ρML), 

– F0-Fo
(u)=FML-FML

(u)

– F0-Fo
(l)=FML-FML

(l)

• ∴ 2FML-FML
(u)<F0<2FML-FML

(l)

• FT
(l) = 2FML-FML

(u), FT
(u) = 2FML-FML

(l)

P(F)

FT
(l) FT

(u)
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Bias Correcting Our Data

n=1, APD n=2, APD n=2, TES n=3, TES

N 324,510 41,223 24,790 1,087

Cat 〈n〉 1.88 1.96 1.24 3.10

P
relim

inary D
ata

P
relim

inary D
ata

F
id

el
ity
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Bias Correcting Our Data
P

relim
inary D

ata
P

relim
inary D

ata

• We must also include calibration uncertainty η~85%±3%.

• Choosing η=82% or 88% shifts FML by ~1.5%.

• So, I have increased the size of the data squares.

F
id

el
ity
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Conclusions

• MaxLikelihood stopping criterion:

– bounds likelihood: Lmax≤L(ρ)+r
• Regularized Gradient Ascent maximization algorithm.

– faster convergence, but may not be practical in all cases

– can optimize any convex function of ρ.
• Parametric bootstrap resampling with bias correction

– correct low-purity bias of MaxLikelihood inference.

– requires strong assumptions.

• Created approximate cat states by subtracting 3 photons.

– 〈n〉 is fairly large, but fidelity needs improvement

– requires higher purity squeezing

NRr −= )))((eigmax( ρ
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Open Problems

• More rigorous confidence intervals that don’t require 
resampling.

– Ask me about what we have tried that didn’t work, and

– ideas we have for achieving this.

• Test for number of photons required in density matrix

– too many photons may cause “over fitting” problems.

• Fast method for Bayesian inference of ρ.
• How to make high purity, single mode, pulsed, squeezed 

light.
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