

A DATA FLOW IMPLEMENTATION OF AGENT-BASED
DISTRIBUTED GRAPH SEARCH

Imad Hamchi, Mathieu Hoarau, Antoine Fillinger1, Nicolas Crouzier, Lukas Diduch, Martial Michel2, Vincent Stanford
The National Institute of Standards and Technology 100 Bureau Drive, Gaithersburg Maryland 20899 U.S.A

1Dakota Consulting, Inc. Silver Spring, Maryland
2Systems Plus, Inc. Rockville, Maryland

Imad.Hamchi@nist.gov, et al.

ABSTRACT

Biological ants organize themselves into forager groups
that converge to shortest paths to and from food sources.
This has motivated development a large class of biologi-
cally inspired agent-based graph search techniques, called
Ant Colony Optimization, to solve diverse combinatorial
problems. Our approach to parallel graph search uses
multiple ant agent populations distributed across proces-
sors and clustered computers to solve large-scale graph
search problems. We discuss our implementation using
the NIST Data Flow System II, and show good scalability
of our parallel search algorithm.

KEY WORDS
NIST Data Flow System, Ant Colony Optimization
(ACO), Parallel Distributed Processing, combinatorial
optimization, parallel graph search.

1. Introduction

Parallel optimization algorithms open larger problems in
important areas to solution, but have historically been
difficult to implement. However, many of the difficulties
can be obviated using mature parallel processing toolkits.
Since 1997 we have been developing such a middleware
layer for data acquisition and transport in distributed
sensing environments known as the NIST Data Flow
System Version II (NDFS-II) [1]. Because our distributed
sensing environments levy requirements to process multi-
ple signal processing and pattern classification algorithms
in realtime, we extended our data flow system to provide
necessary logical synchronization of multiple data chan-
nels. The usual blocking vs. non-blocking, and order and
fairness guarantees provided by Message Passing
Interface (MPI) can be selected by the applications
programmer. Our middleware layer also provides
transport and any necessary remote or local stream
duplication. The data are transported through the basic
structure of flows, which are buffered queues operating
under a publish-subscribe mechanism. It also provides a
peer-to-peer discovery mechanism, provides fault
tolerance, graphical deployment across computing clus-

ters, control, and status monitoring for complex comput-
ing environments.

Increasing availability of multicore processors in low-cost
commodity computers and interest in graph search
problems for diverse applications including network
routing, social networking, and scheduling led us to
investigate parallelism using distributed agent-based
search algorithms.

Ant Colony Optimization (ACO) is a computational
metaheuristic referring to a class of such algorithms first
advanced by Marco Dorigo [2]. It uses simple ant-like
agents to collaboratively find optimal, or near optimal
solutions by laying pheromones down on the search space
graph. The fact that the agents communicate with the
search space rather than directly with each other made
this algorithm attractive for parallel implementation with
manageable communication overhead. We discuss our
parallel computing layer, its application to ACO, and
scaling results below.

Strategies of parallelizing ACO algorithms can be classi-
fied into “coarse grained” and “fine grained” categories.
Parallelism at the colony level, the “coarse grained” ap-
proach, helps to obtain better scalability and reduce the
communication overhead. For example, the “fine grained”
parallel Ant System implementation proposed by Bolondi
and Bondanza [3] consists of assigning one ant to one
processor. Using the C/PVM programming environment
Talbi et Al [4] implemented such an algorithm for the
Quadratic Assignment problem. Souto et al [5] used the
same approach with MPI to their “reconstruction of chlo-
rophyll concentration profile in offshore ocean water”
application. The speed up value obtained for 3, 5 and 15
processors with a population of 90 ants is 2.65, 3.74 and
6.38 respectively. Bullnheimer et al [6] proposed a
“coarse grained” parallelization method where the phero-
mone matrix is exchanged every fixed number of itera-
tions between the subpopulations. The speed up result
obtained for 25 nodes with a population of 500 ants is 20.
Pierre Delisle and al [7] presented a shared memory
parallel implementation of ACO based on OpenMP that is
applied to an industrial scheduling problem. The speedup

factor obtained with a number of ants set to 1000 and 16
processors is 5.45.

2. Parallel ACO using the NDFS II

Parallel processing: the NIST data flow system

The NDFS-II is a general data-abstract distributed com-
puting framework with the following key features:

• Point-to-point data communication.
• High throughput, low latency, and low data-

overhead.
• Thread safe.
• Dynamic process management.
• Uses TCP and sockets for data integrity.
• Available for C, C++ and Java.
• Crash-resilient server crossbar information exchange.
• Clients exchange data using data-flows.
• Flows are accessed by name and group, rather than

by the client node ID and where they run.
• Flows are data abstract: no simple or complex data-

types defined beside the mechanism to embed any
data within a flow.

• The data abstraction facilitates use of meta-data
within flows, which in turn make it possible to send
embedded command and control data.

• Serialized data-types can be simply made by a
memory representation within a flow containing an
amalgam of network transparent data embedded with
reconstruction meta-data.

• User created flows that can therefore use 3rd party
tools and libraries to work on the data (e.g. Matlab or
GNU Octave) transmitted on a distributed node.

• Send and receive operations can be blocking or non-
blocking, with a poll mechanism available for non-
blocking operations.

• Data block synchronization can be one of “Exact
Block Stamp Match”, “Tolerant Time stamp Match”,
or “Overlay Timestamp Match” [8].

• Rendezvous functionality available for flow
synchronization.

• The topology of the graph is embedded within the
flows by use of their data types and groups.

It is well designed for data centric applications requiring
low communication overhead, high throughput, and low
latency data transfer, for use in client-server, peer-to-peer,
clustered and N-tiered architectures. It has been suc-
cessfully used in master-slave and producer-consumer
applications. Thanks to its high emphasis on data avail-
ability via point-to-point communication, it can be
extended to work with distributed hash tables. It can also
facilitate data distribution and data balancing, with
extensions for automatic load and data balancing in plan.
 
 
 

Networked sensor management in NDFS-II

The earlier NDFS-I was exclusively used in data man-
agement for networked sensors. Multiple sensors were
directly connected to their own data recording devices,
and the data were made available at device clock rates as
network transparent flows which could be consumed by
multiple clients to process the sensor data under a pull
model [9]. The NDFS-II was extended to use more resil-
ient distributed computing features while enabling more
sensors to be managed. NDFS-II has been extensively
used in multimodal data gathering for research communi-
ties worldwide. As described in [1], the NIST Automatic
Meeting Recognition Project used seven High Definition
(HD) video cameras, twenty-four individual microphones
and four 64-channel microphone arrays attached to a
network of thirteen hosts to record data to disk,
synchronized it, and made it available as flows, for live
processing in a review station, routing to recognition
clients, and preservation as a research archive of standard
reference data.

NDFS-II features for parallel processing

The NDFS-II was originally designed to support the de-
velopment of real-time pervasive applications by provid-
ing distributed sensor data acquisition, transport, and
processing capabilities [10]. We soon found that the fea-
tures for distributed sensor stream transport are readily
adaptable to more general parallel processing problems
addressed as large-grain data flow graphs. In this system,
distributed applications are represented as data flow
graphs with computational client nodes as standalone
processes working together by providing and/or consum-
ing data flows from sensors or other client nodes.

The flows supported by NDFS-II are network-transparent
and accessed using their name and type rather than their
location on the network. Thus if two computational
components need to perform a task by exchanging data,
the source code used to program this operation within the
components is the same whether they run together on the
same host, or are distributed on multiple hosts and
processor cores.

The data flow metaphor for data transport between proc-
ess-level nodes is well designed for parallel and distrib-
uted computing. It transfers data blocks among computa-
tional nodes that execute processing pipelines or branch
parallelism in applications. In the case of pervasive
computing applications, the data transported are often
audio or video streams. But the data flow core library is
not specialized in multimedia data; rather it works using
the concept of data blocks. These blocks are managed by
flows that can be specialized to offer pre- and post-proc-
essing of the data depending on the data type they trans-
port (audio, video, matrices, etc). The flow concept and
the way it was implemented in the middleware facilitate
the process of creating new flow types specialized to han-

dle dedicated data types. This process is also simplified
by using the flow generator, a GUI tool that generates
flow templates. Therefore NDFS-II is well suited for a
range of applications beyond pervasive computing data
acquisition.

The second generation NDFS is multi-platform, running
on Linux, Mac OS X, and Windows, thanks to the use of
cross-platform libraries. The Adaptive Communication
Environment (ACE) library is used to provide the low
level functionalities needed by the core of NDFS-II. The
Qt graphical library from Trolltech provides the graphical
components enabling us to develop platform independent
GUIs, such as the Control Center which is used to create,
control and monitor distributed applications from a single
host. The NDFS-II core and both of these libraries are
implemented in C++, and thus provide the performance
required for high data throughput with low processor
requirements.

This middleware offers dynamic capabilities, as any host
can join or leave an existing NDFS-II network at any
time. In the same manner, client nodes running on a host
belonging to the NDFS-II network can become part of an
application by providing or consuming flows that repre-
sent streaming data, or leave a running application by
unsubscribing. In order to join a data flow network indi-
vidual hosts need to run an NDFS-II server that is able to
dynamically discover its peer servers to synchronize its
database specifying which resources (flows) are available
and where they are located. Computational components
(clients) can then join the network by connecting to the
server on their host and subscribe to flows published by
other clients. The server will execute the necessary con-
trol operations to connect the clients through the appro-
priate data flows.

In order to increase the robustness of the system and op-
timize the data transport rates, clients are not directly
connected to one another, but instead use duplicators for
point-to-point communication. Client crashes are handled
by duplicators: if two clients consume the same flow from
a single producer, and one consumer crashes it won’t
affect the remaining consumer because the duplicator
simply stops routing data to the failed client. If this
consumer is also a producer, any consumer having
subscribed to any of its flow(s) will no longer receive
those data.

The use of the duplicator not only increases robustness
but also minimizes the data transport bandwidth. Dupli-
cators use shared memory to allow concurrent access to
data blocks among client nodes within a machine, and use
TCP/IP when data are exchanged among client nodes lo-
cated on several machines. They create peer-to-peer data
links between clients that do not go through a central
server. The system also avoids unnecessary data duplica-
tion: as all clients access the same shared memory for a
dedicated flow within a machine, and if the data blocks

need to be transported to a different host, they are only
sent once and then duplicated at the destination, thus re-
ducing the network load even if there are several consum-
ers on the remote host, as shown in figure 1.

The data transport can be affected by irregular network
conditions or client consumption rates. In order to
smooth these effects, a hybrid push/pull mechanism was
employed. There is one data queue per flow within a cli-
ent, managed in its own thread, to avoid blocking the pro-
gram for unnecessary reasons. When a producer sends a
data buffer, it is enqueued rather than being sent immedi-
ately. The flow thread then dequeues the data to the
shared memory when notified by the flow duplicator.
Similarly, when a data buffer is ready for consumption in
the shared memory, the flow thread of the consumer is
notified and can then retrieve and push the data in its in-
ternal queue. The consumer can then pull the data from
the queue for smooth playback of streaming media when
enough data has arrived. The irregularity in transport can
be compensated by the queue buffering the data. It is also
an efficient way to distribute data.

Data queue behavior and buffer sizes can be customized
to address the needs of different applications. A queue
can be configured as either blocking if all data must be
processed, or non-blocking if data loss can be tolerated.
A real-time application may be able tolerate losing some
data: in that case, the queue can be customized to drop the
newest, or oldest, data block when it is filled. Other types
of applications, such as pipelines to process data files,
cannot not tolerate data loss: in which case the queue can
be made blocking. In order to handle files, a synchroni-
zation mechanism was introduced to make sure that the
transfer only starts when all the required clients establish
communication through the flows, thereby preventing any
data loss.

The NDFS-II API abstracts the transport mechanism,
providing methods for clients to join and leave the
network at any time, and create flows based on their type
for publication and subscription. Data blocks of an output
flow can be filled with user data in several ways ranging
from direct access of the memory block to the use of
dedicated methods to fill out the block. Symmetrically
user data stored in a data block from an input flow can be
read using direct access to memory or using an iterator on
the data block.

An object oriented C++ API is provided, but other lan-
guage bindings have also been developed, so it is possible
to use the system from Java, Matlab and GNU Octave
programs. Matlab and Octave provide a powerful set of
operators that can be used in NDFS-II data flow graphs
for signal processing or pattern classification. For
example, one can create a pipeline to handle operations on
matrices where each client performs a specific operation
on the matrix before passing it to the next.

Figure 1. Servers exchange control messages to run clients, and mediate point-to-point data transfer. Duplicators manage shared
memory access between clients within a machine and use TCP to send data over the network.

Complex behavior arising in natural ant colonies
inspires agent-based search methods

Physical and biological systems composed of many sim-
ple agents interacting under simple rules show complex
emergent behaviors, or phase transitions, with increasing
numbers of agents. Entomologist Paul Grassé first pro-
posed the idea that foraging insect groups, like termites,
used pheromone markings to guide other members to food
sources, or places of collaborative work like nest con-
struction [11]. Beekman, and her colleagues observed
that Pharaoh’s Ants (Monomorium pharaonis) colonies
showed phase transitions from random foraging by indi-
vidual ants in small numbers, to collaborative patterns for
larger numbers [12]. These phase transitions were found
to exhibit hysteresis comparable to many physical
systems undergoing first-order phase transitions.

Sumpter and Pratt made more detailed analyses of differ-
ential equations that model trail maintenance by ant

populations which predict transition between search states
in ant populations like those observed in the natural ants
[13]. Moreover, collaboratively discovered paths are short
relative to the average found by individuals in the sto-
chastic search phase. Importantly, the dynamics of phase
change described by Beekman et al. imply that searches
with too few ant agents will never cohere into efficient
social foraging patterns. Thus populations below the
social coherence threshold for a given problem space
search stochastically, and may take very, very, long times
to find an efficient solution. So the ability to operate
larger collaborating populations using parallel methods is
important for larger graph search problems. Figure 2
shows a graph search problem and distribution of ant
foragers for two populations, one too small for the phase
transition to collaborative search to occur, and one large
enough to achieve phase transition.

Digital Ant Colony Optimization: A biologically
inspired agent-based graph search method

We investigated widely studied agent models of ants in
the setting of our parallel-distributed processing middle-
ware, the NDFS II, for agent based graph search. This
framework allows us to employ multicore processors, and
distributed systems to explore much larger problem
spaces using agent-based algorithms like ACO than is
feasible with single processor implementations. The par-
allelization method uses the stygmergic markings from
multiple agent populations running on many processors
and host nodes with a periodic rendezvous/update cycle
mediated by a master node.

Work by entomologists including Grassé inspired Marco
Dorigo and numerous collaborators to develop agent-
based simulations that capture important observed dy-
namical aspects of biological ant colony foraging [14].
This model of natural ant colonies is composed of numer-
ous simple digital agents that stochastically extend search
paths through problem graphs, and interact through styg-
mergic markings on the arcs they travel. This allowed the
study of the optimality and performance properties of
these systems [15].

Dorigo and others investigated a variety of pheromone
update rules, and constraints on stochastic solution gen-
erators that enable complex combinatorial problems to be
solved. These ACO system variants included ant-density,
ant-quantity, and ant-cycle, min-max, and best-so-far
pheromone update methods. Problems that have been
successfully addressed include the Traveling Salesman
Problem (TSP), network routing, sequence matching,
alignment, and scheduling problems. Many of these are
NP-hard problems, unlike the shortest path problems with
polynomial time solutions that biological ants solve.
Dorigo’s Min-Max method is described below. For our
experiments we used the Min-Max method, except the
best-so-far update rule. This retains a greater physical
realism and facilitates the study of the phase change de-
scribed by Beekman et al. because ant-agents lay phero-
mones only on their path of travel.

Summary of the Dorigo Min-Max ACO algorithm

One of the most widely studied variants of ACO is the
Dorigo Min-Max system [16], which we describe as
follows. The ACO systems can generate solutions to
combinatorial problems specified at the highest level of
abstraction as {Σ, f(S), Ω(S)}, with a solution set Σ, an
objective function f(S), and a feasibility constraint Ω(S).
Each solution S ∈ Σ is a state sequence {s1, s2, … s N(s)}
that satisfies the constraint Ω(S), and its merit is f(S).

Ant solution construction: Ants are initially situated
relative to a particular graph search problem. Then partial
solutions generated by each ant are stochastically ex-

tended into the adjacent nodes from its present position, if
they are feasible under Ω(Sk) as follows.

Until (S ∈ Σ) {

Extend the state sequence {s1, s2, … sk} to
include sk+1 by finding all feasible successors of
sk on its adjacency list adj(sk) permissible under
Ω(sk), and selecting randomly among them
according to the probabilities computed as:

if Ω(adj(Sk)) is the empty set, then the ant is teleported
back to the nest and its partial solution is discarded.

Figure 2. The size of ant forager populations relative to the
size of the search space determines if the foragers will ex-
plore the search space independently and stochastically (top),
or collaborates to find efficient solutions (bottom). Note the
high degree of concentration of pheromones on a path near
the best path at bottom where the phase transition to
collaborative foraging has occurred.

We note that this formulation of the arc transition prob-
abilities uses the exponent α to lower the probabilities of
choices with relatively low pheromones and emphasize
those with relatively more. Note also that the τmin and τmax
lower and upper bounds for arc-specific pheromones as-
sure that these probabilities are never undefined, or con-
verge to either one or zero.

Pheromone Update: The Min-Max pheromone
update cycle is conditioned upon the best-so-far solution
found by the ant population as a whole. The first step is
to evaporate the pre-existing pheromones. Then the
present solution is evaluated and replaces the previous
best-so-far if it is better under f(S). The arcs of the best
solution are then updated with a specified amount of
pheromone, possibly dependent on the merit of the
solution. The Min threshold is applied so that no arc prob-
ability can go to zero and the Max threshold so no arc
probability can approach one:

Where arc(i,j).τ is the pheromone level associated with
the arc, the evaporation rate is 0<ρ<1; the minimum
pheromone value is τmin > 0, and St and Sbest are solutions
admissible under the constraint Ω(S). Importantly, this
strategy decouples the pheromone update process from
the individual ants; associating it instead with general
evaporation and the best solution produced to time t by
the entire community of foragers. Another point to note
is that there is a finite upper bound on the pheromone at a
given arc. Specifically, once a globally optimal solution
has been found, then its arcs are updated by evaporation
and best path award every turn and so it converges to the
maximum pheromone amount τmax given appropriate ρ.

The ACO parallel architecture and Method

The distributed ACO architecture is based on a model in
which multiple copies of the problem graph and associ-
ated agent populations are distributed across many hosts
and cores on worker processes, which periodically send
results of local searches to a master node that combines
them. Each worker node periodically sends the master
node a copy of its local pheromone matrix and the worker
nodes do not communicate directly with each other. The
mechanism is iterated until the search has converged. The
NDFS-II distributed middleware layer manages the
worker node creation and dispatches them to the
processors specified in the control center. The NDFS II
simulation map and the relationships among the
components are shown in Figure 3.

The master node server requests a list of all hosts willing
to run the search from its peers. The user specifies the
number of worker nodes per host. The master has each
worker node run a new instance of an ACO agent-based
simulator. The ACO simulation starts with the parameter
distribution during which the master node creates a flow
and sends the problem graph, evaporation rate, local ant
population, and synchronization frequency to the worker
nodes. The second phase of the simulation proceeds with
the iterative data exchange. After a fixed number of local
search iterations, the worker nodes enqueue the local
pheromone matrices in the data flows to the master. The
master node gathers this information, sums it and returns
it to the worker nodes to update their local search spaces.
Thus the distributed ant populations communicate through
the stygmergic markings maintained by the master node,
and collaborate effectively, even when each sub-
population is below the coherence threshold.

Figure 3. Control Center (top center) displays the NDFS-II application for distributed ACO, with a master node (left in control
center), eight worker nodes (center in control node), and a display node (right in control center). Performance graphs (bottom right)
show the solution length versus time, and the disposition of the global agent population (top right).

Figure 4. The major classes of the agent-based search and event queue include the Engine, EventsList, and AntsList classes with
Ant, and AntEvent subclasses. These are used to implement a discrete event queue for ant agent movement through the graph,
which the agents mark according to the desirability of the paths.

Figure 5. Scalability experiments with convergence times for one to fourteen compute cores decline throughout this range of
parallelization. Note that as we go from eight worker nodes to 14, the convergence time is approximately halved.

The synchronization frequency can be in the range of
hundreds of local agent cycles and still yield
collaboratively obtained efficient solutions. Note, that
depending on the problem size, the synchronization
frequency must be chosen carefully in order to get an
optimal solution in a reasonable time. Worker nodes can
also extract the individual ant’s positions for display node
visualization. Master, worker and display nodes are
independent Java programs and have a common JNI (Java
Native Interface) library to wrap the NDFS C++ API.

Event agent-based Search and Synchronization

The agent-based search system is implemented as a dis-
crete event queue in Java using the class structure shown
in figure 4. The Environment class implements methods

and data structures required to execute the search of a
given problem space, then the ants search. The Point
object represents a location in (x, y) coordinate space for
the associated node. Each node of the problem graph has
a successors attribute that specifies its adjacency list. The
Ant class describes the behavior of an artificial ant by
implementing methods such as “choosePath”,
“returnToNest” or “lookForFood”. A forager Ant moves
from one node to another in a time T determined by the
length of the selected adjacent arc, and her speed. A
discrete event queue is implemented in the simulation
engine using the Bag Java objects as described by Luke et
al. [17] rather than Vectors or Array lists, thus providing
us direct access to the event list. The master-workers
synchronization process is based on two events occuring
every time-step. First the “MasterSynEvent” class

receives the pheromones matrices and creates an updated
solution for the workers. Then the “WorkerSynEvent”
class receives the new matrix from the master and applies
its content to its search space.

Scalability of parallel ACO graph search algorithm

To quantify the parallel ACO algorithm performance un-
der the NDFS-II framework we deployed it across multi-
ple hosts with multiple compute cores. We used 5,000
ants in all of the searches, distributing them in equal
numbers across the worker nodes. The search space
consisted of a graph with ~10,000 nodes and ~ 19,000
arcs. We found that the solution quality depends on the
master synchronization frequency between the distributed
subpopulations and the time needed by the worker nodes
to perform the search. Synchronization every one to two
hundred ant queue events provides search performance
that equals a single large population at reasonable com-
munication overhead. Thus the result (the length of the
best path found by the ants) can be as good as the search
running on one processor but is obtained much faster.
The execution time obtained under the NDFS-II experi-
ments scales almost linearly for up to 14 worker nodes
with a 24x speed increase, as shown in figure 5.

3. Conclusions

We introduced an enhanced NIST Data Flow System as a
general parallel processing tool. Features that served its
early deployment as a realtime sensor data-transport sys-
tem provided a strong basis for more general parallel dis-
tributed processing capabilities. Research in Complex
Systems agent-based simulations at large scales, and
parallel computations in general were discussed. We
described a parallel version of a combinatorial
optimization algorithm based upon Ant Colony
Optimization employing many simple ant agents with
emergent behaviors with increasing agent populations.
We showed very good scalability, suggesting that this
particular system, and agent-based parallel algorithms in
general have potential for application in very large graph
search problems. Future work will include larger scale
problems; variations on agent based systems;
asynchronous rendezvous; and will study the use of local
search methods to improve combinatorial optimization.
All of our work is in the public domain and we are happy
to collaborate with any interested researchers in parallel
processing.

Disclaimer

Employees of the Federal Government developed the
NDFS II in the course of their official duties. Pursuant to
title 17 Section 105 of the United States Code this
software is not subject to copyright protection and is in
the public domain. Commercial products and open source
projects are identified to adequately describe the subject

matter of this work. This implies no endorsement. The
NDFS is an experimental system and NIST assumes no
responsibility for its use by other parties and makes no
guarantees of its fitness for any particular purpose.

References

[1] A. Fillinger, I. Hamchi, S. Degre; L. Diduch, T.
Rose, J. Fiscus and V. Stanford. Middleware and Metrology for
the Pervasive Future. IEEE Pervasive Computing Mobile and
Ubiquitous Systems. 8(3), 74-83, 2009.
[2] M. Dorigo and T. Stützle. Ant Colony Optimization. (MIT
Press, Cambridge Massachusetts, 2004).
[3] M. Bolondi, and M. Bondaza: Parallelizzazione di un
algoritmo per la risoluzione del problema del comesso
viaggiatore; Master’s thesis, Politecnico di Milano, 1993.
[4] E-G. Talbi, et al. Parallel ant colonies for the quadratic
assignment problem. Future Generation Computer Systems,
17(4), 441-449, 2001
[5] R. Souto, et al. Reconstruction of Chlorophyll Concentration
Profile in Offshore Ocean Water using a Parallel Ant Colony
Code. Hybrid Metaheuristics. 19–24, 2004.
 [6] B. Bullnheimer, et al. Parallelization Strategies for the Ant
System. High Performance Algorithms and Software in
Nonlinear Optimization, Kluwer, Dordrecht, 87-100, 1998.
[7] P. Delisle, et al. Parallel implementation of an ant colony
optimization metaheuristic with OpenMP. Proc. of the 3rd
European Workshop on OpenMP, Barcelona, Spain, 2001.
[8] L. Diduch, et al. Synchronization Of Data Streams In
Distributed Realtime Multimodal Signal Processing
Environments Using Commodity Hardware. Proc. of the IEEE
International Conference on Multimedia & Expo (ICME),
Hannover, Germany, June 2008.
[9] M. Michel, V. Stanford and O. Galibert. Network Transfer of
Control Data: An Application of the NIST Smart Data Flow. J.
of Systemics, Cybernetics and Informatics, 2, Jan. 2005.
[10] V. Stanford, J. Garofolo, O. Galibert; M. Michel, C.
Laprun. The NIST Smart Space and Meeting Room Projects:
Signals, Acquisition, Annotation and Metrics. Proc. of IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). 4 6-10 Hong Kong, April 2003.
[11] P. Grassé. La reconstruction du nid et les coordinations
inter-individuelles chez bellicostitermes natalensis et
cubitermes. sp. la theorie de la stigmergie: essai d'interpretation
du comportement des termites constructeurs. Insectes Soc. Vol
61 41-81. 1959.
[12] M. Beekman, D. Sumpter and F. Ratnieks. Phase transition
between disordered and ordered foraging in Pharaoh’s ants.
PNAS, Vol 98(17), p. 9703-9706, August 14, 2001.
[13] D. Sumpter, and S. Pratt. A modeling framework for
understanding social insect foraging. Behavioral Ecology
Sociobiology 53:131-144, 2003.
[14] M. Dorigo, Optimization, Learning and Natural Algo-
rithms. Ph.D. thesis Departimento di Elettonica, Politecnico di
Milano, Milan. 1992.
[15] Dorigo, Marco; E. Bonabeau, G. Theraulaz. Ant algorithms
and stigmergy. Future Generation Computer Systems, 16 851-
871, 2000
[16] T. Stützle and M. Dorigo. A Short Convergence Proof for a
Class of Ant Colony Optimization Algorithms. IEEE
Transactions on Evolutionary Computation, 6(4), August 2002.
[17] S. Luke, et al. MASON: A New Multi-Agent Simulation
Toolkit. Proceedings of the 2004 SwarmFest Workshop.

