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Abstract 
This paper discusses the evaluation of automated metrics developed for the purpose of evaluating 
machine translation (MT) technology. A general discussion of the usefulness of automated metrics is 
offered. The NIST MetricsMATR evaluation of MT metrology is described, including its objectives, 
protocols, participants, and test data. The methodology employed to evaluate the submitted metrics is 
reviewed. The general classes of metrics that were evaluated are summarized. Overall results of this 
evaluation are presented, primarily by means of correlation statistics, showing the degree of agreement 
between the automated metric scores and the scores of human judgments. Metrics are analyzed at the 
sentence, document, and system level with results conditioned by various properties of the test data. 
This paper concludes with some perspective on the improvements that should be incorporated into 
future evaluations of metrics for MT evaluation. 

1. Introduction 

It is not inconceivable to claim that IBM’s introduction of BLEU (1) in 2001 has had a greater impact on 
the advancement of statistical machine translation (MT) technology than any other single contribution 
to the field over the succeeding five years. BLEU was the first automated, and more importantly 
repeatable, metric to demonstrate general correlation with human judgments of translation quality (1), 
(2). As such, BLEU provided a means for instituting large-scale MT technology evaluations.1 As the 
popularity of these evaluations grew, BLEU quickly became the de facto standard metric for MT 
evaluation. 

Automated metrics have advantages over human assessments of MT quality. They are typically quick to 
implement and can be used to score large amounts of data with minimal human effort. Also, scoring MT 
output with automated metrics is repeatable – running the metric over the same data more than once 
produces identical results. These advantages make automatic metrics an integral tool for large-scale 
evaluations when limited resources are available for human assessments. Automated metrics also allow 
system developers to quickly assess the impact of a system modification, by translating the same source 
language dataset and scoring the MT system’s output produced before and after the modification. 

On the other hand, human assessments, especially from bilingual judges, are often accepted as the 
standard for evaluating translation quality, and they can be crafted to meet the needs of a specific 
application. Thus, human assessments have the potential to indicate the usefulness of the MT output. 
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 While other automatic metrics, such as sentence error rate (SER) and word error rate (WER) were used in MT 

research prior to BLEU, no studies demonstrating their correlation with human assessments of MT quality are 
readily available. 



Both manual and automated metrics have their known flaws, too. While showing general correlation 
with human assessments of MT quality, the scores produced by most automated metrics are not 
intuitive. A certain BLEU score does not allow conclusions as to the actual quality, and thus potential 
real-world usefulness, of the machine translation. Several studies have investigated shortcomings of or 
proposed changes to current automatic metrics. Doddington (3) and Babych et al. (4) suggest 
incorporating frequency weighting into measures based on n-gram co-occurrence statistics such as 
BLEU. Callison-Burch et al. (5) demonstrate cases where BLEU scores do not correlate well with human 
assessments; they argue that BLEU and other automatic metrics provide too rough a measure of 
translation quality, as they do not use models that allow the variation that can always be found in 
translation. Chiang et al. (6) also point to cases where BLEU produces counter-intuitive results and 
propose modifications to the metric. It has been shown that some automated metrics produce better 
scores for a particular type of MT system than others, where human assessments may produce opposite 
results. For example, BLEU has been shown to yield higher scores for statistical MT (SMT) systems than 
for rule-based MT (RBMT) systems even when the human assessment scores are higher for the RBMT 
system. This is one of the reasons why metrics such as BLEU may be viewed as most appropriate for 
measuring the impact of changes to an MT system over time or comparing very similar SMT systems, 
rather than measuring differences between substantially different MT systems. Also, most automated 
metrics to date have been built around, and tested most extensively on, output in the English language. 
Their usefulness for other target languages, especially non-Indo-European languages that are 
structurally very different from English (such as Arabic or Chinese) or whose orthography is less 
standardized, is not yet well understood. Condon et al. (7) have shown that for Arabic, normalizations 
that take apart the morphology of Arabic words will increase the correlation between BLEU scores and 
human judgments of semantic adequacy. 

Human assessments have two main disadvantages. The first is their high cost, both in manpower and 
time. The second is that scores from human assessments are not completely repeatable; while one 
would expect system rankings to remain the same or nearly the same with repeated human 
assessments, the exact scores will differ due to the inherent subjectivity of human assessments. 
Different judges will supply differing assessments (inter-judge disagreements), and upon repeating an 
assessment later, judges do not always assign the same scores as before (intra-judge disagreement). To 
account for the subjective nature of human assessments, one relies on assessments from multiple 
judges and uses statistical analyses to help account for judge differences. Ideally, one wants the judges 
to be highly correlated on average. For data that are roughly numeric, one can use Pearson’s 
correlation. For categorical (nominal-scale) data, one can use Cohen’s Kappa to measure agreement 
between pairs of judges (8), (9) or Fleiss’ generalization to measure agreement among more than two 
judges (10). 

Realizing the many benefits automated metrics could provide for improving MT technology, and 
acknowledging the growing list of concerns and identified shortcomings of the current metrics available, 
researchers have been on a constant quest to develop improved methods that automatically evaluate 
machine translation quality. 

1.1.  NIST Metrics for Machine Translation Challenge 

The interest in improving MT metrology is evident in that other recent initiatives have included analyses 
of the correlation between different human assessments and different automatic metrics, as was done 
in recent WMT workshops (11), (12). The unique goal of the NIST Metrics for Machine Translation 
Challenge (MetricsMATR) is to focus exclusively on MT metrology research, bringing together the 
numerous research efforts conducted in the field of MT metrology, and helping to promote innovations 



in the development of automated metrics. MetricsMATR serves as a forum for researchers to exchange 
ideas. (13) 

Successfully capturing the strengths and weaknesses of MT metrics requires their analysis over large and 
varied data sets. For instance, one may want to measure the relative performance of metrics, 
conditioned to specific criteria, such as the source language, the type of MT system (statistical, rule-
based, hybrid), and the data genre. MetricsMATR makes use of many data sets assembled from various 
NIST-coordinated MT evaluations. Each data set contains one or more reference translation(s), one or 
more machine translation(s), and one or more type(s) of human assessments. 

The rationale behind the analyses performed for MetricsMATR is that the closer an automated metric 
models human judges, the better the metric. Consequently, human assessment plays a key role in this 
challenge. Different types of human assessments are available and will be used to compare the metrics 
scores against. Finding the best way to do human assessments is itself a major research challenge. 
Achieving acceptable intra- and inter-annotator agreement is one challenge; designing assessments that 
can be performed with a reasonable amount of time and effort is another. Recent initiatives that have 
performed investigations of intra- and/or inter-annotator agreement, and demonstrated a need for 
improving it, include the IWSLT 2006 evaluation campaign (14), the WMT07  (11) and WMT-08  (12) 
workshops, and the NIST OpenMT 2009 evaluation. WMT-08 had a specific focus on improving human 
assessment methods by increasing intra- and inter-annotator agreement and reducing assessment time 
(by assessment at a sub-sentential constituent level, a different approach than what is done in 
MetricsMATR where assessment is at the sentence level). 

1.2.  Outline 

The second section of this paper describes the MetricsMATR data, including the human assessment 
types used for the correlation studies. Section 3 provides an overview of the evaluated metrics, both the 
submitted metrics and a set of existing baseline metrics. Section 4 describes the evaluation protocols, 
section 5 the results and section 6 summarizes the first MetricsMATR evaluation and suggests future 
directions for the evaluation of automated MT metrics. 

2. MetricsMATR 2008 Data 

The term “data” is used to refer to both the machine translations that are scored against human 
reference translations by the automated metrics, and the human assessments that the automatic 
metrics are to be compared against. The MetricsMATR machine translation data is described in section 
2.1 which is followed by a description of the human assessments in section 2.2. 

2.1.  Machine Translation Data 

As coordinator of multiple MT technology evaluations, NIST has access to a large and varied set of MT 
data submitted for formal evaluation. Table 1 describes the MetricsMATR evaluation test set; the 
components from the individual technology evaluations are described in detail in the subsections below. 



Evaluation Name Source 
Language 

Target 
Language 

Data Genre Documents Segments References Systems 

MT08 Arabic English Newswire 22 228 4 10 

MT08 Arabic English Web 20 177 4 10 

MT08 Chinese English Newswire 29 263 4 10 

MT08 Chinese English Web 23 344 4 10 

GALE Phase 2 Arabic English Newswire 22 207 1 3 

GALE Phase 2 Arabic English Web 23 262 1 3 

GALE Phase 2 Chinese English Newswire 25 183 1 3 

GALE Phase 2 Chinese English Web 22 209 1 3 

GALE Phase 2.5 Arabic English Broadcast 
News 

20 210 1 2 

GALE Phase 2.5 Chinese English Broadcast 
Conversations 

21 267 1 3 

GALE Phase 2.5 Chinese English Broadcast 
News 

21 221 1 3 

TRANSTAC JAN07 Arabic English Dialog 15 433 4 5 

TRANSTAC JUL07 Arabic English Dialog 47 419 4 5 

TRANSTAC JUL07 Farsi English Dialog 25 414 4 5 
Table 1: MetricsMATR 2008 evaluation data statistics are shown. “Systems” represent the number of translations per 
segment. For the MT08 and TRANSTAC data sets, where multiple references are used, two references were included as 
systems in the single reference track. 

Although the MetricsMATR evaluation encouraged the development of metrics applicable to a variety of 
target languages, the original MetricsMATR evaluation plan stated that analysis would be limited to the 
scoring of English translations. A secondary data set made available for use from ELDA/ELRA had the 
target language as French, but this data is not discussed in this paper.  The ELDA/ELRA data is planned 
for full inclusion in the next MetricsMATR test. 

2.1.1. MT08 data set 

The MT08 data was drawn from systems that voluntarily processed the MT08 Progress test set used in 
the NIST 2008 Open MT evaluation.2 The Progress test set is a special data set developed to allow more 
meaningful analysis of year-to-year progress in MT technology, by reusing the same test data with 
special protections in place to insure the test data remains strictly unseen.  The systems included in the 
MetricsMATR test data were chosen to provide a range of MT translation quality, as determined by a set 
of commonly used automated MT metrics. 

There were two motivations for selecting translations from the Progress test set. First, the data was 
used in an instantiation of the DLPT-star MT comprehension test (15) (described in section 2.2.6) 
providing another aspect of human assessment available for analysis, and second, the Progress test set 
will be reused over time providing the opportunity to update the MetricsMATR data set with more 
recent and presumably better translations of the same source data.  

With MT08 being an open evaluation it was possible to select translations from several systems (10). 
And the MT08 data had 4 high-quality reference translations, allowing the MT08 system translations to 
be used in both the single reference and the multiple reference evaluation tracks of MetricsMATR, both 
of which are described in section 4.2. 
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MT08 data represents translations of text-to-text MT technology. The source language was either Arabic 
or Chinese, with the target language being English. OpenMT evaluations traditionally use data with a 
news focus, but in recent years, more informal types of data, such as data extracted from weblogs and 
on-line forums have been included.  Both types of data were in the MetricsMATR test set. 

MT08 data represents 48% of the MetricsMATR test data. Translations from several available systems 
contribute to the high percentage. 

2.1.2. GALE data set 
The GALE data was drawn from translations produced during phase 2 (P2) of the Global Autonomous 
Language Exploitation (GALE) evaluation.3 

The inclusion of data from GALE provided added benefit to MetricsMATR since the GALE program’s 
official metric was a form of human assessment, HTER (16), providing another form of analysis in the 
determination of metric usefulness. 

The GALE P2 data represents translations from text-to-text MT systems, while P2.5 represents 
translations from speech-to-text MT evaluations. Note that only the resulting translations (text data) 
were used in MetricsMATR tests. 

As with the MT08 data, the target language was English, which was translated from one of the two 
source languages, Arabic or Chinese. The P2 data contained the same type of text data as MT08, 
newswire and web data.  

GALE data represents 17% of the MetricsMATR test set; relatively few systems were available. 

2.1.3. TRANSTAC data set 
The TRANSTAC data was drawn from systems submitted for the January and July 2007 Spoken Language 
Communication and Translation System for Tactical Use (TRANSTAC) evaluations.4 

TRANSTAC data is unique to the MetricsMATR test data in that it represents free form dialogs. These 
dialogs were collected between English speaking military personnel and native speakers of Iraqi Arabic 
and Farsi. Although these collections were bi-directional, only the translations into English were 
included in MetricsMATR 2008. In addition, only the text translations (input to speech synthesis systems 
in the TRANSTAC evaluation) were used in MetricsMATR. 

TRANSTAC data represents 35% of the MetricsMATR test set. 

2.2.  Human Assessments 

A key component of the MetricsMATR evaluation was the production of meaningful human assessments 
to serve as the evaluation’s reference key.  The automatic metrics were evaluated by how well they 
model these human assessments.  Two types of assessment were implemented specifically for 
MetricsMATR, while several others that were created for the individual technology evaluations were 
also available. 

NIST designed and the Linguistic Data Consortium (LDC) implemented the two types of human 
assessments that were judged over the entire MetricsMATR test set. We refer to these assessments as 
segment level Adequacy and pair-wise Preferences.   
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In addition to these assessments, MT08 data was previously scored using a MT comprehension test, 
DLPT-star (15); the GALE data set was previously assessed using HTER; and the TRANSTAC portion of the 
evaluation set was annotated for segment level adequacy on a 4-point scale and for adjusted probability 
that a concept was correctly relayed. The assessments are summarized in Table 2 and described in more 
detail below. 

Human Assessment Type Short Name MT08 GALE TRANSTAC 

Adequacy (7-pt, Y/N question) Adequacy7, AdequacyYN Yes Yes Yes 

Preferences Preferences Yes Yes Yes 

HTER HTER No Yes No 

Adequacy (4-pt) Adequacy4 No No Yes 

Adjusted probability that a concept is correct AdjProbCorr No No Yes 

DLPT-star DLPT* Yes No No 
Table 2: Human Assessment types available for the MetricsMATR 2008 evaluation data sets 

2.2.1. Adequacy (7-pt scale, Y/N question) 
For this assessment, judges were presented with the human reference translation and one candidate 
translation to evaluate. The first question asked was a “quantitative” adequacy question: 

“How much of the meaning expressed in the Reference translation is also expressed in the System 
translation?” 

The answer was recorded using a 7-point scale with the extremes and mid-point labeled as “None” (1), 
“Half” (4), and “All” (7). Then, a second, a more “qualitative” question was asked: 

“Does the Machine translation mean essentially the same as the Reference translation?” 

The answer was recorded using a binary Yes/No choice. When the answer to the first question ranged 
from “None” to “Half”, the second question was not asked and the answer was set to “No”. 

Judges assessed the quality of the translations one segment at a time. All segments were presented in 
the order of appearance of a given document, and each segment received decisions from two judges. 

Adequacy7 was the average of all judges’ scores for a given segment. For document and system level 
values, an average of the segment level scores weighted by the number of reference tokens was used. 

AdequacyYN was the ratio of the number of ‘Yes’ judgments for a given segment, to the total number of 
judgments, across all judges. Counts were aggregated to obtain document and system level ratios. 

On average a judge spent 23 seconds to assess a single segment for Adequacy. This included both the 
Adequacy7 and the AdequacyYN decision.  Inter-judge agreement is shown in Figure 1.  We calculate 
the distance in categories between two judges that assessed the same segment.  When both judges 
assign the same score we use the term “exact match”.  When the judge’s scores differ by one category, 
we use the term “1-off, by 2 “2-off”, and so on.  As seen in Figure 1 the majority of the judgments were 
very close, with approximate 78% falling into either the exact-match or 1-Off category.  Less than 1.5% 
of all the judgments differed by more than 3 categories.  



 

Figure 1: Inter-judge agreements for the Adequacy7 assessment task.  A linear weighted Kappa value was calculated for each 
category.  Requiring exact match Kappa = .25, allowing for 1-off Kappa =.58, and allowing for 2-off Kappa = .80. 

2.2.2. Preference 

For this task, judges were asked to express their preference between two candidate translations when 
compared to a human reference translation. Judges were presented with all possible pair-wise 
comparisons for a given segment, with segments being presented in the order in which they appeared in 
the document and with the order of system comparisons appearing randomly. Due to the large number 
of comparisons, this task was limited to the first four segments of each document. 

The question asked of the judge was:  “Which translation do you prefer?” 

Judges could select a preference for one of the two system translations, or they could choose no 
preference when the translations were equally good or equally bad – a choice made about once in every 
four decisions. At least one judgment per segment was collect for each possible system-to-system 
comparison and for 5,826 comparisons two decisions were collected.  In these instances the judges 
disagreed 10% of the time, including when one judge selected a system as preferred and the other did 
not have a preference. 

Preferences was the number of times a given system segment was preferred, divided by the total 
number of comparisons involving the system. Counts were aggregated to obtain document and system 
level ratios. 

2.2.3. Adjusted probability that a concept is correct 

This measure was used in the TRANSTAC evaluations, thus assessments were limited to the TRANSTAC 
portion of the evaluation set. For this measure, experts identified concepts in the source data. Bilingual 
judges then match these against the system translation as correct, substituted, or deleted; they also 
marked inserted concepts. The adjusted probability that a concept is correct was computed from counts 
of correctly translated concepts and errors (17). 



2.2.4. Adequacy (4-pt scale) 

Another measure used in the TRANSTAC evaluations was adequacy judgments made on a four point 
scale in which bilingual judges went through a two-step decision process comparing the source data to a 
system translation.  First, judges decided whether the translation was more adequate or more 
inadequate, then whether it was completely or tending adequate, or tending inadequate or completely 
inadequate (17). 

Adequacy4 was the weighted average (by reference segment length) of all judges’ scores, per segment. 

2.2.5. HTER 

This measure was available for the GALE portion of the data. HTER stands for “Human Targeted 
Translation Edit Rate” (16). For the HTER annotations, a human assessor compared a system translation 
to a reference translation, and edited the system translation such that it would have the same meaning 
as the reference translation. This was emphasized to be done with as few edits as possible. The number 
of needed edits (insertions, deletions, substitutions, and shifts) was then measured automatically using 
the TER (Translation Edit Rate) (16) measure. 

2.2.6. DLPT-star MT Comprehension Test 

This measure was available for the MT08 portion of the evaluation data. DLPT-star (15) is a MT 
comprehension test that uses questions developed from the source data. Subjects answered the test 
questions based translated output and their answers were graded by test experts. Correlations of 
automatic metrics with the DLPT-star test are not analyzed in this paper. 

3. MetricsMATR 2008 Metrics 
There were 39 metrics evaluated in the MetricsMATR 2008 evaluation, seven of which were preexisting 
baseline metrics, that is, metrics that have been used prominently in past evaluations. The remaining 32 
metrics were submitted by the participants. Each metric is referred to by a unique identifier (in bold). 

3.1.  Baseline metrics 

3.1.1. Variants of the BLEU metric 

BLEU (1) is a precision-based metric that counts the number of n-grams (sequences of n consecutive 
tokens) that a candidate translation and a corresponding reference translation have in common. The 
different precision scores (one per n-gram length) are combined using the geometric mean. Once the 
overall precision score is computed, a brevity penalty is computed over the entire corpus. The purpose 
of this brevity penalty is to penalize candidate translations that are shorter (overall) than the reference 
translations. 

MetricsMATR evaluated four baseline variants of the BLUE metric using case-sensitive scoring: 

 BLEU-1: (IBM version 1.04) limited to unigram precision 

 BLEU-4: (IBM version 1.04) precision scores for n-grams of size between 1 and 4 tokens 

 BLEU-v11b: (NIST mteval-v11b) similar to BLEU-4, but with a modified brevity penalty 

 BLEU-v12: (NIST mtevale-v12) similar to BLEU-v11b, but with a modified tokenization scheme 



3.1.2. NIST score 

The NIST score (3) was the official metric in early DARPA TIDES MT evaluations. It is based on 
information weighted n-gram co-occurrences. Some of the differences between BLEU and the NIST 
score include the method of co-occurrence measures (arithmetic mean replacing geometric mean), a 
modified brevity penalty, and a modified weighting of n-grams, depending on the frequency of specific 
n-grams. 

 NIST-v11b: (NIST mteval-v11b) scores case-sensitive n-grams of size varying between 1 and 5 

3.1.3. TER 

TER (16) is a measure of edit distance which captures the number of edits required to make a candidate 

translation identical to a reference translation, counting block moves as a single error. Scoring was case 

sensitive and uses similar text normalization as the variants of BLEU. 

 TER-v0.7.25: (BBN/UMD version 0.7.25) TERCOM scoring software5 

3.1.4. METEOR 

METEOR (18) was one of the first metrics developed to use additional lexical information (synonymy 
information from WordNet (19)), and additional syntactic information (stemming using the Snowball 
stemmers (20)) to enhance word matching. METEOR can use different mapping modules to find the 
optimal word-to-word matches. The final score is computed as a combination of precision and recall 
over the unigram matches. 

 METEOR-v0.6: (CMU version 0.66) modules used: exact, porter, wn_stem and wn_synonymy 

Version 0.6 was not configured to output document level scores. As a substitute, document level scores 
were computed as the un-weighted average of all segment scores of a given document.  The authors of 
METEOR entered an updated version in the MetricsMATR evaluation. 

3.2.  Submitted metrics 

Table 3 lists the metrics submitted for evaluation. The affiliations submitting the metrics and the metric 
names are identified. Several of these metrics have corresponding papers in this issue of MT Journal. 

Affiliation Metric name(s) 

BabbleQuest Badger, BadgerLite 

Carnegie Mellon University METEOR-v0.7, METEOR-ranking, 
mBLEU, mTER 

City University of Hong Kong, Department of Chinese, 
Translation and Linguistics 

ATEC1, ATEC2, ATEC3, ATEC4 

Columbia University SEPIA1, SEPIA2 

Harbin Institute of Technology, School of Computer Science 
and Technology 

SVM-Rank, SNR, LET 

National University of Singapore MaxSim 

RWTH Aachen University BleuSP, invWer, CDer 

Stanford University RTE, RTE-MT 
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University of Maryland / BBN Technologies TERp 

Universitat Politècnica de Catalunya, LSI ULCh, ULCopt, DP-Or, SR-Or, DR-Or, 
DP-Orp 

USC, Information Sciences Institute (Team 1) BEwT-E 

USC, Information Sciences Institute (Team 2) Bleu-sbp, 4-GRR 

University of Washington EDPM 
Table 3: List of submitted metrics and the affiliation who created them 

4. MetricsMATR 2008 Evaluation Protocols 

The evaluation specification document (13) created for the MetricsMATR 2008 evaluation thoroughly 
described the data, tasks, any rules and restrictions that applied, and the evaluation protocols to be 
followed. Such a document is necessary to ensure a smooth implementation of the evaluation. In this 
section, we review the key elements described in the evaluation specification document. 

4.1.  Metric Development 

NIST MT technology evaluations require that a set of rules and restrictions be obeyed during system 
development such that systems may be directly compared. This scenario does not apply to the 
development of new metrology techniques. In fact, for MetricsMATR, NIST encouraged the use of 
innovative techniques, welcoming submissions from a wide range of disciplines not limited to those with 
an interest in MT technology development.  The requirements that were enforced for MetricsMATR 
were developed for ease of metric implementation, not to restrict metric development. 

4.1.1. Requirements 

There were four basic restrictions that NIST required for each submitted metric. 

Rule #1: Metrics were required to accept as input NIST OpenMT XML formatted files. 

Since metrics were installed at NIST to be run locally over the MetricsMATR test set, it was important 
that they accept the standard file format allowing for trouble-free invocation of each metric. 

Rule #2: Metrics were to output segment, document, and system level scores in a prescribed format. 

The three sets of outputs were required for various levels of analysis. In a few cases, a particular metric 
was not designed to calculate scores at each of the three levels. In such cases, the metric score was 
meaningless for the particular level and it was noted in the system description. The requirement that 
the output files follow a prescribed format was to aid batch comparisons. Table 4 lists the tab-separated 
information required in an output record for each of the three levels of scores. 

Level Field #1 Field #2 Field #3 Field #4 Field #5 Field #6 

System Test_ID System_ID Score <optional>   

Document Test_ID System_ID Doc_ID Score <optional>  

Segment Test_ID System_ID Doc_ID Seg_ID Score <optional> 
Table 4: Record contents for the three levels of score reports 

Rule #3: Metric software was to run on one of three predetermined operating systems. 

NIST identified three common system architectures that were available for the running of submitted 
metrics. The first, and most commonly used, was a Linux CENT OS 5 (or newer) system. The second, 
which was required for two metrics, was a Windows XP system. The third available system was a MAC 
OS X system. NIST did not test the same metric on each of the three system architectures. 



Rule #4: Reasonable installation effort 

This rule was included to guard against the NIST installation process being used as a debugging service. 
The rule stated that a metric should be installed, compiled, and tested within approximately four hours, 
and all required support programs and scripts would be compatible with the most recent releases. 

4.1.2. Properties 

To assist potential metric developers, NIST identified properties that useful MT metrics have in common: 

 Automaticity: Metrics that do not require human intervention outside the creation of the 
reference translation are useful to evaluate systems over large test sets and can be used in 
training by certain MT algorithmic approaches. 

 Repeatability (Reliability): Metrics that produce the same score every time they process the 
same set of data are useful in determining progress. 

 Portability: Metric software should be universally available. 

 Speed: To the extent possible, metrics should be quick to run. 

 Limited Annotation of the Reference Data: Metrics had at their disposal up to four high quality 
reference translations for the MetricsMATR evaluation. Metrics that required additional 
annotation on the reference (or source) data in order to provide insights into quality were to use 
an automated mark-up scheme (which if proven useful, NIST would consider for full manual 
mark-up in later MetricsMATR tests). 

4.1.3. Objectives 

Our search for new and improved automated MT metrics was motivated by what we found missing from 
current approaches. 

High Correlation with Human Assessments of MT Quality: Assessment by human judges is the most 
widely accepted standard for the definitive evaluation of MT quality. Automated metrics that correlate 
very highly with qualified human assessments of translation quality are useful as surrogate measures for 
the slow and expensive process of obtaining assessments from humans, preferably bilingual, judges. 

Ability to Differentiate between Systems of Varying Quality: To the extent possible, metrics should be 
able to differentiate the quality of two different systems. Metrics should be sensitive enough, and the 
scores that they report should be fine-grained enough, to rank-order systems that are fairly close in 
quality. This property should apply across the range of poor to high quality translations. 

Intuitive Interpretation: Ideally, the information that metrics report (the scores) would be meaningful 
standing on its own. A complaint levied against most current automatic MT metrics is that a particular 
score value reported does not give insights into quality, nor is it easy to understand the practical 
significance of a difference in scores. For most metrics, all one can say is that higher is better for 
accuracy metrics and lower is better for error metrics.7 

Applicable to Multiple Target Languages: Current automated metrics, especially those that were 
designed to exploit linguistically-motivated data, have been developed primarily for the evaluation of 
translations into English. These metrics may have linguistic characteristics of English (and, more 
generally, Indo-European languages) in their underlying assumptions. For example, n-grams have little 
relevance for languages with free word order. Similarly, metrics that count individual words as correct or 
wrong will score harshly translations into languages that aggregate multiple elements of meaning into 
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one word.8 Further, there is a lack of equality in the linguistic resources a metric might use for 
evaluation of the many possible target languages. 

4.2.  Evaluation Tracks 

One of the difficulties in measuring translation quality is in determining what the best translation should 
be, given that there are many acceptable variations of a translation. Several approaches have been 
pursued to assist automatic metrics in comparing a system translation to the full space of possible 
correct translations. The most common method has been to compare the system translation against 
multiple, independently created, reference translations. Other methods include providing alternatives 
for ambiguous text or idioms. Some metrics attempt to generate this large space of translation 
possibilities themselves by making use of stemmers, synonymy, and phrasal reordering techniques. 

4.2.1. Single Reference Track 

A benefit could be gained for large scale MT technology evaluations if a single high-quality reference 
translation was all that was required to assess MT quality. To this end, MetricsMATR tested the 
submitted metrics when limiting the reference set to a single high quality translation. 

4.2.2. Multiple Reference Track 

Traditionally, MT technology evaluations have placed the burden of alternative translations on the 
reference set, providing multiple, independently created translations to account for translation 
variability. Metrics were developed to exploit a set of multiple translations when calculating the quality 
of a system translation. 

MetricsMATR included a track that tested the submitted metrics when four independent reference 
translations were available. Results are contrasted with those from the single reference track. 

4.3.  Processing the Evaluation Data 

We acknowledge that the performance of a metric might be tied to the method the evaluator uses to 
score the evaluation set. This section reviews the method that NIST used in MetricsMATR 2008 to score 
the evaluation test set with each metric. 

The approach taken mimicked what is typically done for evaluation where a specific metric is run over a 
well-defined set of translations for a single system. Scores are produced for that system over that set of 
data. Using the MT08 evaluation test set as an example, a system produced translations for Arabic 
newswire data and Arabic web data. While the two sets of translations could be combined and scored as 
one set, for MetricsMATR, first the references and system translations were limited to the MT08 Arabic 
newswire data and scores for each metric were produced. Then the references and system translations 
were limited to the MT08 Arabic web data and scores for each metric were produced. 

This is important because some metrics may make use of the reference data to define weights for the 
internal language model scoring. For these metrics, the more data to be scored, the smoother the 
weighting will be. 
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 For example, the Arabic word  (pronounced lilbernamij) means “to the program” and consists of three 

elements (li al bernamij) with those three pieces of meaning. An error on any one of the three would cause typical 
MT metrics to score the whole word as wrong, thus in effect scoring all three pieces of meaning as incorrect. 



4.4.  Schedule 

MetricsMATR was a fourteen month endeavor.  The key milestone dates were: 

 SEP-2008, planning began 

 JAN-2008, call for participation issued 

 MAR-2008, development data released 

 AUG-2008, developer’s declaration of plans to participate deadline 

 AUG-SEP-2008, metric installation 

 OCT-2008, analysis and report generation 

 OCT-2008, evaluation workshop 

4.5.  Types of Analysis 

Metrics were evaluated separately at the segment level (useful for error analysis), document level (most 
natural unit of data), and system level (as is done in a formal evaluation). 

Metrics were evaluated as to the level to which they agree with human judgments of quality, using 
several correlation statistics. A metric’s ability to distinguish quality between systems was determined 
using significance tests at the document and segment level. 

In addition to the evaluation tracks, single vs. multiple references, results are reported for each well 
defined subset of data, including by evaluation test set, genre, and technology type. Metric correlations 
are reported9 for many of the human assessments available for MetricsMATR 2008. 

4.6.  Workshop 

MetricsMATR 2008 concluded with a workshop, held in conjunction with the AMTA 2008 Conference.10 
The workshop brought together the organizers and participants of MetricsMATR and those interested in 
MT metrology development. Results were reviewed and metric talks were given. Much of the workshop 
discussion was geared toward improvements and planning for the next MetricsMATR evaluation, 
currently planned for the spring of 2010. 

5. MetricsMATR 2008 Evaluation Results 

Thirty-nine metrics were evaluated in the single reference track, 32 newly submitted metrics and 7 
baseline metrics.  All but two11 of the metrics were also evaluated in the multiple reference track.  In the 
following sections, we examine the correlation results, significance test results, and other findings. 

5.1. Correlation results 

We report correlations for the Spearman’s rho statistic (Spearman’s correlation coefficient for ranked 
data) as our primary correlation measure. Although we found that the correlations statistics for 
Spearman’s Rho, Kendall’s Tau, and Pearson’s R to closely track each other, Spearman’s provides the 
benefit of not showing sensitivity to outliers (as does Pearson’s R), and being based on ranks, 
Spearman’s does not assume samples from a bivariate normal distribution (21). 

Table 5 and Table 6 show the correlation results for the single and multiple reference tracks, 
respectively, when comparing the metrics scores to the Adequacy7 judgments over the entire  
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 http://www.itl.nist.gov/iad/mig/tests/metricsmatr/2008/results 

10
 http://www.amtaweb.org/AMTA2008.html 

11
 Metrics RTE and RTE-MT were designated to be run in the single reference track only. 
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MetricsMATR evaluation set. Bolding is used to identify the highest correlation at each level of analysis. 

Rank Metric Spearman’s rho (95% confidence interval) 

Segment level 
(25473 data points) 

Document level 
(2179 data points) 

System level 
(89 data points) 

1 TERp -0.68 (-0.69, -0.68) -0.81 (-0.83, -0.80) -0.87 (-0.91, -0.81) 

2 METEOR-v0.6 0.68 (0.67, 0.69) 0.81 (0.80, 0.83) 0.89 (0.83, 0.93) 

3 METEOR-ranking 0.67 (0.66, 0.68) 0.84 (0.83, 0.85) 0.89 (0.84, 0.93) 

4 Meteor-v0.7 0.67 (0.66, 0.67) 0.84 (0.83, 0.85) 0.90 (0.85, 0.93) 

5 CDer -0.65 (-0.66, -0.65) -0.84 (-0.85, -0.82) -0.90 (-0.94, -0.86) 

6 EDPM 0.64 (0.63, 0.64) 0.81 (0.80, 0.83) 0.88 (0.82, 0.92) 

7 SEPIA1 0.63 (0.62, 0.64) 0.81 (0.80, 0.83) 0.87 (0.81, 0.91) 

8 LET 0.63 (0.62, 0.64) 0.80 (0.78, 0.81) 0.88 (0.82, 0.92) 

9 SEPIA2 0.63 (0.62, 0.64) 0.81 (0.79, 0.82) 0.86 (0.80, 0.91) 

10 BleuSP 0.62 (0.61, 0.63) 0.79 (0.77, 0.81) 0.85 (0.78, 0.90) 

11 BLEU-1 0.62 (0.61, 0.63) 0.80 (0.79, 0.82) 0.86 (0.80, 0.91) 

12 NIST-v11b 0.62 (0.61, 0.63) 0.81 (0.80, 0.83) 0.88 (0.82, 0.92) 

13 SVM-Rank 0.61 (0.60, 0.62) 0.79 (0.78, 0.81) 0.88 (0.83, 0.92) 

14 RTE-MT 0.61 (0.60, 0.61) 0.69 (0.67, 0.71) 0.70 (0.57, 0.79) 

15 invWer -0.60 (-0.61, -0.59) -0.81 (-0.82, -0.79) -0.89 (-0.93, -0.84) 

16 ATEC1 0.58 (0.58, 0.59) 0.67 (0.64, 0.69) 0.84 (0.76, 0.89) 

17 4-GRR 0.58 (0.57, 0.59) 0.78 (0.76, 0.79) 0.86 (0.79, 0.90) 

18 ATEC2 0.58 (0.57, 0.59) 0.67 (0.64, 0.69) 0.84 (0.76, 0.89) 

19 BLEU-4 0.58 (0.57, 0.59) 0.77 (0.75, 0.79) 0.84 (0.77, 0.89) 

20 ATEC4 0.58 (0.57, 0.59) 0.66 (0.64, 0.69) 0.83 (0.75, 0.89) 

21 TER-v0.7.25 -0.58 (-0.59, -0.57) -0.79 (-0.81, -0.78) -0.89 (-0.93, -0.83) 

22 ATEC3 0.57 (0.57, 0.58) 0.67 (0.64, 0.69) 0.87 (0.81, 0.92) 

23 RTE 0.57 (0.56, 0.57) 0.66 (0.63, 0.68) 0.62 (0.48, 0.74) 

24 BEwT-E 0.49 (0.48, 0.50) 0.65 (0.63, 0.68) 0.78 (0.68, 0.85) 

25 MaxSim 0.46 (0.45, 0.47) 0.53 (0.49, 0.56) 0.59 (0.43, 0.71) 

26 ULCopt 0.46 (0.45, 0.47) 0.48 (0.45, 0.51) 0.56 (0.40, 0.69) 

27 ULCh 0.45 (0.44, 0.46) 0.46 (0.42, 0.49) 0.54 (0.38, 0.67) 

28 SNR 0.45 (0.44, 0.46) 0.50 (0.47, 0.53) 0.56 (0.40, 0.69) 

29 DP-Or 0.45 (0.44, 0.46) 0.49 (0.46, 0.52) 0.58 (0.43, 0.71) 

30 BadgerLite 0.44 (0.43, 0.45) 0.55 (0.52, 0.58) 0.69 (0.56, 0.79) 

31 BLEU-v12 0.44 (0.43, 0.45) 0.78 (0.76, 0.79) 0.86 (0.79, 0.90) 

32 BLEU-v11b 0.43 (0.42, 0.44) 0.77 (0.76, 0.79) 0.85 (0.78, 0.90) 

33 Bleu-sbp 0.43 (0.42, 0.44) 0.78 (0.76, 0.79) 0.87 (0.81, 0.91) 

34 SR-Or 0.40 (0.39, 0.41) 0.45 (0.42, 0.49) 0.51 (0.34, 0.65) 

35 DR-Or 0.39 (0.38, 0.41) 0.41 (0.37, 0.44) 0.50 (0.33, 0.64) 

36 mBLEU 0.39 (0.38, 0.40) 0.52 (0.49, 0.55) 0.69 (0.56, 0.79) 

37 Badger 0.39 (0.38, 0.40) 0.53 (0.50, 0.56) 0.66 (0.53, 0.77) 

38 DP-Orp 0.33 (0.32, 0.34) 0.33 (0.30, 0.37) 0.47 (0.29, 0.62) 

39 mTER -0.33 (-0.34, -0.32) -0.50 (-0.53, -0.47) -0.68 (-0.78, -0.56 
Table 5: Overall correlation results against Adequacy7 judgments, for the single reference track. Metrics are ordered by 
segment level correlation. (Negative correlations represent error metrics.) 



 

Rank Metric Spearman’s rho (95% confidence interval) 

Segment level 
(16450 data points) 

Document level 
(1375 data points) 

System level 
(55 data points) 

1 METEOR-v0.6 0.72 (0.71, 0.73) 0.77 (0.75, 0.79) 0.85 (0.75, 0.91) 

2 SVM-Rank 0.72 (0.71, 0.73) 0.79 (0.77, 0.81) 0.83 (0.72, 0.89) 

3 Meteor-v0.7 0.72 (0.71, 0.72) 0.84 (0.82, 0.85) 0.88 (0.81, 0.93) 

4 CDer -0.71 (-0.72, -0.71) -0.85 (-0.87, -0.84) -0.92 (-0.95, -0.86) 

5 TERp -0.71 (-0.72, -0.71) -0.81 (-0.83, -0.79) -0.87 (-0.92, -0.78) 

6 METEOR-ranking 0.71 (0.70, 0.72) 0.82 (0.80, 0.84) 0.84 (0.75, 0.91) 

7 BleuSP 0.69 (0.68, 0.69) 0.80 (0.79, 0.82) 0.84 (0.73, 0.90) 

8 SEPIA1 0.67 (0.67, 0.68) 0.83 (0.81, 0.85) 0.90 (0.84, 0.94) 

9 LET 0.67 (0.67, 0.68) 0.80 (0.78, 0.82) 0.93 (0.89, 0.96) 

10 EDPM 0.67 (0.66, 0.68) 0.83 (0.81, 0.84) 0.92 (0.87, 0.95) 

11 SEPIA2 0.67 (0.66, 0.67) 0.83 (0.82, 0.85) 0.93 (0.88, 0.96) 

12 invWer -0.66 (-0.67, -0.66) -0.83 (-0.84, -0.81) -0.91 (-0.95, -0.85) 

13 NIST-v11b 0.65 (0.64, 0.66) 0.85 (0.83, 0.86) 0.93 (0.89, 0.96) 

14 ATEC4 0.65 (0.64, 0.66) 0.67 (0.64, 0.70) 0.90 (0.83, 0.94) 

15 ATEC1 0.65 (0.64, 0.65) 0.68 (0.65, 0.70) 0.90 (0.84, 0.94) 

16 ATEC2 0.64 (0.63, 0.65) 0.67 (0.64, 0.70) 0.90 (0.84, 0.94) 

17 ATEC3 0.64 (0.63, 0.65) 0.68 (0.66, 0.71) 0.93 (0.89, 0.96) 

18 BLEU-1 0.63 (0.62, 0.64) 0.82 (0.80, 0.84) 0.91 (0.85, 0.95) 

19 BLEU-4 0.62 (0.61, 0.63) 0.78 (0.76, 0.80) 0.89 (0.82, 0.94) 

20 4-GRR 0.62 (0.61, 0.63) 0.74 (0.71, 0.76) 0.84 (0.73, 0.90) 

21 TER-v0.7.25 -0.59 (-0.60, -0.58) -0.76 (-0.78, -0.74) -0.90 (-0.94, -0.83) 

22 BEwT-E 0.57 (0.56, 0.58) 0.77 (0.75, 0.79) 0.92 (0.87, 0.96) 

23 BLEU-v12 0.51 (0.49, 0.52) 0.78 (0.76, 0.80) 0.90 (0.84, 0.94) 

24 BLEU-v11b 0.50 (0.49, 0.51) 0.78 (0.76, 0.80) 0.90 (0.83, 0.94) 

25 Bleu-sbp 0.50 (0.49, 0.51) 0.79 (0.77, 0.81) 0.91 (0.85, 0.95) 

26 mBLEU 0.45 (0.44, 0.46) 0.69 (0.66, 0.71) 0.85 (0.76, 0.91) 

27 mTER -0.39 (-0.40, -0.38) -0.65 (-0.68, -0.61) -0.86 (-0.92, -0.77) 

28 BadgerLite 0.33 (0.32, 0.35) 0.18 (0.13, 0.23) 0.25 (-0.02, 0.48) 

29 Badger 0.29 (0.28, 0.31) 0.16 (0.11, 0.21) 0.16 (-0.12, 0.40) 

30 MaxSim 0.25 (0.23, 0.26) 0.12 (0.07, 0.17) 0.16 (-0.11, 0.41) 

31 DP-Or 0.23 (0.22, 0.25) 0.02 (-0.03, 0.08) 0.12 (-0.15, 0.38) 

32 SNR 0.21 (0.20, 0.23) 0.05 (-0.01, 0.10) 0.06 (-0.21, 0.32) 

33 SR-Or 0.20 (0.19, 0.22) 0.02 (-0.04, 0.07) 0.12 (-0.15, 0.38) 

34 ULCopt 0.20 (0.19, 0.22) 0.02 (-0.03, 0.08) 0.12 (-0.16, 0.37) 

35 ULCh 0.20 (0.18, 0.21) -0.01 (-0.06, 0.05) 0.13 (-0.14, 0.38) 

36 DR-Or 0.20 (0.18, 0.21) 0.02 (-0.04, 0.07) 0.12 (-0.15, 0.37) 

37 DP-Orp 0.14 (0.13, 0.16) -0.06 (-0.11, 0.00) 0.09 (-0.19, 0.34) 
Table 6: Overall correlation results against Adequacy7 judgments, for the multiple reference track. Metrics are ordered by 
segment level correlation. 



These results indicate that metrics correlated higher to the human assessments of adequacy at lower 
(system) levels of granularity than they do at the higher (segment) granularity. This was always the case 
in the single reference track, and was true for the top 27 metrics in the multiple reference track.  

Another observed trend is that the correlations for most metrics increased when using multiple 
references, which occurred at the segment level in 27 of the 37 metrics evaluated.  This may not be 
surprising since many metrics were designed for use with multiple references. The interesting case is 
when a metric’s correlation was stable between the two tracks. In MetricsMATR, 12 metrics had less 
than 5% difference in Spearman’s correlations at the segment level between the single and multiple 
reference tracks. 

We found that metrics were not robust across conditions; no single metric outperformed all other 
metrics for a given track across all correlation levels. Table 7 summarizes the three highest correlating 
metrics for each evaluation track, with regard to the analysis level. 

Level of Analysis Single Reference Track Multiple reference track 

Segment level TERp  -0.68 
METEOR-v0.6  0.68 
METEOR-ranking  0.67 

METEOR-v0.6  0.72 
SVM-Rank  0.72 
Meteor-v0.7  0.72 

Document level Meteor-v0.7  0.84 
METEOR-ranking 0.84 
CDer   -0.84 

CDer  -0.85 
NIST-v11b  0.85 
Meteor-v0.7  0.84 

System level CDer  -0.90 
Meteor-v0.7  0.90 
invWer  -0.89 

ATEC3   0.93 
LET   0.93 
NIST-v11b   0.93 

Table 7: Spearman’s rho for the three highest correlating metrics, per evaluation track and analysis level Table 8: Spearman’s 
rho for the 10 highest correlating metrics, for each evaluation track and level of analysis, conditioned on the evaluation data 
set 

 

Table 8 displays the ten highest correlating metrics for each evaluation track conditioned on the 
evaluation data set: MT08, each phase of GALE, and each TRANSTAC evaluation. Correlations for the 
three levels of analysis are shown. Correlations for the GALE P2.5 data (speech-to-text) consistently lag 
the other data sets evaluated, across all levels of analysis in the single reference track. 

Table 9 is a similar table, but with a different set of highest correlating metrics when conditioned on the 
type of human assessment.  This is another example of how the metrics were not robust across 
conditions.  Metric correlations with the Adequacy7 judgments were consistently high.  Metric 
correlations with the Preference judgments were found to be consistently lowest. 

Table 10 conditions the results on the source language, either Arabic, Chinese, or Farsi, where we found 
notably less variation in correlation rates regardless of the original source language. 
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Table 8: Spearman’s rho for the 10 highest correlating metrics, for each evaluation track and level of analysis, conditioned on 
the evaluation data set 
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Table 9: Spearman’s rho for the 10 highest correlating metrics for each evaluation track and analysis level, conditioned on 
the human assessment type 
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Table 10: Spearman’s rho for the 10 highest correlating metrics for each evaluation track and analysis level, conditioned on 
the source language 

The different evaluation test sets represented translations from different technology types. Next, we 
examined how the metrics scores correlate to human assessments conditioned on three technology 
types; text-to-text from MT08 and GALE P2 data; speech-to-text from the GALE P2.5 data; and speech-
to-speech from the TRANSTAC data. 



Level of 
Analysis 

Single Reference Track Multiple reference track 

Se
gm

e
n

t 
le

ve
l 

  

D
o

cu
m

e
n

t 
le

ve
l 

  

Sy
st

e
m

 le
ve

l 

  

Table 11: Spearman’s rho for the 10 highest correlating metrics for each evaluation track and level of analysis, conditioned 
on technology type 

We plot the Spearman’s rho value for the 10 highest correlating metrics, for each evaluation track, and 
for each level of analysis (see Table 11). The metric correlations are higher for speech-to-speech, and 
lower for speech-to-text, while the performances on text-to-text are somewhat in-between.  Differences 
between speech-to-speech and text-to-text attenuate at the system level. However, regardless of the 
level of analysis, the correlation values for speech-to-text remain well below that of speech-to-speech 



and text-to-text. Multiple references help raise the correlation value, but this is much more noticeable 
at the segment level, and barely noticeable at the system level. 
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Table 12: Spearman’s rho for the 10 highest correlating metrics, for each evaluation track and level of analysis, conditioned 
on the data genre 



Table 12 conditions the correlations on the 5 genres of data included in the MetricsMATR evaluation 
test set: newswire, web text, broadcast news transcripts, broadcast conversation transcripts, and 
dialogs. 

Overall, metrics correlated higher with the structured styles of data, broadcast news and newswire, than 
they did with the web text, which represents a more freeform style of writing.  

Broadcast news and broadcast conversation correlations are included for completeness, but is should be 
noted that the poor system level correlations are due to the sparseness of data points (only 5!); the 
GALE P2.5 data contains data from only very few GALE systems. 

5.2.  Significance Tests for performance differences 

Three kinds of performance differences are of most interest here. First, we may want to compare 
metrics and ask which yields the closest to the same information as human judgments. Second, we may 
want to compare different versions of the same system, which will all typically be quite similar to each 
other. Third, we may want to compare different systems to each other, which will often be very 
different from each other (for example, comparing a rule-based MT system to a statistical MT system to 
a human translation). 

Frank Wilcoxon proposed the Wilcoxon Signed-Rank Test (22) in 1945. The Wilcoxon Signed-Rank test is 
used to analyze matched-pair numeric data, looking at the difference between the two values in each 
matched pair. NIST has employed this significant test in various speech-to-text transcription, speaker 
recognition, and machine translation evaluations. 

5.2.1. Comparison of similar systems 
In a first step, similar system pairs are identified by performing the Wilcoxon Signed-Rank Test on the 
Adequacy7 judgments of two distinct systems. This is done for all possible system pairs. We create two 
lists of similar system pairs, i.e. pairs deemed by the test to not have a statistically significant difference 
in their Adequacy7 scores: one list computed using segment level Adequacy7 judgments, and one list 
using document level Adequacy7 judgments. The first (segment level) list contains 54 pairs of systems, 
and the second, 82 pairs. 

The second step is to compute the same test using metric scores. For each pair of systems identified in 
the previous step, we perform the Wilcoxon test and count the number of times the test does not reject 
the null hypothesis, i.e. agrees with the human assessments in not finding a statistically significant 
difference between the two systems of a pair. 

Results are reported in Table 13 for the test computed at the segment level and at the document level. 



Segment level Scores Document level Scores 

Metric Name System pairs correctly 
identified 

Metric Name System pairs correctly 
identified 

ULCSR 85.70% ATEC1 81.70% 

BADGER 75.00% ATEC2 80.50% 

ULCDP 75.00% ATEC4 80.50% 

MTEVALV12 67.90% BADGER 80.50% 

ULCDRP 67.90% BEWTE 79.30% 

BLEUSBP 66.10% ULCDRP 79.30% 

INVWWER 66.10% ULCSR 79.30% 

MTEVALV11B 66.10% MBLEU 78.00% 

SNR 66.10% ULCDP 76.80% 

ULCH 66.10% BLEU 75.60% 

ATEC3 64.30% ULCDR 75.60% 

ULC 64.30% MTEVALV12 74.40% 

BLEUSP 62.50% SVMRanking 74.40% 

MAXSIM 62.50% BLEUSP 73.20% 

TER 62.50% SNR 73.20% 
Table 13: Number of correctly identified similar systems pairs, for the 15 top-performing metrics, using the Wilcoxon test on 
segment level and document level scores 

5.2.2. Comparison of different systems 
We perform the same tests as done previously, this time identifying the system pairs that are 
considered different, by using Adequacy7 as a baseline. We identify 123 pairs for the segment level test, 
and 244 pairs for the document level test. 

Then we compute the same test using metric scores, and award a point to a metric whenever the 
outcome is the same as for the baseline test: the null hypothesis must be rejected, and the Hodges-
Lehmann statistic must point to the same system yielding higher data values than the other, at a 95% 
confidence interval. Table 14 (resp. Table 15) shows the segment level (resp. document level) results. 



Metric Name Correct system identified Wrong system chosen 

METEOR7 95.90% 0.00% 

METEOR 95.10% 0.00% 

METEORRANKING 95.10% 0.00% 

ATEC4 93.50% 0.00% 

CD6P4ER 92.70% 0.80% 

LET 92.70% 0.00% 

SEPIA1 92.70% 0.00% 

TERP 92.70% 0.80% 

ATEC1 91.90% 0.00% 

ATEC2 91.90% 0.00% 

BLEUSP 91.90% 0.80% 

RTEMT 90.20% 1.60% 

ATEC3 89.40% 0.00% 

BADGERLITE 88.60% 0.80% 

INVWWER 87.80% 0.80% 
Table 14: Number of correctly identified different system pairs, for the 15 top-performing metrics, using the Wilcoxon test on 
segment level scores 

Metric Name Correct system identified Wrong system chosen 

METEOR7 88.90% 0.00% 

CD6P4ER 87.70% 0.00% 

METEORRANKING 86.90% 0.00% 

TERP 86.50% 0.00% 

BLEUSP 84.00% 0.00% 

METEOR 84.00% 0.00% 

RTEMT 84.00% 0.00% 

EDPM 83.20% 0.40% 

INVWWER 83.20% 0.40% 

GRR 82.80% 0.00% 

SEPIA1 82.40% 0.00% 

TER 81.60% 0.80% 

LET 81.10% 1.60% 

RTE 81.10% 0.40% 

BLEU 80.30% 0.00% 
Table 15: Number of correctly identified different system pairs, for the 15 top-performing metrics, using the Wilcoxon test on 
document level scores 

5.2.3. Approximate Randomization test 

In 1989, Eric Noreen (23) described approximate randomization in detail, a technique used to analyze 
results of the 2001 MUC-3 conference (24). In 2005, Riezler and Maxwell (25) suggested its use for 
testing differences in sentence-level scores from two MT systems. For this technique, one compares the 
actual test statistic to a great many pseudo-statistics generated via a randomization process. The p value 
is based on what fraction of the pseudo-statistics unexpectedly exceeds the actual test statistic. 

Tables 16 shows the results of the randomization test for analysis at the segment level (using 89 pairs) 
and at the document level (using 88 pairs). 



Segment level scores Document level scores 

Metric Name Pairs correctly identified Metric Name Pairs correctly identified 

ULCDRP 82.00% BADGER 81.80% 

ULCSR 79.80% ATEC1 78.40% 

ATEC2 77.50% ATEC3 78.40% 

MBLEU 77.50% ULCDP 78.40% 

ATEC1 76.40% ATEC2 77.30% 

ATEC4 76.40% ATEC4 77.30% 

BADGER 76.40% BEWTE 77.30% 

ULCDR 75.30% ULCSR 77.30% 

SEPIA1 74.20% ULCDR 76.10% 

ATEC3 73.00% BLEU 75.00% 

METEOR7 73.00% MBLEU 75.00% 

ULCDP 73.00% METEOR 75.00% 

TERP 71.90% MTEVAL12 75.00% 

METEORRANKING 69.70% SNR 75.00% 

NIST 69.70% MTEVALV11B 73.90% 
Table 16: Number of correctly identified similar systems pairs, for the 15 top-performing metrics, using the paired 
randomization test on segment level and document level scores 

5.3. Other MetricsMATR 2008 Findings 

The following sub-sections examine other interesting findings from MetricsMATR 2008. 

5.3.1. Ability to differentiate between Machine and Human Translations 

For this analysis, we included two human reference translations in the MetricsMATR pool of evaluation 
data. We looked at the metrics’ ability to distinguish between machine translations (MT) and the human 
translation (HT). The available HT data was limited to the MT08 and TRANSTAC partitions, since these 
data sets contained four reference translations. 

Using the scores produced by the metrics in the single reference track, we compared the corresponding 
segment scores or document scores of the MT and HT. Each time the metric scored the MT better than 
the HT system, an error was counted. The number of errors was then divided by the total number of 
comparisons, to obtain a percentage of errors. Table 17 reports the 15 metrics yielding the least amount 
of errors at the segment level and document level. 



Segment level scores Document level scores 

Metric Name Percentage of errors Metric Name Percentage of errors 

ULCH 9.1% MAXSIM 1.9% 

ULC 9.5% ULCH 2.0% 

MAXSIM 9.8% ULC 2.1% 

ULCDP 10.2% ULCDP 2.3% 

SNR 10.5% SNR 2.3% 

ULCSR 11.4% ULCDR 3.3% 

ULCDR 12.2% ULCSR 3.7% 

ULCDRP 15.9% ULCDRP 4.1% 

MTEVALV12 16.6% TERP 6.1% 

BLEUSBP 16.6% METEORRANKING 6.4% 

MTEVALV11B 16.6% EDPM 6.5% 

BEWTE 19.2% METEOR7 6.9% 

METEORRANKING 20.2% LET 7.3% 

TERP 20.3% METEOR 7.4% 

METEOR 20.7% CD6P4ER 7.6% 
Table 17: Percentage of times a MT was deemed better than a RT, for the 15 top-performing metrics, at the segment level 
and document level 

5.3.2. Timing Information 

The time to run a metric affects its usefulness for evaluation and also system development; in particular, 
training approaches that involve tuning to metrics, such as Och’s (2003) Minimum Error Rate Training 
(MERT) (26) as well as Chiang’s (2009) approach (27) benefit from fast-running metrics. For each metric, 
NIST recorded the time (wall clock) required to score the entire MetricsMATR evaluation set. For the 
single reference track, this required scoring approximately 25K segments for 89 systems, and for the 
multiple reference track, it required scoring approximately 16K segments for 69 systems. The majority of 
the metrics were run on our Linux 64-bit machine. We do not distinguish between metrics that take 
advantage of multi-core CPUs and those that do not. 

Table 18 shows the total time spent per metric to process the MetricsMATR evaluation set, for the single 
reference track. Table 19 shows the same timing statistics for the multiple reference track. 

Time range  Metrics  

Less than 1 minute  BLEU-1, BLEU-4, ATEC1, BLEU-SBP  

Between 1 minute and 10 minutes  BleuSP, BLEU-v11b, NIST-v11b, CDer, BLEU-v12, SNR12, TER-
v0.7.25, 4-GRR, BadgerLite, ATEC4, ATEC2, ATEC3 

Between 10 minutes and 40 minutes METEOR-v0.6, LET12, METEOR-v0.7, METEOR-ranking, 
mBLEU, mTER, MaxSim, DP-Or 

Between 1 hour and 6 hours  SVM-Rank12, DP-Orp, DR-Or, SEPIA1, SEPIA2, ULCopt, TERp 

Between 13 hours and 14 hours  invWer, Badger, EDPM 

Between 1 day and 2 days  BEwT-E, SR-Or, ULCh 

5 days, 14 hours  (RTE + RTE-MT)13 
Table 18: Time spent per metric to process the primary evaluation set, for the single reference track 

                                                           
12

 Ran on a Windows XP machine; everything else ran on a Linux box. 
13

 Both scores computed at the same time. 



Time range  Metrics  

Less than 1 minute  BLEU-1, ATEC1, BLEU-4  

Between 1 minute and 10 minutes  BLEU-SBP, BleuSP, CDer, BLEU-v11b, NIST-v11b, BLEU-v12, 
SNR12 

Between 10 minutes and 40 minutes  ATEC4, ATEC3, ATEC2, TER-v0.7.25, BadgerLite, mBLEU, 4-
GRR, LET12, METEOR-ranking, METEOR-v0.7, METEOR-v0.6, 
mTER, MaxSim  

Between 2 hours and 5 hours  DP-Or, SVM-Rank12, DP-Orp, DR-Or, SEPIA1, SEPIA2  

Between 6 hours and 16 hours  ULCopt, TERp, Badger  

Between 1 day and 3 days  EDPM, invWer, SR-Or, BEwT-E  

4 days, 8 hours  ULCh  
Table 19: Time spent per metric to process the primary evaluation set, for the multiple reference track 

6. MetricsMATR 2008 Summary, Lessons Learned, Future Directions 

NIST’s first edition of MetricsMATR was a success. The framework for the evaluation of automated MT 
metrics is in place, and we are quickly building critical mass. There were a great number of metrics 
submitted for evaluation, some combining techniques from previously existing metrics. Figure 1 
illustrates the landscape of automated metrics at NIST’s disposal for the evaluation of MT technology, 
before and after MetricsMATR 2008. 

Before MetricsMATR 2008 After MetricsMATR 2008 

  
Figure 2: Classes of automated metrics available to NIST for MT technology evaluations, before and after MetricsMATR 2008 

The evaluation of automated metrics will continue, seeking the development of innovative metrics that 
provide insights into the quality of a translation. The current set of metrics provides an excellent test 
bed for analysis. We demonstrated that metrics are not robust across conditions, but determining each 
metric’s strengths and weaknesses will enable improvements in future instantiations. 

The next MetricsMATR evaluation is being planned for 2010. The focus of the preparations for the next 
challenge will likely be on the human assessments. It is imperative that the human assessments 
themselves provide detailed levels of quality, since we are asking the automated metrics to do the same.



 

Disclaimer 

These results are not to be construed, or represented as endorsements of any participant’s system, 
methods, or commercial product, or as official findings on the part of NIST or the U.S. Government. 

Certain commercial equipment, instruments, software, or materials are identified in this paper in order 
to specify the experimental procedure adequately.  Such identification is not intended to imply 

recommendation or endorsement by NIST, nor is it intended to imply that the equipment, instruments, 
software or materials are necessarily the best available for the purpose. 

There is ongoing discussion within the MT research community regarding the most informative metrics 
for machine translation.  The design and implementation of these metrics are themselves very much 

part of the research.  At the present time, there is no single metric that has been deemed to be 
completely indicative of all aspects of system performance. 

The data and protocols employed in this evaluation were chosen to support MT metric development 
and should not be construed as indicating how well these metrics would perform in applications. 

Bibliography 
1. Papineni, Kishore, et al. BLEU: a Method for Automatic Evaluation of Machine Translation. Yorktown 
Heights, NY : IBM Research Division, September 17, 2001. Technical Report. RC22176 (W0190–022). 

2. Coughlin, Deborah. Correlating Automated and Human Assessments of Machine Translation Quality. 
New Orleans, LA : Association for Machine Translation in the Americas, 2003. Proceedings of MT Summit 
IX. 

3. Doddington, George. Automatic Evaluation of Machine Translation Quality Using n-gram Co-
occurrence Statistics. San Francisco : Morgan Kaufmann, 2002, Proceedings of the Second International 
Conference on Human Language Technology Research (San Diego, CA). 

4. Babych, Bogdan and Hartley, Anthony. Extending the BLEU MT Evaluation Method with Frequency 
Weightings. Barcelona, Spain : Association for Computational Linguistics, 2004. Proceedings of the 42nd 
Meeting of the Association for Computational Linguistics (ACL'04). 

5. Callison-Burch, Chris, Osborne, Miles and Koehn, Philipp. Re-evaluating the Role of BLEU in Machine 
Translation Research. Trento, Italy : Association for Computational Linguistics, 2006. Proceedings of the 
11th Conference of the European Chapter of the Association for Computational Linguistics. 

6. Chiang, David, et al. Decomposability of Translation Metrics for Improved Evaluation and Efficient 
Algorithms. Honolulu, Hawaii : Association for Computational Linguistics, 2008. Proceedings of the 2008 
Conference on Empirical Methods in Natural Language Processing. 

7. Condon, Sherri, et al. Normalization for Automated Metrics: English and Arabic Speech Translation. 
Ottawa, ON, Canada : Association for Machine Translation in the Americas, 2009. Proceedings of MT 
Summit XII. 

8. Cohen, Jacob. A Coefficient of Agreement for Nominal Scales. 1960, Educational and Psychological 
Measurement, pp. 37–46. 

9. Fleiss, Joseph L., Cohen, Jacob and Everitt, B.S. Large Sample Standard Errors of Kappa and Weighted 
Kappa. 1969, Psychological Bulletin, Vol. 72. 



10. Fleiss, Joseph L. Measuring Nominal Scale Agreement among Many Raters. 1971, Psychological 
Bulletin, Vol. 76. 

11. Callison-Burch, Chris, et al. (Meta-) Evaluation of Machine Translation. Prague, Czech Republic : 
Association for Computational Linguistics, 2007. Proceedings of the Second Workshop on Statistical 
Machine Translation. 

12. Callison-Burch, Chris, et al. Further Meta-Evaluation of Machine Translation. Columbus, OH : 
Association for Computational Linguistics, 2008. Proceedings of the Third Workshop on Statistical 
Machine Translation (WMT08). 

13. Przybocki, Mark, Peterson, Kay and Bronsart, Sébastien. NIST Metrics for Machine Translation 
Challenge (MetricsMATR). NIST Multimodal Information Group. [Online] April 4, 2008. 
http://www.nist.gov/speech/tests/metricsmatr/2008/doc/mm08_evalplan_v1.1.pdf. 

14. Paul, Michael.Overview of the IWSLT 2006 Evaluation Campaign. Kyoto, Japan : s.n., 2006. 
Proceedings of the International Workshop on Spoken Language Translation. 

15. Jones, Douglas, et al. ILR-Based MT Comprehension Test with Multi-Level Questions. Rochester, NY : 
Association for Computational Linguistics, 2007. Proceedings of The Annual Conference of the North 
American Chapter of the Association for Computational Linguistics (NAACL-HLT 2007). 

16. Snover, Matthew, et al. A Study of Translation Edit Rate with Targeted Human Annotation. 
Cambridge, MA : s.n., 2006. Proceedings of Association for Machine Translation in the Americas. 

17. Sanders, Gregory A., et al. Odds of Successful Transfer of Low-level Concepts: A Key Metric for 
Bidirectional Speech-to-speech Machine Translation in DARPA’s TRANSTAC Program. Marrakech, 
Morocco : European Language Resources Association (ELRA), 2008. Proceedings of the 6th International 
Conference on Language Resources and Evaluation (LREC'08). 

18. Lavie, Alon and Agarwal, Abhaya. METEOR: An Automatic Metric for MT Evaluation with High Levels 
of Correlation with Human Judgments. Prague : s.n., 2007. Workshop on Statistical Machine Translation 
at the 45th Annual Meeting of the Association of Computational Linguistics (ACL-2007). 

19. Fellbaum, Christiane. Wordnet: An Electronic Lexical Database. s.l. : Bradford Books, 1998. 

20. Porter, Martin. Snowball. Tartarus.org. [Online] [Cited: July 24, 2009.] http://snowball.tartarus.org. 

21. Neter, John, et al. Applied Linear Statistical Models. 1996 : McGraw-Hill/Irwin. 

22. Wilcoxon, Frank. Individual Comparisons by Ranking Methods. 1945, Biometrics, Vol. 1. 

23. Noreen, Eric W. Computer Intensive Methods for Testing Hypotheses. An Introduction. New York : 
Wiley. 

24. Chinchor, Nancy, Hirschman, Lynette and Lewis, David D. Evaluating Message Understanding 
Systems: An Analysis of the Third Message Understanding Conference (MUC-3). 3, 1993, Computational 
Linguistics, Vol. 19. 

25. Riezler, John and Maxwell, John T., III. On Some Pitfalls in Automatic Evaluation and Significance 
Testing for MT. Ann Arbor, MI : Association for Computational Linguistics, 2005. ACL-05 Workshop on 
Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization. 

26. Och, Franz Josef. Minimum Error Rate Training in Statistical Machine Translation. Sapporo, Japan : 
Association for Computational Linguistics, 2003. 



27. Chiang, David, Knight, Kevin and Wang, Wei. 11,001 New Features for Statistical Machine 
Translation. Boulder, CO : Association for Computational Linguistics, 2009. Proceedings of The Annual 
Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT 
2009). 

 

 


