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Abstract 
 
To evaluate the performance of fingerprint-image matching algorithms on large datasets, a receiver 
operating characteristic (ROC) curve is applied. From the operational perspective, the true accept 
rate (TAR) of the genuine scores at a specified false accept rate (FAR) of the impostor scores and/or 
the equal error rate (EER) are often employed. Using the standard errors of these metrics computed 
using the nonparametric two-sample bootstrap based on our studies of bootstrap variability on large 
fingerprint datasets, the significance test is performed to determine whether the difference between 
the performance of one algorithm and a hypothesized value, or the difference between the 
performances of two algorithms where the correlation is taken into account is statistically significant. 
In the case that the alternative hypothesis is accepted, the sign of the difference is employed to 
determine which is better than the other. Examples are provided. 
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1. Introduction 
 
To evaluate the performances of algorithms for fingerprint technologies on large data sets in 
particular, and for biometrics in general, a receiver operating characteristic (ROC) curve is used as 
an important tool. In analyzing fingerprint data, genuine scores are generated by comparing two 
different fingerprint images of the same subject, and impostor scores are created by matching two 
fingerprint images of two different subjects. Both scores may be referred to as similarity scores in 
this article. These two sets of similarity scores constitute two distributions, respectively, as 
schematically depicted in Figure 1 (A) for continuous similarity scores. These two distributions are 
interrelated with each other by the matching algorithm that generates them. All statistics of interest 
derived from them are influenced under the combined impact of these two samples. 
 
The cumulative probabilities of genuine scores and impostor scores from the highest similarity score 
down to a specified similarity score (i.e., the threshold score) are defined as the true accept rate 
(TAR) and the false accept rate (FAR), respectively. As the threshold moves from the highest 
similarity score down to the lowest similarity score, an ROC curve is then constructed in the FAR-
and-TAR coordinate system, as drawn in Figure 1 (B). Thus, biometric evaluation is a two-
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distribution, one-curve, and four-domain (i.e., true accept, false accept, true reject, and false reject) 
issue. The accept region is where similarity scores are greater than the threshold score and the reject 
region is on the other side. Different scoring systems can be converted to integer scores, if they are 
not. Thus, the probability distribution functions of similarity scores are all discrete and an ROC 
curve is no longer a smooth curve [1]. 
 

Figure 1. (A): A schematic diagram of distributions of continuous genuine scores and impostor scores, showing 
three related variables: TAR, FAR, and threshold. (B): A schematic drawing of an ROC curve constructed by 
moving a threshold from the highest similarity score down to the lowest similarity score. 

 
As extensively explored in our previous studies [1], it was revealed that 1) usually there is no 
underlying parametric distribution function for genuine scores and impostor scores; 2) the 
distribution of genuine scores and the distribution of impostor scores are considerably different in 
general; and 3) the distributions vary substantially from algorithm to algorithm in ways that 
differentiate algorithms in terms of matching accuracy. This suggests that the nonparametric analysis 
be appropriate for evaluating fingerprint-image matching algorithms on large-scale data sets. 
Therefore, the empirical distribution is assumed for each of the observed similarity scores. 
 
An ROC curve can be measured by computing the area under ROC curve (AURC) [1, and references 
therein]. If using the trapezoidal rule, this area is equivalent to the Mann-Whitney statistic formed by 
genuine and impostor scores. Hence, the variance of the Mann-Whitney statistic can be utilized as 
the variance of AURC. Because the Mann-Whitney statistic is asymptotically normally distributed 
regardless of the distributions of genuine and impostor scores thanks to the Central Limit Theorem, 
the Z statistic formulated in terms of areas under two ROC curves along with their variances and the 
correlation coefficient can be used to test the significance of the difference of these two ROC curves. 
 
However, from the operational perspective, the measures TAR, FAR, and threshold are used. It is 
illustrated in Figure 1 that these three variables are related to each other, and any one of these three 
variables can determine the other two variables [2]. First, in practice it is never required that TAR be 
specified in the first place. Second, different algorithms may invoke different threshold scores to 
generate TAR and FAR. It is hard to compare algorithms using these two metrics TAR (the larger 
the better) and FAR (the smaller the better) simultaneously. So, TAR and FAR for a given threshold 
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are not good metrics for comparing two algorithms [3]. As a result, for comparison purpose, the 
metric TAR for a specified FAR is the one that is investigated. 
 
The two rates 1 – TAR and FAR, which are analogous to the probabilities of type I error and type II 
error, respectively, are traded off with each other. When these two rates are equal, such a rate is 
defined as the equal error rate (EER). Generally speaking, the smaller the EER is, the more apart the 
two distributions of genuine scores and impostor scores are, thus the higher the ROC curve is and the 
more accurate the matching algorithm is [1, 4]. Hence, the EER can be used as a metric to evaluate 
and compare the performances of matching algorithms. 
 
Because of the discreteness of two probability distribution functions as stated above, as opposed to 
continuous distribution, some concepts and definitions need to be established and modified 
accordingly [2, 5]. For instance, first, the ties of genuine scores and/or impostor scores at a threshold 
can often occur on large fingerprint data sets and thus must be taken into account while computing 
the estimated TAR at a specified FAR. Second, while computing the cumulative discrete probability 
at a score, the probability at this score must be taken into account [6]. Third, it seems that generally 
speaking there does not exist such a similarity score (range) at which the probability of type I error is 
exactly equal to the probability of type II error. 
 
The sampling variability can result in uncertainties of measures in ROC analysis. As a result, while 
comparing the performances of two matching algorithms, the measurement uncertainties must be 
taken into account. Then, the question arises: how to calculate those uncertainties? In our previous 
studies [2, 5], the uncertainties of the measures in ROC analysis in terms of standard errors (SE) and 
95% confidence intervals (CI) were computed using the nonparametric two-sample bootstrap based 
on our extensive investigation of bootstrap variability on large fingerprint data sets [2, 5, 7, 8]. The 
two samples are referred to a set of genuine scores and a set of impostor scores. 
 
As is well-known, the bootstrap method assumes that an independent and identically distributed 
(i.i.d.) random sample of size n is drawn from a population with its own probability distribution. Our 
large government data bases used for developing similarity scores were randomly collected from the 
real practice rather than using multiple acquisitions and thus had no dependencies. The SEs of 
AURC on our data bases computed using the nonparametric two-sample bootstrap with the 
assumption of i.i.d. matched very well the analytical results using the Mann-Whitney statistic (this 
work is underway). Moreover, an example was made, in which the similarity scores were created 
using the random generator of normal distribution “rnorm” in R [9]. Certainly, there is no 
dependency among these scores at all. The result shown in the example behaved in the exactly same 
way as the results derived from our data bases. As a result, in our work, the random sample is 
assumed to be i.i.d.. 
 
Under the assumption of i.i.d., the objects of nonparametric two-sample bootstrap are individuals in 
the sample. As pointed out in Ref. [5], if the data base had dependencies due to multiple biometric 
acquisitions, then the assumption of i.i.d. could not be made. Hence, the sample may need to be 
regrouped into subsets according to dependencies, and the objects of nonparametric two-sample 
bootstrap are the subsets of the sample in order to preserve the dependencies [8, 10, 11]. However, 
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everything else in the bootstrap method remains intact. Certainly, how to regroup the sample into 
subsets will have impact on the bootstrap results. 
 
The number of two-sample bootstrap replications in the fingerprint applications was determined to 
be 2 000 based on our bootstrap variability studies [5]. In our applications, the total number of 
genuine scores is a little over 60 000 and the total number of impostor scores is a little over 120 000 
[12]. With this amount of similarity scores, the FAR was set to be 0.001 while dealing with TAR [4]. 
 
Regarding the issues of comparisons, here are two categories. The first category is the one-algorithm 
significance test, which is to determine whether the difference between the performance of one 
fingerprint-image matching algorithm and a hypothesized value is real or by chance. The second 
category is the two-algorithm significance test, which is to investigate whether the difference 
between the performances of two algorithms is statistically significant. As stated above, in this 
respect the metric TAR at a given FAR and/or the metric EER are typically employed. 
 
In some applications, it is of interest to determine if the matching accuracies derived from two 
different samples of data are statistically different. Indeed, this case does belong to the second 
category, in which the performances of two different algorithms on the same dataset are replaced by 
the performances of a single algorithm on two different datasets. 
 
Such comparison issues can be dealt with intuitively to some extent using 95 % CIs. But it is hard to 
reach any conclusion while the 95 % CIs overlap for two-algorithm significance test. Nonetheless, 
such an approach cannot provide any quantitative information, such as how much the p-value is, i.e., 
what the statistical significance of the difference is. Thus, the issue of determining whether the 
difference is real or by chance must be dealt with using the statistical hypothesis testing. 
 
The relationship between the two types of 95 % CIs for the statistics TAR at a given FAR and EER 
was examined in all cases encountered in Ref. [2, 5]. One type of 95 % CI was computed using the 
definition of quantile; another type of 95 % CI was calculated if the distribution of 2000 bootstrap 
replications of the statistic was assumed to be normal. It was found that these two types of 95 % CIs 
were matched up to the third to fourth decimal place. The higher the accuracy of algorithm is, the 
more decimal places are matched. Moreover, the Shapiro-Wilk normality test [9] was conducted on 
the 2000 bootstrap replications of the statistics of interest, and it was observed that the majority of p-
values were greater than 5 %, especially for relatively high-accuracy algorithms. 
 
All these suggest that the statistics of interest in our applications be assumed to be normally 
distributed regardless of the distributions of genuine and impostor scores. Under the normality 
assumption, the Z-test can be used to perform the significance test, as it was done for AURC [1, and 
references therein]. In ROC analysis, we do not know beforehand the correlated pairs of metrics, 
such as TAR for a given FAR, or EER, on which the hypothesis testing is conducted. Thus, the 
paired t-test cannot serve our purpose. 
 
The statistics of interest of two matching algorithms may or may not be correlated, depending on 
how the sets of similarity scores are generated. In our applications, the sets of similarity scores were 
generated in a way that might cause the correlation between the two statistics of interest. Thus, an 
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algorithm is provided in this article to find the correlated pairs of metrics from the correlated 
similarity scores. Thereafter, the correlation coefficient of metrics can be computed explicitly, in 
order to show the relationship between the magnitudes of correlation coefficients and the accuracies 
of matching algorithms, and to show what the impact would be if the positive correlation coefficient 
were neglected. The way of computing correlation coefficient in this paper is completely different 
from the way in Ref. [1, and references therein], which is based on a table provided by other 
researchers. 
 
Bootstrap methods have been applied widely for error estimation, and so is the use of ROC curve. 
Numerous references can be found [11, 13-18, and references therein]. However, employing the 
methods of nonparametric two-sample bootstrap in ROC analysis and conducting Z-test on ROC 
curve can only be found in medical applications [13-17], as pointed out in our previous work [5]. 
 
In medical applications, data samples are small. In our applications, such as biometrics and the 
evaluation of speaker recognition, etc., the sizes of data sets are much larger. For instance, in the 
fingerprint applications, hundreds of thousands of similarity scores are used. Moreover, in 
comparison with other applications of bootstrap methods, our statistics of interest are probabilities, 
such as TAR, FAR, EER, etc, rather than a sample mean [2, 5, 8] and our data samples of similarity 
scores have no parametric model to fit [1, 8]. Therefore, the bootstrap variability was re-studied to 
determine the appropriate number of bootstrap replications in our applications, in order to reduce the 
bootstrap variance and ensure the accuracy of the computation [5]. 
 
Further, in medical applications, the metric that is used most is AURC. From the operational 
perspective in our applications, the measures and accuracies of the statistics of interest, such as TAR, 
FAR, EER, etc. in all three scenarios were computed using the nonparametric two-sample bootstrap 
[2]. The significance Z-test was conducted on TAR and EER. To perform Z-test, an algorithm for 
computing the correlation coefficient in our application is also provided. Our methods can also be 
applied to dealing with AURC as well as a cost function consisting of probabilities of type I error 
and type II error in the evaluation of speaker recognition (this work is underway). 
 
The general formulas of hypothesis testing for one fingerprint-image matching algorithm and two 
algorithms are presented in Section 2. An algorithm for computing the correlation coefficient in our 
applications is provided in Section 3. The results of examples involving six fingerprint-image 
matching algorithms1 are shown in Section 4. Finally the conclusion and discussion is found in 
Section 5. 
 
2. Significance test 
 
As pointed out in Section 1, the hypothesis testing is performed in two categories: one-algorithm 
hypothesis testing and two-algorithm hypothesis testing; the statistics of interest from the operational 
perspective are in two scenarios: the metric TAR at a given FAR and the metric EER. 
                                                 
1 Specific hardware and software products identified in this report were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document.  In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it 
imply that the products and equipment identified are necessarily the best available for the purpose. 
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There is no reason to believe a priori that the performance of one algorithm is likely to be better than 
a hypothesized value or the performance of the other algorithm. Further, the two-tailed test is 
generally more conservative than the one-tailed test in the sense that the former is more difficult to 
reject the null hypothesis for a given significance level [19]. Thus, the two-tailed test is used in this 
article. In the case that the alternative hypothesis is accepted, the sign of the difference between the 
estimate and a hypothesized value or the two estimates is employed to determine which is better than 
the other. 
 
2.1 One-algorithm hypothesis testing 
 
Let STI denote the probability measure, such as TAR and EER, for an algorithm and μo denote the 
hypothesized value. Then, the null and alternative hypotheses are 

Ho : STI = μo (1) Ha : STI ≠ μo 
 
Based on the normality assumption, the Z statistic is 

Z = 
I)T̂(S SE

 - IT̂S oμ  (2) 

where IT̂S  is the estimator of the statistic of interest and SE( IT̂S ) stands for its SE. The Z statistic 
is subject to the standard normal distribution with zero expectation and a variance of one. The 
standard error can be computed using the nonparametric two-sample bootstrap [2, 5]. 
 
While evaluating the performance of an algorithm with respect to an accuracy criterion value, 
besides p-value, other factors also need to be taken into account, such as the characteristic of the 
statistic of interest (the larger the better or the smaller the better) and the sign of the difference 
between the estimator and the accuracy criterion value. For instance, if the statistic of interest is 
TAR (the larger the better) and its estimator is less than μo, then less-than-5 % p-value indicates that 
this algorithm fails the test. 
 
2.2 Two-algorithm hypothesis testing 
 
Let STI1 and STI2 denote the probability measures, such as TAR and EER, for Algorithms 1 and 2, 
respectively. Then, the null and alternative hypotheses are 

Ho : STI1 = STI2 (3) Ha : STI1 ≠ STI2 
 
Based on the normality assumption, the Z statistic is expressed as 

Z = 
)IT̂(S SE )IT̂(S SEr  2 - )IT̂(S SE  )IT̂(S SE

IT̂S - IT̂S

212
2

1
2

21

+
 (4) 

where 1IT̂S  and 2IT̂S  are two estimators of the statistics of interest, SE ( 1IT̂S ) and SE ( 2IT̂S ) stand 
for their SEs, respectively, and r is the correlation coefficient between STI1 and STI2. The Z statistic 
is subject to the standard normal distribution with zero expectation and a variance of one. The 
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standard errors can be computed using the nonparametric two-sample bootstrap [2, 5]. If the two 
statistics of interest are positively correlated and the correlation coefficient r is not taken into 
account, it can leave the denominator of Eq. (4) larger and the Z score smaller; thereby reduce the 
chance of detecting a difference between the performances of two algorithms. 
 
3. An algorithm for computing the correlation coefficient 
 
The two statistics of interest of any two algorithms may or may not be correlated, depending on how 
the sets of similarity scores are generated. In our tests, different fingerprint-image matching 
algorithms generated different sets of similarity scores, respectively, using the same set of 
fingerprint images. Any two scores with the same ordinal number of entry in the two sets of 
similarity scores were generated using the same two images, and thus co-varied. All algorithms have 
the same tendency to assign a higher (or lower) similarity score to the match where two fingerprint 
images are more (or less) similar. Such a characteristic may cause positive correlation between two 
sets of similarity scores of two algorithms. Subsequently, it may eventually result in the positive 
correlation between the statistics of interest of two algorithms. On the other hand, this correlation 
may be reduced due to the large magnitude of the size of datasets. 
 
The genuine score sets of matching Algorithms A and B are denoted as 

Gi = { mi
j  | i ∈  { A, B } and j = 1, …, NG} , (5) 

and the impostor score sets of Algorithms A and B are expressed as 
Ii = { ni

j  | i ∈  { A, B } and j = 1, …, NI} , (6) 
where NG  and NI are the total numbers of genuine scores and impostor scores, respectively. It is 
assumed that Algorithms A and B generate the same amount of genuine scores as well as impostor 
scores. As stated above, the two j-th genuine scores mi

j where i ∈  { A, B } are generated using the 
same two images but employing different algorithms and thus co-vary. So do the two j-th impostor 
scores ni

j where i ∈  { A, B }. 
 
An algorithm for computing the correlation coefficient of the statistic of interest STI, i.e., either 
TAR or EER, of Algorithms A and B in our applications is as follows. 
 
Algorithm 
 
1: for i = 1 to M do 
2: Synchronized_WR_Random_Sampling (NG, GA, ΘA

i, GB, ΘB
i) 

3: Synchronized_WR_Random_Sampling (NI, IA, ΞA
i, IB, ΞB

i) 
4: the new genuine score set ΘA

i and the new impostor score set ΞA
i => statistic i

AITS ˆ  
5: the new genuine score set ΘB

i and the new impostor score set ΞB
i => statistic i

BITS ˆ  
6: end for 
7: { i

AITS ˆ  | i = 1,…,M } and { i
BITS ˆ  | i = 1,…,M } => the correlation coefficient rAB

STI 
8: end 
1.1: function Synchronized_WR_Random_Sampling (N, SA, ΓA, SB, ΓB) 
1.2: for j = 1 to N do 
1.3: randomly select WR an index k ∈  { 1, …, N } 
1.4: γA

j = sA
k 
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1.5: γB
j = sB

k 
1.6: end for 
1.7: end function 
 
where sA

k, γA
j, sB

k, and γB
j are members of the score sets SA, ΓA, SB, and ΓB, respectively. Based on 

our previous bootstrap variability studies [5], the number of iterations M is set to be 2000. 
 
From Step 1 to 6, this algorithm runs M iterations. As indicated in Steps 2 and 3, in the i-th iteration, 
the synchronized WR (with replacement) random sampling is carried out on GA and GB (IA and IB) 
to generate two new genuine (impostor) score sets ΘA

i and ΘB
i (ΞA

i and ΞB
i), respectively. 

 
From Step 1.1 to 1.7, the function, Synchronized_WR_Random_Sampling, runs N iterations, where 
N is the total number of genuine/impostor scores. As indicated in Step 1.3, in the j-th iteration, an 
index k is randomly drawn WR from the integer set { 1, …, N }. Then as indicated in Steps 1.4 and 
1.5, the k-th score of the input score set SA is assigned to the j-th score of the new score set ΓA, and 
the k-th score (i.e., synchronized) of the input score set SB is also assigned to the j-th score of the 
new score set ΓB. With such synchronized random sampling, the co-varying similarity scores (i.e., 
with the same ordinal number of data entry) between Algorithms A and B are selected 
simultaneously, and the correlation in the similarity scores between two algorithms is preserved if 
there is any. 
 
In Steps 4 and 5, after sampling, the i-th estimated statistic i

AITS ˆ  ( i
BITS ˆ ) of Algorithm A (B) is 

computed from the new score sets ΘA
i and ΞA

i (ΘB
i and ΞB

i). Finally after M iterations in Step 7, the 
correlation coefficient rAB

STI of the statistic of interest STI of Algorithms A and B can be calculated 
from the two sets of estimated statistics of interest. 
 
This algorithm involves a synchronized random sampling. Thus, it is a stochastic process. In 
practice, if the p-value is not considerably different from the critical values, such as 5 %, 1 %, etc., 
then in order to reduce the computational fluctuation this algorithm needs to run multiple times. In 
this article, the average out of 10 runs was taken to be the resultant correlation coefficient for 
significance test. 
 
4. Results 
 
Relatively high-accuracy fingerprint-image matching Algorithms 1 through 3 and relatively low-
accuracy Algorithms 4 through 6 were taken to be examples.2 These algorithms used different types 
of scoring systems. Algorithms 1 through 3 were taken as examples for both one-algorithm 
hypothesis testing and two-algorithm hypothesis testing while the statistic of interest was assumed to 
be TAR at a specified FAR. Algorithms 4 through 6 were used only for two-algorithm significance 
test while the statistic of interest was set to be EER. The method applied to TAR can be applied to 
EER, and vice versa. The only difference is that for TAR the larger the better, but for EER the 
smaller the better. 
 

                                                 
2 The algorithms are proprietary. Hence, they cannot be disclosed. 
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Algorithm TÂR (f) SÊ 95 % Confidence interval 
1 0.994322 0.000324 (0.993662, 0.994918) 
2 0.993255 0.000325 (0.992622, 0.993922) 
3 0.989263 0.000470 (0.988307, 0.990159) 

Table 1. The estimates of TARs, SEs, and 95 % CIs for relatively high-accuracy Algorithms 1 through 3, while 
FAR was specified at 0.001. 

 
Algorithm EÊR SÊ 95 % Confidence interval 

4 0.012409 0.000378 (0.011638, 0.013148) 
5 0.012903 0.000360 (0.012205, 0.013609) 
6 0.013634 0.000338 (0.012940, 0.014287) 

Table 2. The estimates of EERs, SEs, and 95 % CIs for relatively low-accuracy Algorithms 4 through 6. 

 

(A) (B) 

Figure 2. (A): The estimates of TARs and the corresponding 95 % CIs for relatively high-accuracy Algorithms 1 
through 3, while FAR was specified at 0.001, along with the hypothesized value μo to be set at 0.988500. (B): The 
estimates of EERs and the corresponding 95 % CIs for relatively low-accuracy Algorithms 4 through 6. 

 
The estimated TÂR (f) at a given FAR and the estimated EÊR along with their uncertainties in terms 
of SE and 95 % CI can be computed using the nonparametric two-sample bootstrap with 2000 
bootstrap replications [2, 5]. They are shown in Table 1 and Table 2, and drawn in Figure 2 (A) and 
(B), respectively. In Figure 2 (A), a hypothesized value μo is also depicted. 
 
4.1 One-algorithm hypothesis testing 
 
For one-algorithm hypothesis testing, the estimate of the statistic of interest of an algorithm is 
compared against a hypothesized value, i.e., the accuracy criterion value, to see whether the 
difference is real or by chance. Suppose that the metric TAR at a given FAR is considered in the 
testing and the hypothesized value μo is set to be 0.988500. 
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In Figure 2 (A), the two 95 % CIs of Algorithms 1 and 2 are way above 0.988500. Thus, the 
performances of Algorithms 1 and 2 measured by the metric TAR are better than the accuracy 
criterion value 0.988500. This observation is supported by applying Eq. (2). Using the estimated 
TARs and SEs for these two algorithms from Table 1, it was found that the two two-tailed p-values 
were all equal to 0.0000 as presented in Table 3. This indicates that the alternative hypothesis Ha : 

IT̂S  ≠ μo is very strongly accepted. Further, with the positive sign of the difference between the 
estimated TAR and the hypothesized value 0.988500, it is concluded that the TÂR (f) of Algorithm 1 
and Algorithm 2 are all very significantly greater than the accuracy criterion value 0.988500. In 
other words, Algorithms 1 and 2 pass the test. 
 
In Figure 2 (A), the horizontal line of the hypothesized value μo = 0.988500 intersects the 95 % CI of 
Algorithm 3. After using Eq. (2) by substituting the estimates of TAR and SE for Algorithm 3 from 
Table 1, it was found that the two-tailed p-value was 0.1049 as presented in Table 3, which is greater 
than 5 %. This suggests that the null hypothesis Ho : IT̂S  = μo be accepted. That is to say, the 
difference between the estimator TÂR (f) = 0.989263 of Algorithm 3 and the hypothesized value 
0.988500 is not real but by chance at the significance level 10 %. Therefore, Algorithm 3 fails the 
test, if the performance is required to be better than the accuracy criterion value μo. 
 

Algorithms p-value 
1 0.0000 
2 0.0000 
3 0.1049 

Table 3. The two-tailed p-values of the statistic of interest TAR with respect to the hypothesized value μo = 
0.988500 for relatively high-accuracy Algorithms 1 through 3. 

 
4.2 Two-algorithm hypothesis testing 
 
The hypothesis testing for two algorithms is not as straightforward as the one for a single algorithm. 
It cannot be judged merely using the confidence interval approach. In order to determine whether the 
difference between the performances of two fingerprint-image matching algorithms is statistically 
significant, the two-algorithm hypothesis testing must be carried out. 
 
4.2.1 TAR for a given FAR 
 
As shown in Figure 2 (A), the 95 % CI of Algorithm 1 slightly overlaps the one of Algorithm 2. But 
both of them are above the 95 % CI of Algorithm 3. What is the statistical significance of the 
differences among the performances of these three algorithms? 
 
The correlation coefficient of the statistic of interest TAR between two matching algorithms can be 
computed using the algorithm presented in Section 3. For relatively high-accuracy Algorithms 1 to 3, 
the average correlation coefficients out of ten runs are listed in Table 4. The positive correlation 
coefficients for TARs are near 0.5. This indicates that all high-accuracy fingerprint-image matching 
algorithms have the same tendency to assign higher (lower) similarity scores to the matching results 
of more (less) similar images. 
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Algorithms 1 2 3 

1 1.000000 0.496089 0.454423 
2  1.000000 0.493979 
3   1.000000 

Table 4. The average correlation coefficients of the statistic of interest TAR out of ten runs among relatively high-
accuracy Algorithms 1 through 3. 

 
Algorithms 1 2 3 

1 1.0000 0.0011 0.0000 
2  1.0000 0.0000 
3   1.0000 

Table 5. The two-tailed p-values of two statistics of interest TARs for relatively high-accuracy Algorithms 1 
through 3, where the correlation coefficient was taken into account. 
 
For relatively low-accuracy Algorithms 4 to 6, the average correlation coefficients of the statistic of 
interest TAR out of ten runs are 0.223933, 0.240295, and 0.266922, respectively. They are not as 
high as those for the high-accuracy algorithms. It is expected that the tendency of assigning higher 
(lower) similarity scores to the matching results of more (less) similar images for relatively low-
accuracy algorithms is not as strong as the tendency for high-accuracy algorithms. Thus, these 
results provide evidence that the synchronized algorithm for computing the correlation coefficient is 
quite reasonable. 
 
After applying Eq. (4) using the estimates of TARs and SEs from Table 1 and the correlation 
coefficients from Table 4, the two-tailed p-values of two statistics of interest TARs for Algorithms 1 
through 3 can be computed and are shown in Table 5. The two-tailed p-value between Algorithms 1 
and 2 is 0.0011, and other two are 0.0000. 
 
These two-tailed p-values are all much less than 5 %. It suggests that the alternative hypothesis Ha : 

1IT̂S  ≠ 2IT̂S  be strongly accepted. In other words, the differences of performances among 
Algorithms 1 through 3 are very significant, even though the 95 % CI of Algorithm 1 does slightly 
overlap the one of Algorithm 2. It follows from the sign of the difference between the two 
corresponding estimated TARs that the performance of Algorithm 1 is better than the performance of 
Algorithm 2; and the performances of both of them are better than the performance of Algorithm 3. 
 
4.2.2 EER 
 
As shown in Figure 2 (B), the three 95 % CIs of EERs of Algorithms 4 through 6 mutually overlap. 
In such a circumstance, how can the statistical significance of the differences among the 
performances of these three algorithms be determined? 
 
For relatively low-accuracy Algorithms 4 through 6, the average correlation coefficients of the 
statistic of interest EER out of ten runs are presented in Table 6. For high-accuracy Algorithms 1 to 
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3, the corresponding average correlation coefficients are 0.513037, 0.529609, and 0.567842, 
respectively. They are all larger than those for relatively low-accuracy Algorithms 4 through 6. This 
is expected as discussed in Subsection 4.2.1, and also supports the synchronized algorithm for 
computing the correlation coefficient. 
 

Algorithms 4 5 6 
4 1.000000 0.360888 0.398198 
5  1.000000 0.453439 
6   1.000000 

Table 6. The average correlation coefficients of the statistic of interest EER out of ten runs among relatively low-
accuracy Algorithms 4 through 6. 
 
Using Eq. (4) by substituting the estimates of EERs and SEs from Table 2 and the correlation 
coefficients from Table 6, the two-tailed p-values of two statistics of interest EERs for Algorithms 4 
through 6 can be calculated and are presented in Table 7. 
 

Algorithms 4 5 6 
4 1.0000 0.2370 0.0019 
5  1.0000 0.0457 
6   1.0000 

Table 7. The two-tailed p-values of two statistics of interest EERs for relatively low-accuracy Algorithms 4 
through 6, where the correlation coefficient was taken into account. 

 
The two-tailed p-value between Algorithms 4 and 5 is 0.2370, which is much greater than 5 %. It 
suggests that the null hypothesis Ho : 1IT̂S  = 2IT̂S  be accepted. In other words, the difference 
between the performances of Algorithms 4 and 5 is by chance, i.e., not statistically significant, even 
though the estimated RÊE  0.012409 of Algorithm 4 is lower than the estimated RÊE  0.012903 of 
Algorithm 5. To some extent, this conclusion is supported by the fact that the 95 % CI of Algorithm 
4 heavily overlaps the one of Algorithm 5, as illustrated in Figure 2 (B). 
 
The two-tailed p-value between Algorithms 5 and 6 is 0.0457. Without considering the correlation 
coefficient, it increases to 0.1392. As pointed out in Subsection 2.2, neglecting the correlation 
coefficient can reduce the chance of detecting a difference between the performances of two 
algorithms. Since 0.0457 is slightly less than 5 %, the alternative hypothesis Ha : 1IT̂S  ≠ 2IT̂S  is 
accepted with reasonably strong evidence, despite that the 95 % CI of Algorithm 5 quite overlaps the 
95 % CI of Algorithm 6. Further due to the sign of the difference between the two estimated EERs, 
the performance of Algorithm 5 is reasonably better than the performance of Algorithm 6. 
 
The two-tailed p-value between Algorithms 4 and 6 is 0.0019, which is less than 5 %. It suggests 
that the alternative hypothesis Ha : 1IT̂S  ≠ 2IT̂S  be strongly accepted, although the 95 % CIs of 
these two algorithms slightly overlap. Moreover, because of the sign of the difference between the 
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two estimated EERs, the performance of Algorithm 4 is considerably better than the performance of 
Algorithm 6. 
 
In addition, the p-value 0.0019 between Algorithms 4 and 6 is much smaller than the p-value 0.0457 
between Algorithms 5 and 6. It indicates that the difference between the performances of Algorithms 
4 and 6 is more statistically significant than the difference between the performances of Algorithms 
5 and 6. To some extent, this conclusion can be supported by the relationship among the 95 % CIs of 
Algorithms 4 to 6 as illustrated in Figure 2 (B). 
 
5. Conclusion and discussion 
 
In operational ROC analysis of fingerprint-image matching algorithms, it is very important to 
determine whether the difference between the performance of one algorithm and an accuracy 
criterion value, or the difference between the performances of two algorithms where the correlation 
is taken into account is statistically significant. In this regard, no study was found to date. For such 
comparison issues, the two statistics of interest, TAR at a specified FAR and EER, are typically 
employed. 
 
These two statistics of interest can be assumed to be normally distributed regardless of the 
distributions of genuine scores and impostor scores. This assumption is supported by the matches in 
various cases between two types of 95 % CIs. One is computed using the definition of quantile, and 
the other is calculated if the distribution of 2000 bootstrap replications of the statistic of interest is 
assumed to be normal. It is also partly supported by the Shapiro-Wilk normality test. 
 
Under the normality assumption, the Z-test can be applied. The Z statistic is formulated using the 
estimated TAR at a specified FAR or EER of one algorithm or two algorithms along with their 
variances and correlation coefficient, and it is subject to the standard normal distribution with zero 
expectation and a variance of one. All the standard errors can be computed using the nonparametric 
two-sample bootstrap with 2000 bootstrap replications based on our variability study of bootstraps. 
 
In this article, an algorithm is provided to calculate the correlation coefficient between two statistics 
of interest of two fingerprint-image matching algorithms, under the assumption that for these two 
algorithms any two scores with the same ordinal number of entry in the two sets of similarity scores 
were generated using the same two images. Otherwise the user needs to provide the correlation 
coefficient, if they are correlated. Further, in our case, if the orders in the two score sets were 
changed manually, i.e. the similarity scores with the same ordinal number did not co-vary anymore, 
the correlation coefficients computed using the algorithm in Section 6.3 were close to zero. This also 
supports the synchronized algorithm for computing the correlation coefficient. 
 
This algorithm is a stochastic process, since it involves a synchronized sampling. In practice, if the 
p-value is not considerably different from the critical values, such as 5 %, 1 %, etc., then in order to 
reduce the computational fluctuation this algorithm needs to run for several times (ten in our case). 
The average correlation coefficient out of these correlation coefficients is taken to be the resultant 
correlation coefficient for significance test. 
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In Ref. [20], the false non-match rate (FNMR) for a given FAR was employed as a metric to 
evaluate the fingerprint technologies. FNMR, analogous to the probability of type I error, is equal to 
1 – TAR. It is trivial to prove that the standard errors of TAR and FNMR for an algorithm are equal, 
the correlation coefficients of TAR and FNMR given two algorithms are also the same, and so are 
the Z scores and the p-values of TAR and FNMR for two algorithms. The only difference is that the 
upper (or the lower) bound of 95 % CI of FNMR is one minus the lower (or the upper) bound of 95 
% CI of TAR [2, 5]. As a result, every method for TAR stated in this article can be applied to 
FNMR, and every result obtained for TAR holds true for FNMR. 
 
While conducting comparisons, in some cases the 95% CIs can be applied to some extent. 
Nonetheless, the issue of determining quantitatively whether the difference is real or by chance must 
be dealt with using the significance test. As presented in Subsection 4.2.1, although the 95 % CIs of 
Algorithms 1 and 2 did slightly overlap, the hypothesis testing showed that the difference of 
performances between these two algorithms was very statistically significant. And also as discussed 
in Subsection 4.2.2, all three 95 % CIs were mutually overlapped to a certain degree, but the 
hypothesis testing showed that the statistical significances of the differences in performances among 
the three algorithms were quite different accordingly in terms of p-values. 
 
Conventionally, if the two-tailed p-value is greater than or equal to 5 %, the null hypothesis is 
accepted; if it is less than 5 %, the alternative hypothesis is accepted. In the literature [8], it 
suggested: If p-value is less than 0.10, borderline evidence is against Ho; if p-value is less than 0.05, 
reasonably strong evidence is against Ho; if p-value is less than 0.025, strong evidence is against Ho; 
if p-value is less than 0.01, very strong evidence is against Ho. 
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