
 
 

A DATA FLOW IMPLEMENTATION OF AGENT-BASED  
DISTRIBUTED GRAPH SEARCH  

 
 

Imad Hamchi, Mathieu Hoarau, Antoine Fillinger1, Nicolas Crouzier, Lukas Diduch, Martial Michel2, Vincent Stanford 
The National Institute of Standards and Technology 100 Bureau Drive, Gaithersburg Maryland 20899 U.S.A 

1Dakota Consulting, Inc. Silver Spring, Maryland 
2Systems Plus, Inc. Rockville, Maryland   

Imad.Hamchi@nist.gov, et al. 
 
 

ABSTRACT 
 
Biological ants organize themselves into forager groups 
that converge to shortest paths to and from food sources.   
This has motivated development a large class of biologi-
cally inspired agent-based graph search techniques, called 
Ant Colony Optimization, to solve diverse combinatorial 
problems.  Our approach to parallel graph search uses 
multiple ant agent populations distributed across proces-
sors and clustered computers to solve large-scale graph 
search problems.  We discuss our implementation using 
the NIST Data Flow System II, and show good scalability 
of our parallel search algorithm. 
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1.  Introduction 
 
Parallel optimization algorithms open larger problems in 
important areas to solution, but have historically been 
difficult to implement.  However, many of the difficulties 
can be obviated using mature parallel processing toolkits.  
Since 1997 we have been developing such a middleware 
layer for data acquisition and transport in distributed 
sensing environments known as the NIST Data Flow 
System Version II (NDFS-II) [1].  Because our distributed 
sensing environments levy requirements to process multi-
ple signal processing and pattern classification algorithms 
in realtime, we extended our data flow system to provide 
necessary logical synchronization of multiple data chan-
nels.  The usual blocking vs. non-blocking, and order and 
fairness guarantees provided by Message Passing 
Interface (MPI) can be selected by the applications 
programmer.  Our middleware layer also provides 
transport and any necessary remote or local stream 
duplication. The data are transported through the basic 
structure of flows, which are buffered queues operating 
under a publish-subscribe mechanism. It also provides a 
peer-to-peer discovery mechanism, provides fault 
tolerance, graphical deployment across computing clus-

ters, control, and status monitoring for complex comput-
ing environments.    
 
Increasing availability of multicore processors in low-cost 
commodity computers and interest in graph search 
problems for diverse applications including network 
routing, social networking, and scheduling led us to 
investigate parallelism using distributed agent-based 
search algorithms.   
 
Ant Colony Optimization (ACO) is a computational 
metaheuristic referring to a class of such algorithms first 
advanced by Marco Dorigo [2].  It uses simple ant-like 
agents to collaboratively find optimal, or near optimal 
solutions by laying pheromones down on the search space 
graph.  The fact that the agents communicate with the 
search space rather than directly with each other made 
this algorithm attractive for parallel implementation with 
manageable communication overhead.  We discuss our 
parallel computing layer, its application to ACO, and 
scaling results below. 
 
Strategies of parallelizing ACO algorithms can be classi-
fied into “coarse grained” and “fine grained” categories. 
Parallelism at the colony level, the “coarse grained” ap-
proach, helps to obtain better scalability and reduce the 
communication overhead. For example, the “fine grained” 
parallel Ant System implementation proposed by Bolondi 
and Bondanza [3] consists of assigning one ant to one 
processor. Using the C/PVM programming environment 
Talbi et Al [4] implemented such an algorithm for the 
Quadratic Assignment problem. Souto et al [5] used the 
same approach with MPI to their “reconstruction of chlo-
rophyll concentration profile in offshore ocean water” 
application. The speed up value obtained for 3, 5 and 15 
processors with a population of 90 ants is 2.65, 3.74 and 
6.38 respectively. Bullnheimer et al [6] proposed a 
“coarse grained” parallelization method where the phero-
mone matrix is exchanged every fixed number of itera-
tions between the subpopulations. The speed up result 
obtained for 25 nodes with a population of 500 ants is 20. 
Pierre Delisle and al [7] presented a shared memory 
parallel implementation of ACO based on OpenMP that is 
applied to an industrial scheduling problem. The speedup 



factor obtained with a number of ants set to 1000 and 16 
processors is 5.45. 
 
2.  Parallel ACO using the NDFS II 
 
Parallel processing: the NIST data flow system 
 
The NDFS-II is a general data-abstract distributed com-
puting framework with the following key features: 
 
• Point-to-point data communication. 
• High throughput, low latency, and low data-

overhead. 
• Thread safe. 
• Dynamic process management. 
• Uses TCP and sockets for data integrity. 
• Available for C, C++ and Java. 
• Crash-resilient server crossbar information exchange. 
• Clients exchange data using data-flows. 
• Flows are accessed by name and group, rather than 

by the client node ID and where they run. 
• Flows are data abstract: no simple or complex data-

types defined beside the mechanism to embed any 
data within a flow. 

• The data abstraction facilitates use of meta-data 
within flows, which in turn make it possible to send 
embedded command and control data. 

• Serialized data-types can be simply made by a 
memory representation within a flow containing an 
amalgam of network transparent data embedded with 
reconstruction meta-data. 

• User created flows that can therefore use 3rd party 
tools and libraries to work on the data (e.g. Matlab or 
GNU Octave) transmitted on a distributed node. 

• Send and receive operations can be blocking or non-
blocking, with a poll mechanism available for non-
blocking operations. 

• Data block synchronization can be one of “Exact 
Block Stamp Match”, “Tolerant Time stamp Match”, 
or “Overlay Timestamp Match” [8]. 

• Rendezvous functionality available for flow 
synchronization.  

• The topology of the graph is embedded within the 
flows by use of their data types and groups. 

 
It is well designed for data centric applications requiring 
low communication overhead, high throughput, and low 
latency data transfer, for use in client-server, peer-to-peer, 
clustered and N-tiered architectures. It has been suc-
cessfully used in master-slave and producer-consumer 
applications.  Thanks to its high emphasis on data avail-
ability via point-to-point communication, it can be 
extended to work with distributed hash tables.  It can also 
facilitate data distribution and data balancing, with 
extensions for automatic load and data balancing in plan. 
 
 
 

Networked sensor management in NDFS-II 
 
The earlier NDFS-I was exclusively used in data man-
agement for networked sensors.  Multiple sensors were 
directly connected to their own data recording devices, 
and the data were made available at device clock rates as 
network transparent flows which could be consumed by 
multiple clients to process the sensor data under a pull 
model [9].  The NDFS-II was extended to use more resil-
ient distributed computing features while enabling more 
sensors to be managed.  NDFS-II has been extensively 
used in multimodal data gathering for research communi-
ties worldwide.  As described in [1], the NIST Automatic 
Meeting Recognition Project used seven High Definition 
(HD) video cameras, twenty-four individual microphones 
and four 64-channel microphone arrays attached to a 
network of thirteen hosts to record data to disk, 
synchronized it, and made it available as flows, for live 
processing in a review station, routing to recognition 
clients, and preservation as a research archive of standard 
reference data.  

NDFS-II features for parallel processing 
 
The NDFS-II was originally designed to support the de-
velopment of real-time pervasive applications by provid-
ing distributed sensor data acquisition, transport, and 
processing capabilities [10].  We soon found that the fea-
tures for distributed sensor stream transport are readily 
adaptable to more general parallel processing problems 
addressed as large-grain data flow graphs.  In this system, 
distributed applications are represented as data flow 
graphs with computational client nodes as standalone 
processes working together by providing and/or consum-
ing data flows from sensors or other client nodes.  
 
The flows supported by NDFS-II are network-transparent 
and accessed using their name and type rather than their 
location on the network.  Thus if two computational 
components need to perform a task by exchanging data, 
the source code used to program this operation within the 
components is the same whether they run together on the 
same host, or are distributed on multiple hosts and 
processor cores.   
 
The data flow metaphor for data transport between proc-
ess-level nodes is well designed for parallel and distrib-
uted computing.  It transfers data blocks among computa-
tional nodes that execute processing pipelines or branch 
parallelism in applications.  In the case of pervasive 
computing applications, the data transported are often 
audio or video streams.  But the data flow core library is 
not specialized in multimedia data; rather it works using 
the concept of data blocks.  These blocks are managed by 
flows that can be specialized to offer pre- and post-proc-
essing of the data depending on the data type they trans-
port (audio, video, matrices, etc).  The flow concept and 
the way it was implemented in the middleware facilitate 
the process of creating new flow types specialized to han-



dle dedicated data types. This process is also simplified 
by using the flow generator, a GUI tool that generates 
flow templates. Therefore NDFS-II is well suited for a 
range of applications beyond pervasive computing data 
acquisition. 
  
The second generation NDFS is multi-platform, running 
on Linux, Mac OS X, and Windows, thanks to the use of 
cross-platform libraries. The Adaptive Communication 
Environment (ACE) library is used to provide the low 
level functionalities needed by the core of NDFS-II.  The 
Qt graphical library from Trolltech provides the graphical 
components enabling us to develop platform independent 
GUIs, such as the Control Center which is used to create, 
control and monitor distributed applications from a single 
host. The NDFS-II core and both of these libraries are 
implemented in C++, and thus provide the performance 
required for high data throughput with low processor 
requirements.  
 
This middleware offers dynamic capabilities, as any host 
can join or leave an existing NDFS-II network at any 
time.  In the same manner, client nodes running on a host 
belonging to the NDFS-II network can become part of an 
application by providing or consuming flows that repre-
sent streaming data, or leave a running application by 
unsubscribing.  In order to join a data flow network indi-
vidual hosts need to run an NDFS-II server that is able to 
dynamically discover its peer servers to synchronize its 
database specifying which resources (flows) are available 
and where they are located.  Computational components 
(clients) can then join the network by connecting to the 
server on their host and subscribe to flows published by 
other clients. The server will execute the necessary con-
trol operations to connect the clients through the appro-
priate data flows.  
 
In order to increase the robustness of the system and op-
timize the data transport rates, clients are not directly 
connected to one another, but instead use duplicators for 
point-to-point communication.  Client crashes are handled 
by duplicators: if two clients consume the same flow from 
a single producer, and one consumer crashes it won’t 
affect the remaining consumer because the duplicator 
simply stops routing data to the failed client.  If this 
consumer is also a producer, any consumer having 
subscribed to any of its flow(s) will no longer receive 
those data. 
 
The use of the duplicator not only increases robustness 
but also minimizes the data transport bandwidth. Dupli-
cators use shared memory to allow concurrent access to 
data blocks among client nodes within a machine, and use 
TCP/IP when data are exchanged among client nodes lo-
cated on several machines. They create peer-to-peer data 
links between clients that do not go through a central 
server. The system also avoids unnecessary data duplica-
tion: as all clients access the same shared memory for a 
dedicated flow within a machine, and if the data blocks 

need to be transported to a different host, they are only 
sent once and then duplicated at the destination, thus re-
ducing the network load even if there are several consum-
ers on the remote host, as shown in figure 1. 
 
The data transport can be affected by irregular network 
conditions or client consumption rates.  In order to 
smooth these effects, a hybrid push/pull mechanism was 
employed.  There is one data queue per flow within a cli-
ent, managed in its own thread, to avoid blocking the pro-
gram for unnecessary reasons.  When a producer sends a 
data buffer, it is enqueued rather than being sent immedi-
ately.  The flow thread then dequeues the data to the 
shared memory when notified by the flow duplicator. 
Similarly, when a data buffer is ready for consumption in 
the shared memory, the flow thread of the consumer is 
notified and can then retrieve and push the data in its in-
ternal queue.  The consumer can then pull the data from 
the queue for smooth playback of streaming media when 
enough data has arrived. The irregularity in transport can 
be compensated by the queue buffering the data.  It is also 
an efficient way to distribute data.  
 
Data queue behavior and buffer sizes can be customized 
to address the needs of different applications.  A queue 
can be configured as either blocking if all data must be 
processed, or non-blocking if data loss can be tolerated.  
A real-time application may be able tolerate losing some 
data: in that case, the queue can be customized to drop the 
newest, or oldest, data block when it is filled.  Other types 
of applications, such as pipelines to process data files, 
cannot not tolerate data loss: in which case the queue can 
be made blocking.  In order to handle files, a synchroni-
zation mechanism was introduced to make sure that the 
transfer only starts when all the required clients establish 
communication through the flows, thereby preventing any 
data loss. 
 
The NDFS-II API abstracts the transport mechanism, 
providing methods for clients to join and leave the 
network at any time, and create flows based on their type 
for publication and subscription. Data blocks of an output 
flow can be filled with user data in several ways ranging 
from direct access of the memory block to the use of 
dedicated methods to fill out the block. Symmetrically 
user data stored in a data block from an input flow can be 
read using direct access to memory or using an iterator on 
the data block.  
 
An object oriented C++ API is provided, but other lan-
guage bindings have also been developed, so it is possible 
to use the system from Java, Matlab and GNU Octave 
programs.  Matlab and Octave provide a powerful set of 
operators that can be used in NDFS-II data flow graphs 
for signal processing or pattern classification.  For 
example, one can create a pipeline to handle operations on 
matrices where each client performs a specific operation 
on the matrix before passing it to the next.  



 

 
 
Figure 1. Servers exchange control messages to run clients, and mediate point-to-point data transfer. Duplicators manage shared 
memory access between clients within a machine and use TCP to send data over the network.

Complex behavior arising in natural ant colonies 
inspires agent-based search methods 

 

 
Physical and biological systems composed of many sim-
ple agents interacting under simple rules show complex 
emergent behaviors, or phase transitions, with increasing 
numbers of agents.  Entomologist Paul Grassé first pro-
posed the idea that foraging insect groups, like termites, 
used pheromone markings to guide other members to food 
sources, or places of collaborative work like nest con-
struction [11].  Beekman, and her colleagues observed 
that Pharaoh’s Ants (Monomorium pharaonis) colonies 
showed phase transitions from random foraging by indi-
vidual ants in small numbers, to collaborative patterns for 
larger numbers [12].  These phase transitions were found 
to exhibit hysteresis comparable to many physical 
systems undergoing first-order phase transitions.  
 
Sumpter and Pratt made more detailed analyses of differ-
ential equations that model trail maintenance by ant 

populations which predict transition between search states 
in ant populations like those observed in the natural ants 
[13]. Moreover, collaboratively discovered paths are short 
relative to the average found by individuals in the sto-
chastic search phase.  Importantly, the dynamics of phase 
change described by Beekman et al. imply that searches 
with too few ant agents will never cohere into efficient 
social foraging patterns. Thus populations below the 
social coherence threshold for a given problem space 
search stochastically, and may take very, very, long times 
to find an efficient solution.  So the ability to operate 
larger collaborating populations using parallel methods is 
important for larger graph search problems.  Figure 2 
shows a graph search problem and distribution of ant 
foragers for two populations, one too small for the phase 
transition to collaborative search to occur, and one large 
enough to achieve phase transition. 
 



Digital Ant Colony Optimization: A biologically 
inspired agent-based graph search method  
 
We investigated widely studied agent models of ants in 
the setting of our parallel-distributed processing middle-
ware, the NDFS II, for agent based graph search.  This 
framework allows us to employ multicore processors, and 
distributed systems to explore much larger problem 
spaces using agent-based algorithms like ACO than is 
feasible with single processor implementations.  The par-
allelization method uses the stygmergic markings from 
multiple agent populations running on many processors 
and host nodes with a periodic rendezvous/update cycle 
mediated by a master node. 
 
Work by entomologists including Grassé inspired Marco 
Dorigo and numerous collaborators to develop agent-
based simulations that capture important observed dy-
namical aspects of biological ant colony foraging [14].  
This model of natural ant colonies is composed of numer-
ous simple digital agents that stochastically extend search 
paths through problem graphs, and interact through styg-
mergic markings on the arcs they travel.  This allowed the 
study of the optimality and performance properties of 
these systems [15].   
 
Dorigo and others investigated a variety of pheromone 
update rules, and constraints on stochastic solution gen-
erators that enable complex combinatorial problems to be 
solved.  These ACO system variants included ant-density, 
ant-quantity, and ant-cycle, min-max, and best-so-far 
pheromone update methods.  Problems that have been 
successfully addressed include the Traveling Salesman 
Problem (TSP), network routing, sequence matching, 
alignment, and scheduling problems.   Many of these are 
NP-hard problems, unlike the shortest path problems with 
polynomial time solutions that biological ants solve.  
Dorigo’s Min-Max method is described below.  For our 
experiments we used the Min-Max method, except the 
best-so-far update rule.  This retains a greater physical 
realism and facilitates the study of the phase change de-
scribed by Beekman et al. because ant-agents lay phero-
mones only on their path of travel. 
 
Summary of the Dorigo Min-Max  ACO algorithm   
 
One of the most widely studied variants of ACO is the 
Dorigo Min-Max system [16], which we describe as 
follows.  The ACO systems can generate solutions to 
combinatorial problems specified at the highest level of 
abstraction as {Σ, f(S), Ω(S)}, with a solution set Σ, an 
objective function f(S), and a feasibility constraint Ω(S).  
Each solution S ∈ Σ is a state sequence {s1, s2, … s N(s)} 
that satisfies the constraint Ω(S), and its merit is f(S). 
 
Ant solution construction:  Ants are initially situated 
relative to a particular graph search problem.  Then partial 
solutions generated by each ant are stochastically ex-

tended into the adjacent nodes from its present position, if 
they are feasible under Ω(Sk) as follows. 
   
Until (S ∈ Σ) { 

Extend the state sequence {s1, s2, … sk} to 
include sk+1 by finding all feasible successors of 
sk on its adjacency list adj(sk) permissible under 
Ω(sk), and selecting randomly among them 
according to the probabilities computed as:  
 
 
  
 
 
 

if Ω(adj(Sk)) is the empty set, then the ant is teleported 
back to the nest and its partial solution is discarded. 
 

 
 
Figure 2.  The size of ant forager populations relative to the 
size of the search space determines if the foragers will ex-
plore the search space independently and stochastically (top), 
or collaborates to find efficient solutions (bottom).  Note the 
high degree of concentration of pheromones on a path near 
the best path at bottom where the phase transition to 
collaborative foraging has occurred. 
 
We note that this formulation of the arc transition prob-
abilities uses the exponent α to lower the probabilities of 
choices with relatively low pheromones and emphasize 
those with relatively more.  Note also that the τmin and τmax 
lower and upper bounds for arc-specific pheromones as-
sure that these probabilities are never undefined, or con-
verge to either one or zero. 
 



Pheromone Update: The Min-Max  pheromone 
update cycle is conditioned upon the best-so-far solution 
found by the ant population as a whole.  The first step is 
to evaporate the pre-existing pheromones.  Then the 
present solution is evaluated and replaces the previous 
best-so-far if it is better under f(S).  The arcs of the best 
solution are then updated with a specified amount of 
pheromone, possibly dependent on the merit of the 
solution. The Min threshold is applied so that no arc prob-
ability can go to zero and the Max threshold so no arc 
probability can approach one: 
 

 
 

 
 

 
Where arc(i,j).τ is the pheromone level associated with 
the arc, the evaporation rate is 0<ρ<1; the minimum 
pheromone value is τmin  > 0, and St and Sbest are solutions 
admissible under the constraint Ω(S).  Importantly, this 
strategy decouples the pheromone update process from 
the individual ants; associating it instead with general 
evaporation and the best solution produced to time t by 
the entire community of foragers.  Another point to note 
is that there is a finite upper bound on the pheromone at a 
given arc.  Specifically, once a globally optimal solution 
has been found, then its arcs are updated by evaporation 
and best path award every turn and so it converges to the  
maximum pheromone amount τmax given appropriate ρ.   
 
 
 
 
 
 

The ACO parallel architecture and Method 
 
The distributed ACO architecture is based on a model in 
which multiple copies of the problem graph and associ-
ated agent populations are distributed across many hosts 
and cores on worker processes, which periodically send 
results of local searches to a master node that combines 
them. Each worker node periodically sends the master 
node a copy of its local pheromone matrix and the worker 
nodes do not communicate directly with each other. The 
mechanism is iterated until the search has converged.  The 
NDFS-II distributed middleware layer manages the 
worker node creation and dispatches them to the 
processors specified in the control center. The NDFS II 
simulation map and the relationships among the 
components are shown in Figure 3. 
 
The master node server requests a list of all hosts willing 
to run the search from its peers.  The user specifies the 
number of worker nodes per host. The master has each 
worker node run a new instance of an ACO agent-based 
simulator.  The ACO simulation starts with the parameter 
distribution during which the master node creates a flow 
and sends the problem graph, evaporation rate, local ant 
population, and synchronization frequency to the worker 
nodes.  The second phase of the simulation proceeds with 
the iterative data exchange.  After a fixed number of local 
search iterations, the worker nodes enqueue the local 
pheromone matrices in the data flows to the master.  The 
master node gathers this information, sums it and returns 
it to the worker nodes to update their local search spaces. 
Thus the distributed ant populations communicate through 
the stygmergic markings maintained by the master node, 
and collaborate effectively, even when each sub-
population is below the coherence threshold.

 
 
Figure 3.  Control Center (top center) displays the NDFS-II application for distributed ACO, with a master node (left in control 
center), eight worker nodes (center in control node), and a display node (right in control center).  Performance graphs (bottom right) 
show the solution length versus time, and the disposition of the global agent population (top right). 



 
Figure 4.  The major classes of the agent-based search and event queue include the Engine, EventsList, and AntsList classes with 
Ant, and AntEvent subclasses.  These are used to implement a discrete event queue for ant agent movement through the graph, 
which the agents mark according to the desirability of the paths. 
 

 
Figure 5.  Scalability experiments with convergence times for one to fourteen compute cores decline throughout this range of 
parallelization.  Note that as we go from eight worker nodes to 14, the convergence time is approximately halved. 
 
  
The synchronization frequency can be in the range of 
hundreds of local agent cycles and still yield 
collaboratively obtained efficient solutions.  Note, that 
depending on the problem size, the synchronization 
frequency must be chosen carefully in order to get an 
optimal solution in a reasonable time.  Worker nodes can 
also extract the individual ant’s positions for display node 
visualization.  Master, worker and display nodes are 
independent Java programs and have a common JNI (Java 
Native Interface) library to wrap the NDFS C++ API.   
 
Event agent-based Search and Synchronization 
 
The agent-based search system is implemented as a dis-
crete event queue in Java using the class structure shown 
in figure 4.  The Environment class implements methods 

and data structures required to execute the search of a 
given problem space, then the ants search.  The Point 
object represents a location in (x, y) coordinate space for 
the associated node.  Each node of the problem graph has 
a successors attribute that specifies its adjacency list.  The 
Ant class describes the behavior of an artificial ant by 
implementing methods such as “choosePath”, 
“returnToNest” or “lookForFood”.  A forager Ant moves 
from one node to another in a time T determined by the 
length of the selected adjacent arc, and her speed.  A 
discrete event queue is implemented in the simulation 
engine using the Bag Java objects as described by Luke et 
al. [17] rather than Vectors or Array lists, thus providing 
us direct access to the event list. The master-workers 
synchronization process is based on two events occuring 
every time-step.  First the “MasterSynEvent” class 



receives the pheromones matrices and creates an updated 
solution for the workers.   Then the “WorkerSynEvent” 
class receives the new matrix from the master and applies 
its content to its search space. 
 
Scalability of parallel ACO graph search algorithm 
 
To quantify the parallel ACO algorithm performance un-
der the NDFS-II framework we deployed it across multi-
ple hosts with multiple compute cores.  We used 5,000 
ants in all of the searches, distributing them in equal 
numbers across the worker nodes. The search space 
consisted of a graph with ~10,000 nodes and ~ 19,000 
arcs.  We found that the solution quality depends on the 
master synchronization frequency between the distributed 
subpopulations and the time needed by the worker nodes 
to perform the search.  Synchronization every one to two 
hundred ant queue events provides search performance 
that equals a single large population at reasonable com-
munication overhead.  Thus the result (the length of the 
best path found by the ants) can be as good as the search 
running on one processor but is obtained much faster.  
The execution time obtained under the NDFS-II experi-
ments scales almost linearly for up to 14 worker nodes 
with a 24x speed increase, as shown in figure 5. 
 
3. Conclusions 
 
We introduced an enhanced NIST Data Flow System as a 
general parallel processing tool.  Features that served its 
early deployment as a realtime sensor data-transport sys-
tem provided a strong basis for more general parallel dis-
tributed processing capabilities.   Research in Complex 
Systems agent-based simulations at large scales, and 
parallel computations in general were discussed.  We 
described a parallel version of a combinatorial 
optimization algorithm based upon Ant Colony 
Optimization employing many simple ant agents with 
emergent behaviors with increasing agent populations.  
We showed very good scalability, suggesting that this 
particular system, and agent-based parallel algorithms in 
general have potential for application in very large graph 
search problems.  Future work will include larger scale 
problems; variations on agent based systems; 
asynchronous rendezvous; and will study the use of local 
search methods to improve combinatorial optimization.  
All of our work is in the public domain and we are happy 
to collaborate with any interested researchers in parallel 
processing. 
 
Disclaimer  
 
Employees of the Federal Government developed the 
NDFS II in the course of their official duties.  Pursuant to 
title 17 Section 105 of the United States Code this 
software is not subject to copyright protection and is in 
the public domain.  Commercial products and open source 
projects are identified to adequately describe the subject 

matter of this work. This implies no endorsement.  The 
NDFS is an experimental system and NIST assumes no 
responsibility for its use by other parties and makes no 
guarantees of its fitness for any particular purpose.  
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