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Theory of Thermally Induced Phase Noise in Spin Torque Oscillators
for a High-Symmetry Case
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We derive equations for the phase noise spectrum of a spin torque oscillator in the macrospin approximation for the highly sym-
metric geometry where the equilibrium magnetization, applied field, anisotropy, and spin accumulation are all collinear. This particular
problem is one that can be solved by analytical methods, but nevertheless illustrates several important general principles for phase noise
in spin torque oscillators. In the limit, where the restoring torque is linearly proportional to the deviation of the precession amplitude
from steady-state, the problem reduces to a sum of the Wiener-Lévy (W-L) and Ornstein-Uhlenbeck (O-U) processes familiar from the
physics of random walks and Brownian motion. For typical device parameters, the O-U process dominates the phase noise and results
in a phase noise spectrum that is nontrivial, with 1 /w? dependence at low Fourier frequencies, and 1 /w* dependence at high Fourier
frequencies. The contribution to oscillator linewidth due to the O-U process in the low temperature limit is independent of magnetic
anisotropy field H; and scales inversely with the damping parameter, whereas in the high temperature limit the oscillator linewidth is
independent of the damping parameter and scales as /| H},|. Numerical integration of the fully nonlinear stochastic differential equa-
tions is used to determine the temperature and precession amplitude ranges over which our equations for phase noise and linewidth are
valid. We then expand the theory to include effects of spin torque asymmetry. Given the lack of experimental data for nanopillars in
the geometry considered here, we make a rough extrapolation to the case of nanocontacts, with reasonable agreement with published
data. The theory does not yield any obvious means to reduce phase noise to levels required for practical applications in the geometry
considered here.

Index Terms—Langevin equations, macrospin, spin torque, spin torque oscillator, Ornstein-Uhlenbeck, Wiener-Lévy, phase noise.

I. INTRODUCTION

PIN TORQUE OSCILLATORS (STOs) are spintronic
devices with potential applications in nanotechnology [1],
[2]. When asymmetric spin currents drive sufficient angular
momentum into an active ferromagnetic layer so as to over-
come intrinsic damping in a current-perpendicular-to-plane
giant-magnetoresistive (GMR) device, the magnetization of
the layer can precess spontaneously [3]. The bias current and
the GMR effect then result in an oscillating voltage output at
frequencies ranging from radio-frequency (rf) to microwave.
As with any oscillator, one of the most important figures of
merit is phase noise [4]. The first direct measurements of phase
noise in an STO [5] showed a noise too large for applications
such as telecommunications, though it could be significantly re-
duced by incorporating the STO in a phase-locked loop. These
results highlight the need to understand the mechanisms be-
hind phase noise in STOs, with the ultimate aim of reducing
the noise to the point where practical applications become pos-
sible. To that end, we use ideas familiar from the analysis of
other stochastic systems to consider here a particularly simple
case where symmetry and uniformity permit a straightforward
analysis of the equations of motion.
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We present a set of simple and easily interpreted predictive
equations for the STO phase noise spectrum, provide detailed
derivations for all of the results presented here, and demon-
strate the need to assess the validity of these results. We find that
the derived equations are valid only in the limit of sufficiently
large amplitude excitations and sufficiently small temperature.
A comparison of our analytical results with numerical simula-
tions permits determination of the amplitude and temperature
range over which the phase noise equations are valid.

The numerous treatments of STO phase noise in the literature
[6]-[12] all begin by deriving Langevin equations for the dy-
namics of a macrospin in the presence of the effective thermal
fluctuation field originally derived by W. F. Brown [13], where
a Langevin equation is a stochastic differential equation (SDE)
with an additive noise term [14]. These Langevin equations are
presumably small amplitude expansions of model equations for
the system, e.g., Landau-Lifshitz and the Slonczewski torque
term, though the connection to such model equations is not ex-
plicitly derived. In addition, all these previous works focused on
predictions of electrically measured linewidths in order to com-
pare the theories with existing experimental data. Predictions of
the spectral shape of the phase noise have rarely been reported,
though it is generally presumed that the phase noise is diffusive
in character, implying a 1/w? dependence for the spectral den-
sity [6], [9].

References [6] and [8], in which quite different approaches
are used, predict an inverse dependence of linewidth on pre-
cession amplitude, but they neglect the fact that STO frequency
depends on precession amplitude. When this intrinsic nonlinear
behavior is taken into account, as in the approach of [9] based on
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a small amplitude approximation, its contribution to the phase
noise is significant. A treatment that avoids the small amplitude
approximation, and includes the dependence of frequency on
amplitude, has also been developed [15]. This novel approach
makes use of a novel transformation of dynamic variables that
precludes general expressions for the results in terms of measur-
able parameters, except at small amplitudes. Some general the-
oretical treatments of spin torque dynamics with thermal fluc-
tuations rely upon solutions of the Fokker-Planck equation for
a macrospin [16], [17]. So far, such methods have not yet been
extended to make predictions of phase noise or linewidth in spin
torque oscillators.

Motivated by the limitations discussed above, we present
here a case where simple, analytical expressions for phase noise
spectral density, and linewidth with appropriate restrictions,
can be obtained directly from the Landau-Lifshitz-Slonczewski
equation of motion for magnetization. We do this somewhat
pedagogically, explaining in detail how thermal noise enters
the problem and using several standard results from the theory
of stochastic processes. The results are expressed in terms of
physical quantities that can be independently determined by
experiment, and we consider the range of precession amplitude
and temperature over which the results are valid.

The following five fundamental assumptions are made as part
of this theory. (1) We assume uniform magnetization. This is
sometimes referred to as the “macrospin approximation.” As
such, we presume that this theory is strictly applicable only
for the smallest nanopillar devices. Spectroscopic data com-
bined with micromagnetic simulations suggest that devices with
a characteristic diameter of 50 nm or less have properties resem-
bling that of a true macrospin [18]. (2) We assume uniform ef-
fective magnetic fields. This essentially ignores the Oersted field
that results from current flowing through the device. While sim-
ulations and theory suggest that the Oersted field can strongly
affect dynamics in point-contact devices [19], [20], we expect
that its role will be negligible in nanopillar devices in a sat-
urating perpendicular magnetic field that are both sufficiently
small to satisfy the macrospin approximation, and sufficiently
efficient such that the dc current required to excite steady-state
dynamics is minimal. (3) We assume that the Landau-Lifshitz
(LL) equation is an adequate model for damped, gyromagnetic
motion of the magnetization. Recently, there have been a va-
riety of proposed alternative formulations of magnetization dy-
namics, including a model for nonlinear enhancement of scalar
damping [21], the explicit inclusion of terms describing longi-
tudinal relaxation of the microscopic magnetization vector [22],
[23], and a tensor formulation for the damping parameter in
metallic multilayers [24]. While we do not exclude the possi-
bility that a model superior to LL for magnetization dynamics
exists, we believe it necessary to formulate a theory of phase
noise in terms of LL as an initial step; LL is the most rudi-
mentary phenomenological model that is widely accepted as a
reasonable approximation for magnetization dynamics in a va-
riety of common experimental geometries. (4) We employ W. F.
Brown’s theory for the effective thermal fluctuation field acting
on a macrospin based upon the analysis of Fokker-Planck equa-
tions derived from the LL equations [13]. We do not include
the recently proposed spin-current fluctuation effect that may
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be a significant source of phase noise in spin torque oscillators
at low temperatures [25]. (5) We assume that the Slonczewski
model for spin torque in a nanopillar [26], including spin torque
asymmetry, is sufficient for describing the salient aspects of spin
torque relevant to the problem of phase noise. We do not in-
clude the effects of spin pumping [27] or of lateral spin diffu-
sion [28]. We consider the former as a higher order correction
for the types of effects described here, and the latter is ineffec-
tual in the macrospin approximation.

The paper is organized as follows. In Section II, we provide
a review of the standard model for thermal fluctuation sto-
chastic parameters in magnetic systems, and present an explicit
mathematical representation of thermal field fluctuations in
terms of a stochastic train of impulse functions. In Section III,
starting from the Landau-Lifshitz equation, with the addition of
the Slonczewski torque term, we then derive a pair of coupled
Langevin equations in the macrospin approximation. At this
point, we break the problem into two parts, corresponding to
thermal fluctuations in each of two orthogonal directions. In
Section ITI-A, we calculate the phase noise for field fluctuations
that cause direct phase jumps along the precession orbit, which
occur on the time scale of the thermal field fluctuations. In
Section III-B, we do the same for field fluctuations that cause
deviations perpendicular to the precession orbit and result in
phase deviations that occur on a time scale at which the system
returns to steady-state after an energy perturbation. While the
former case yields white frequency noise and thus permits a
straightforward calculation of oscillator linewidth, the latter
case does not. We describe the consequences of non-white
frequency noise on the diffusion of the oscillator phase in
Section IV. We modify our results for the case of spin torque
asymmetry in Section VI. In Section VII, we compare our re-
sults with those in [9] and find that they agree for the particular
high-symmetry geometry considered here. In Section VIII, we
compare our analytical results with those obtained by directly
integrating the full Langevin equation derived in Section III-B,
permitting a quantitative determination of the temperature
range over which the approximation of a linear restoring torque
is valid. With some further approximations, we extend the
analysis to the case of point-contacts in Section IX, and we
conclude with a general discussion of the results in Section X.
In the Appendix, we review the basic elements of the noise
theory for linear systems and how it is applied for the case of
phase noise.

II. THERMAL NOISE MODEL

In this section, we present the model for thermal noise in a
magnetic system used throughout the rest of this paper, which
includes both time domain and frequency domain representa-
tions of the thermal noise. We presume some familiarity on the
part of the reader with the basic methods for the treatment of
phase noise in linear systems. However, we have provided a
brief review of the fundamental concepts in the Appendix.

We consider a uniformly magnetized “macrospin” of volume
V' subject to a random effective magnetic field h(t) arising
from a stationary, Gaussian, white thermal noise source. Brown
showed that the autocorrelation function Cj,(7) for such noise
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is given by [13] (where bold variables are used to indicate
random processes)

Ci () = (h(t)h(t + 7))
o awT r
B [wto]zé( ) W

where « is the dimensionless Landau-Lifshitz-Gilbert damping
parameter, -y is the gyromagnetic ratio, pg is the permeability of
free space, wy is an effective thermal frequency defined as wp =
2|v|kpT /M V, kp is Boltzmann's constant, 7" is temperature,
and M; is the saturation magnetization density. The spectral
density for the field noise is given by (see (99) in the Appendix)

oo
Sy, = /C;L(T)e_i“”'dT
7osz

Frio? @

For the sake of numerical simulations, we require a noise
model that is consistent with (1) and (2) as limiting cases, but
with a non-zero width autocorrelation function. We therefore
modify the autocorrelation function to have the following form:

~ . QWwT 2

Ch(r) = Wﬁ(T) 3)

where S(t) is a continuous, smooth approximation to the
Dirac delta function with a characteristic width At such
thatAltlT)O(S(t) = 6(t), with the form 6(¢t) = f(¢t)/At, where
f(¢) is a suitably representative pulse-like function centered
at £ = (0 with unity amplitude, and normalized such that
fj_o? f(®)dt = At. (In a formal mathematical sense, such
a noise model is consistent with the so-called Stratonovich
interpretation of stochastic differential equations in the limit
of At — 0, as opposed to the alternative Ito interpretation;
see [14] and [29].) The spectral density for our realistic noise
model is now given by
awr

~

where F'(w) and 6(t) are a Fourier transform pair, and F'(w) = 1
forw < 2m/At.

Consistent with the previous two equations, we describe the
noise as a chain of impulses of constant width A¢ and random
height 6 H that occur at random times with a mean rate A. (A de-
tailed description of the impulse model for thermal fluctuations
may be found in [30] and [31].) As Brown did in deriving (1),
we assume that the field pulse width At is much smaller than
any other time scales in the problem. We can write the thermal
noise waveform as

+oo
h(t) = At > SH,O(t —ty). 5)

n=-—oo

The field pulses are uncorrelated in time, and are therefore
representative of a Poisson impulse process [31]. Since we
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model the noise as consisting of pulses of finite, albeit very
short, time duration, we can now compute the variance of the
magnetic field noise, with (3) and (4):

(h%) = Cn(0)

_ Sh

=3 (6)

From our model waveform for the field noise, (5), it is straight-
forward to compute the field noise variance as

(h*) = AtA (§H?) . (7)
Combining (6) and (7), we obtain

2\ __ Sh

where the random pulse amplitude 6H,, follows a Gaussian
distribution.

III. LANDAU-LIFSHITZ-SLONCZEWSKI LANGEVIN EQUATIONS

In this section, we present the essential math for spin torque
oscillations of a macrospin subject to thermal fluctuations in
the particular high-symmetry geometry where the applied field
and anisotropy axes are collinear. We present the two basic in-
tegral equations for the time evolution of phase. Subsequently,
there are two subsections, wherein we provide detailed analysis
of the two integral equations in the limit of small temperature
and/or large steady-state amplitude oscillations. We identify the
first approximate equation as of the Wiener-Lévy (W-L) type.
The second approximate equation can be reduced to the Orn-
stein-Uhlenbeck (O-U) form. Well-known methods exist for the
solution of both equations. We then derive equations for the
phase noise spectral density.

To start with, we consider the thermally perturbed dynamics
for a macrospin of volume V with a net effective uniaxial
anisotropy field Hy, along the z-axis, excited by spin torque
with the spin accumulation and the applied magnetic field H
along the same anisotropy direction. (The net anisotropy field
includes all possible physical contributions to the anisotropy
of the magnetization free energy, including, though not limited
to, demagnetizing, magnetocrystalline, magnetoelastic, and
interfacial/surface anisotropy effects.) Our stochastic form of
the Landau-Lifshitz-Slonczewski (LLS) vector equation of
motion is given by

—
dM - = a|7|ﬂ0—> - =
- = MxH—-——Mx(MxH
p V[0 M x M. x (M x H)
B(I)wr =3

ey A
+TSM x (M x2z) (9
where wyr = |y|uoMs, B(I) = The/2epuoM2V, 1 is the elec-
tric current, h is Planck’s constant divided by 27, e is the elec-
tron charge, and ¢ is the spin torque efficiency. A diagram of
the considered geometry in spherical coordinates is presented
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Fig. 1. Coordinate system for fields and magnetization.

in Fig. 1. In (9), ﬁ is the total effective field (including random
variables), which can be written in spherical coordinates as

— 1 =
H=-—VyU
Ho
L (U, LoV,
o oM, \ 00 sinf d¢
=Hof+ Hy (10)

where U is the stochastic free energy of the macrospin.

We interpret the thermal fluctuations that give rise to random
fluctuations in both the polar and azimuthal components of the
effective field (Hy and H 4) as arising from a temporally sto-
chastic free energy function. Such a randomly varying energy
surface gives rise to two components of the fluctuating magnetic
field. The first, or “primary,” component comes directly from
the angular derivative of the instantaneous free energy func-
tion. These are the zero-mean field fluctuations described by
our model in (5). A “secondary” component of randomly fluc-
tuating effective field then results, because the trajectory of the
magnetization is also fluctuating about steady-state, and the free
energy is generally a function of the magnetization angle. The
secondary fluctuating fields are not generally zero-mean.

Writing the total effective field in terms of both primary and
secondary stochastic fields, we have

- R R

H = (Hy+ho(1))0 + hy(t)p (11)
where hy(t) and hy(t) are the primary fluctuating thermal field
components and Hy is the remaining non-zero secondary field
component. From symmetry, H, = 0. For the present high-
symmetry case, the secondary component of the stochastic ef-
fective field is simply

Hy = —[Hy+ Hjy cosf]sinf (12)
where H, is the applied field. Note that for H; > 0, the
macrospin has an easy axis parallel to § = 0, whereas for
H;, < 0, the macrospin has an easy plane orientation along
6 = m/2. If the macrospin in question is a nanopillar type
device, an additional source of perpendicular anisotropy, (for
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example, interfacial anisotropy in magnetic multilayers) is re-
quired in order to have Hy, > 0. In (12), we can see the essential
difference between the secondary and primary components of
the fluctuating field: The secondary field is the result of random
fluctuations in the magnetization polar angle # that are driven
by the primary thermal fluctuation fields.

Continuing in our use of spherical coordinates, and ignoring
primary thermal fluctuation terms that are proportional to the
damping (because o < 1 for magnetic materials of interest for
spin torque applications) we can rewrite (9) as

dp Hy + hy(t)

= 5T (1
de :

i (a]y|poHg + B(Iwas sin @) + |7y|pohy(t). (14)

In general, (13) and (14) are coupled nonlinear SDEs. Our
approach is to reduce the problem to that of two decoupled
Langevin equations by linearization of the trigonometric fac-
tors, assuming small thermal fluctuations about a steady-state
of arbitrarily large amplitude.

Since (14) does not depend on ¢, it can be solved indepen-
dently of (13). Substituting (12) into (14), we obtain

de
T |v| o ({ —a[Ho + Hy, cos 8]

B M. sinf + hy(1)). (1)

For T = 0, we calculate the time-average steady-state polar
precession angle 6y by solving

O_dH
Todt

= (—a[Hy + Hy cosbp] + B(I)M;)sinby.  (16)

Similarly, for 7" = 0, (13) reduces to the deterministic equation
of motion

de
i |v|po[Ho + Hy, cos )
which has the solution ¢ = Qgt, where Qo(0o) = —|v|o[Ho+
Hj, cos b). Integration of the SDE in (13) for 7' > 0 yields a
solution of the form

7)

P(t) = Qot + [¢1(t) + (1) (18)
where
_ / h9(tl) /
$.(t) = |7|u0/7sin(0(t’)) dt (19)

0
t

¢NFWWMﬂmWM—m%M#(M

0

and @(¢) is the solution to (15). For (19) and (20), we have
chosen to set ¢, (0) = ¢,(0) = 0 with no loss of generality.
Equation (19) describes a phase noise mechanism whereby
thermal field fluctuations perpendicular to the precessional orbit
cause “jumps” in the phase of the oscillator without any change
in the amplitude of the precessional orbit. The characteristic
time scale of the phase fluctuations is given by the duration of
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the field fluctuations themselves. Alternatively, (20) describes a
process whereby thermal field fluctuations parallel to the pre-
cessional orbit cause fluctuations in the amplitude of precession,
which then drive fluctuations in the precession frequency as a
result of the dependence of frequency on amplitude. These re-
sultant fluctuations have a characteristic time scale given by the
restoration rate of the precession orbit back to steady-state after
a thermal perturbation.

A. W-L Process

We can expand the denominator of (19) using both Taylor
series and binomial expansions:

b1 (1) = —|y|po / S’;:léz;)) (1 4 cot Bo80(t"))dt’

21

where 0(t) = 0+ 60(t). We then assume 60 < 0, (i.e., ampli-
tude fluctuations are small relative to the precession amplitude),
which implies §0(¢) < tan 6, and obtain the final approximate
result

t
|7|N0 / N 74/
=— hy(t)dt".
sin(6o) o(t')
0

Equation (22) is characteristic of a Wiener-Lévy (W-L)
process, also known as the “random walk” used to describe
Brownian motion when neglecting particle inertia [14]. Such
stochastic processes are easily analyzed using a variety of
conventional methods [14], [31]. Using standard theory for
linear transformations of stochastic processes (see (112)—(117)
in the Appendix) and the field noise spectral density in (2), we

obtain the W-L contribution to the phase noise spectral density
S(XVL(w):

$1(t) (22)

awT

SWL(,) = 23

o} (w) (mw)g ( )

where m = sin(fp). The spectral density for the frequency
noise is given by

S (w) = w25’<>)'VL(w) (24)

where the subscript refers to the average oscillator frequency
g, in contrast to the Fourier frequency w.

For the case of spectrally white frequency noise, the oscillator
phase evolves as a diffusive random walk, with a mean square
displacement (i.e., variance) that grows linearly in time

(#(1)) = Dt (25)
where D is the phase diffusion constant. (See the derivation of
(121) in the Appendix for further details.) The line shape due

to such a phase diffusion process is Lorentzian, with the full-
width-at-half-maximum linewidth given by [30]

D

:g,

Af (26)

3559

It can be shown that the spectral density of the frequency noise
is equal to the phase diffusion constant, i.e., D = Sq [31]. Thus,
the full-width-at-half-maximum (FWHM) linewidth due to this
component of the phase noise is given by

4 1 T
AfV\L — %SQ;\/L(QJ)
_ awr (27)

2mm?2’

Using (27) with typical device parameters of My = 800 kA/m,
T = 300K,V = 10* nm3, and a = 0.02, and assuming max-
imum amplitude m = 1, the W-L contribution to the linewidth
is AfWI ~ 600 kHz.

B. O-U Process

The steady-state precession angle 6y is found using (16). For
the case of an easy-plane anisotropy (Hj < 0), we obtain the
solution

Hy+ H
fo=0 forB(I) <o [M} (28)
M
. (ﬂ(I)MS - aH0>
o = arccos [ ——>——"—
OéHk
for o [ 2] < (1) < o [ Bz (29)
Hy — H
o=m for B(I) > « {0—’“} . (30)
M;
For the case of an easy-axis anisotropy (Hj > 0), ie.,

anisotropy perpendicular to the plane of a nanopillar device,
steady-state precession is no longer a stable solution, with the
result

. (3D

Hy — Hy,
M, '

o =0 forB(I) < a [M}

bop=m forB(I) > « (32)

For the case of easy plane anisotropy and steady-state dy-
namics, we can now substitute (29) into (15) in order to ob-
tain a differential equation for polar angle fluctuations about the
steady-state:

d(60)  awp ., .
5= T[{5111(290)[605(66’) — cos(260)]}.

+ {2 cos?(6p) sin(860) — cos(26p) sin(280)}]

+ ypohe(t) (33)

where wi, = |y|poH}.. (Note that (33) is applicable only in the
case of steady-state dynamics, where (29) can be invoked. In
the case where the current is too small to generate steady-state
dynamics, as represented by (28), it is sufficient to solve (15)
with 6y = 0. More will be discussed about this at the end of this
section.)

We particularly need to understand that (33) is generally a
nonlinear equation, which in the limit of large fluctuation angles
can only be solved numerically. This is a very important point
that we shall expand upon in Section VIII. In the limit of small
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fluctuation angles 66 relative to the steady-state angle y, one
can linearize (33) and obtain

d(60
4O9) 5 4 1y luohs(t)

7 (34)

where 1 = awy, sin” . In physical terms, 7 is the restoration
rate for the mode, i.e., the rate at which the mode returns to
steady-state once it has been perturbed by a thermal fluctuation.
Equation (34) is an example of an Ornstein-Uhlenbeck (O-U)
process, which has been thoroughly analyzed in the context of
Brownian motion and Johnson noise [32], [33].

The limits to the applicability of the small angle approxima-
tion used to derive (34) can be clearly seen by expanding (33)
to third order in both 66 and 6y, assuming 66 < 1 and 6y < 1:

d(86) _ awy

22 (9202 4+ 36080 + 60%] 80 + yuohs(t).

dt 2 (35)

Thus, we can see that the linearization of (33) requires that
00 < 6, otherwise higher order terms start to become im-
portant. (Indeed, the same approximation is required to derive
(22), i.e., the W-L process for STO phase noise, as presented
in Section III-A.) We shall return to this point in some detail
in Section VIII, where we use numerical integration to clearly
demonstrate the limitations of analytical solutions for (34).

To solve (34), one approach is to substitute a deterministic
impulse function for the thermal term to determine the impulse
response of the system. Given that our model for thermal
field noise is a train of random impulse functions, it is then a
simple extrapolation to solve for the stochastic case. Taking
the Fourier transform of (34) after making the substitution
6(t) — |vlnohy(t), we obtain

1
iw+n

60(w) = (36)
(See derivation of (115) in the Appendix for details of the gen-
eral method.) From this, we obtain the spectral density for am-
plitude fluctuations:

: 1
SOU( = Tt
w0 @)= S G
wr 1
== (37)

awym?* (w/n)? +1

where m = sin 6.

Note that the spectral density of the angular fluctuations
scales inversely with the square of the restoration rate. Indeed,
the restoration rate is of no less importance than the dependence
of oscillator frequency €2y on excitation amplitude m that has
been the focus of past treatment of phase noise in STOs [9],
[34]. It can be measured using the methods described in [5]
and is essential to a complete understanding of how STO noise
depends on physical parameters.

Now, we can compute the spectral density for the O-U phase
noise by expanding (20) about steady-state:

t
¢2(t) = wy, sin g / 86(t")dt'.

0

(38)
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Again, using standard stochastic transformation theory
(Appendix, (115)), we have
1
S9U(w) = —F : 39
o )= Smay? o + 1 e
The spectral density for frequency fluctuations is
1
SQU(w) = =L (40)

am? (w/n)?2 +1°

Equations (39) and (40) are central results of this paper. We
see that the frequency noise for the O-U process is no longer
spectrally white, as it was for the W-L process. For w < 7, the
frequency noise appears spectrally white, but for w > 7, the
frequency noise has a 1/w? character. Thus, the O-U process
inherent in this particular component of phase noise can be
thought of as a low pass filter acting on an otherwise white
frequency noise source [35].

The divergence of (40) as the precession amplitude m — 0
also deserves attention. Since the amplitude of excitation scales
in proportion to current, as described by (29), we might surmise
that this result is unphysical if the dc current is insufficient to
drive steady-state dynamics. However, as stated parenthetically
earlier in this section, the solution in the case of the fixed point
described by (28) utilizes a stochastic equation different from
that used in the derivation of (40). To proceed further, we begin
with (15) and use the approximation sin(f) =  and cos(f) = 1
for small amplitude fluctuations about the fixed point at # = 0.
The resultant equation is also of the O-U form with a spectral
density

W 1

So = V2 (w/v)2+1

(41)

where v = |y|uo(a(Ho+ H})— S Ms;). In this case, the variance
for the polar angle 6 is easily found by integrating the spectral
density (see Appendix, (101)), with the result

awT

<02> T

(42)
As a point of validation, it can be shown that (42) is consistent
with the equipartition theorem.

Since the variance for # is non-zero at finite temperature,
and 6, as a spatial coordinate, is defined only on the interval
[0, ], it must also be the case that the mean of the polar angle
6 is also non-zero. To see why this is the case, we consider the
properties of the stochastic variable |8, which is a reasonable
approximation for the functional properties of the polar angle
when fluctuating about the pole at § = 0. It can be shown
that (|])> = (2/x)(*) [36]. Thus, the average polar angle
is never zero at finite temperature, implying that m > 0 al-
ways, and the spectral density of frequency fluctuations does
not actually diverge in the limit where the current is reduced
below the threshold for steady-state dynamics. In addition, and
of more immediate consequence for the comparison of these
theoretical results with experimental data, the approximations
required in the derivation of (34) from (33) are no longer valid
for sufficiently small 6y. More will be presented on this topic in
Section VIIL.
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Returning to (40), the fact that S;?U is independent of
anisotropy at Fourier frequencies below 7 deserves special
mention. For the O-U phase noise to be independent of Hy
appears to be inconsistent since the physical origin of this
particular noise component stems from the dependence of
oscillation frequency on amplitude, which is itself proportional
to anisotropy. However, since the restoration rate n is also
proportional to anisotropy, these two factors cancel in the final
derivation of (39). The only effect that a change in anisotropy
has on the phase noise is a shift of the knee frequency, where the
noise spectrum changes from a 20 dB/decade to a 40 dB/decade
slope.

Given that the frequency noise spectrum for the O-U process
is not white, the calculation of the oscillator linewidth is not as
simple as in the case of the W-L process. The next section de-
scribes in detail how the filtered white noise of the O-U process
affects the phase diffusion and line shape of the oscillator.

IV. PHASE DIFFUSION FOR COLORED FREQUENCY NOISE

In this section we show that a frequency noise spectrum
SQV(w) that is not constant for all w implies a phase variance
that does not grow linearly with time and a line shape that is
not Lorentzian. In this case, we cannot simply identify a phase
diffusion constant and linewidth with SQY(w), as we did for
the W-L process. We therefore proceed by directly calculating
the evolution of phase variance with time for a spectral density
of the form in (40). We then show how the actual time evolution
of phase variance affects the line shape of the oscillator.

We begin by applying the time-domain impulse-response so-
lution 66(t) to (34):

06(t) = Aexp(—nt) (43)
where A = At|y|poho, and hg is the amplitude of the thermal
field pulse and At is the duration. To proceed further, we can
conveniently first calculate the variance of the polar angle about
the steady-state value. From the thermal noise model presented
in Section I1, and with the assumption that 60 < 6, we have the
following equation for the initial polar angle 66; at time ¢ = 0:

0
Z A, exp(nty,)

n=-—oo

(44)

where A,, = At|y|uobH,, and t, < 0 for n < 0. Note that
the polar angle at a specific moment in time is the sum result
of an infinite number of decaying fluctuations in the past. Of
course, only those fluctuations within ~1 /7 of t = 0 contribute
significantly to the sum. Squaring and averaging, we obtain

oo

602 = / ) exp(—2nt)dt
0

AAT) 45
= o (45)

where ) is the mean pulse rate for the Poisson process.
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Now, to calculate the variance for the phase, we again resort
to the thermal noise model presented in Section II, as well as
(38). Using these, the O-U phase noise in the time domain may
be written as

t

&y (t) = mwy, | 66; / exp(—nt")dt' exp(—nt)

0
t
/ Z A exp(—n(t' —t,))B(t — t,)dt' | (46)
where ®(¢) is the Heaviside step function, with ®(¢) = 1 for
t > 0and ®(¢) = 0 for ¢t < 0. Integrating, we find
mwig
$2(t) = === | 80:(1 — exp(—nt))
floor(At)
+ Y An(l—exp(—n(t—t.))| @7
n=0

where we have assumed that At > 1 and ¢ > 1/7. Squaring
the phase angle waveform and taking the mean, we obtain

(8200) = (L2)" 2yt =1+ exp(-n)] @9

am

where we used (45), A > n in order to assume a uniform distri-
bution of field fluctuations over the interval [0, ], and we made
use of \(A2) = (y110)2Sh, as derived from (8) and the defini-
tion of A,,. Equation (48) is in agreement with that of [11], and
was first derived by Ornstein in 1919 to describe the variance of
position for a particle with inertia undergoing Brownian motion
[32].

We see in (48) that the low pass filtering of the frequency
noise in (40) for an O-U process causes the phase variance to
increase as t? (to lowest order) for ¢t < 1 /n, and it eventu-
ally grows linearly in time for ¢ > 1/7. Such nonlinear time
evolution for the phase variance will generally result in a non-
Lorentzian line shape for the phase noise limited spectrum, as
was previously discussed in [11].

Determination of the oscillator power spectral line shape 7.2
requires evaluating the following Fourier transform [30]:

e 2
m2(Q+ Q) = / exp <—w> exp(—iQt)dt (49)

where 12 is proportional to the Fourier transform of the power
in the x-component of the magnetization, and €2 is the nominal
oscillator frequency. (Our choice of 712 is arbitrary. We could
have just as easily chosen m‘j with no loss of generality.) In the
case of a phase variance such as that given in (48), a general
analytic solution for the line shape is not available. However,
we can consider limiting cases for line shape in certain approx-
imations. In the low temperature limit of 7 > (yuo/am)?Sy,,
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(which can be rewritten as wr < |wg|a®m?), we can approxi-
mate (49) as

+oo
1 2
m2(Q + Q) = / exp <—— (M) Sh|t|) exp(—iQt)dt
2 \am
2 1
=T or Lo N2 (50
2 am (5 W)

Thus, the line shape for the oscillator power spectrum is approx-
imately Lorentzian with a FWHM linewidth of

L |y|ksT
AfOU o 2 111222 1
Jix T am?M,V D
AfVVL
= 2 (52)

In the low temperature limit, we see that the linewidth inversely
proportional to o and m?, it is independent of Hy, and is
linear in T'. Alternatively, in the high temperature limit of n <
(y0/am)? Sy (orwr > |wk|a?m?), (49) can be approximated
as

“+oo

22 (- Q) = Lm0 g2 exp(—i
m; (2 QO)_/ exp( 4(am) St ) exp(—iQt)dt

0
T ( 02 >
=2, /———exp|———].
|w |wr |w [wr

The amplitude line shape is approximately Gaussian and the
power spectrum line shape has a FWHM linewidth of

(53)

1
AfI({)rlg = ; 1n(2)|wk|wT
v/21n(2 | o

|Hk|kBT

poM,V - (54)

In the high temperature limit, we see that the linewidth is no
longer a function of a or excitation amplitude m, it is a func-
tion of Hy, and is proportional to \/T rather than T. This is
consistent with the result previously reported in [11].

Clearly, the extraction of the linewidth from experimental
data for comparison with theory could be a misleading exercise
for the case where 1 22 (yp0/am)? S}, because neither the low
nor high temperature limits are applicable. Indeed, this is prob-
ably often the case for most experimental measurements cur-
rently undertaken [37]. For example, if we take o = 0.02,T =
300K,V = 1.4 x 10* nm? (e.g., a ~40 nm radius, 3 nm thick
circular dot), M, = 800 kA/m, and H; = —M,, we calcu-
late that wr/(a?|wk|) ~ 1.8, implying that the line shape is
neither Lorentzian nor Gaussian at room temperature, except at
sufficiently small amplitudes (m < 0.5), whereupon the system
is in the high-temperature limit. As a consequence, the tem-
perature dependence of the linewidth is no longer expected to
follow the simple functional forms of either (51) or (54). Under
such circumstances, a less ambiguous method for comparison
with theory would be the direct measurement of oscillator phase
spectral density, which would allow for comparison of experi-
mental data with (39).
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In the low temperature limit, we note that the linear combi-
nation of the W-L and O-U processes result in a linewidth that
scales linearly with temperature, with the final form given by

()]

14+ — .
!

In this limiting case, the O-U noise source will clearly always
dominate, because o« <K 1 for all the materials of interest for
spin torque oscillators. In the high-temperature limit, the O-U

and W-L process linewidths are comparable for a sufficiently
small precession amplitude mq given by

1 a|ylksT

A =
Jux m2M,V

(55)

(56)

mop =

«
V2(@) \| M YV
If we assume physically realizable parameters that are consis-
tent with the high-temperature limit, we find that m¢ < 1, im-
plying that the O-U contribution to the linewidth remains dom-
inant even in the high-temperature limit, except for the instance
of extremely small amplitude precession.

Since we expect the W-L process to be far less important
for determining oscillator linewidth, we will ignore its effect
from this point forward, except as a point of comparison with
previously published work.

V. SUB-THRESHOLD CURRENT REGIME

In Section III-B, we pointed out that thermal fluctuations
effectively maintain m > 0 as the current is reduced below
threshold for steady-state dynamics. This point can be elab-
orated upon in the context of sub-threshold dynamics, where
we can glean some insight into the nature of ferromagnetic
resonance in the context of phase noise. When the dc current
satisfies the condition in (28), phase noise still exists, even
though the spin torque is not sufficient to drive the device into
steady-state dynamics. In other words, thermal fluctuations
alone maintain periodic oscillations with a non-zero amplitude.
This effect is sometimes referred to as “mag noise,” and has
recently garnered substantial attention, because it poses a sig-
nificant deliterious noise source for hard disk drives [38]-[40].

It is instructive to consider how the phase noise for the
macrospin in this particular geometry scales with current
when operating the STO below the threshold current. First, we
make the identification that m?> = (#?), where the variance
of the polar magnetization angle is given by (42). Second, we
recognize that the W-L process for phase noise is essentially
unchanged in the sub-threshold regime. Finally, we utilize
(15), expanding for small #, in order to determine how small
amplitude polar angle fluctuations affect the O-U contribution
to the noise, exactly as was done in the derivation of (41) in the
previous sub-section. Following these first two steps, we find
the thermally driven W-L contribution to the linewidth is given
by

AfYVE = (57)

where v = (af20(0) — B(I)wnr) (previously defined in
Section III-B), €20(0) is the FMR frequency (previously de-
fined in Section II), and wys = |vy|woMs. (Note that the
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threshold condition for steady-state dynamics in (28) is equiv-
alent to ¥ = (.) At this point, we immediately see that the
phase-noise-limited linewidth for the W-L process when 3 = 0
is indeed equivalent to the ferromagnetic resonance linewidth
[41]. In addition, the W-L linewidth decreases linearly as
current increases in the sub-threshold regime, consistent with
experimental observations for nanopillars [42], leading to the
notion that spin torque can be regarded as a kind of “negative
damping” [3].

Now we turn to the O-U contribution to the thermally driven
linewidth. Following the same steps used in the derivation of
(40), but utilizing instead the sub-threshold spectral density for
the polar angle fluctuation in (41), we obtain

GOU _ (awrwy)? 1
Q = 3 2 :
2 (g) +1

v

(58)

Following the same procedure that was outlined in Section IV,
we find in the low temperature limit of wr < V212 /awy, that
the O-U contribution to the linewidth is given by
1 (awpws)?

I

4t 203 (59

Thus, while the W-L linewidth goes to zero as the current ap-
proaches threshold from below, the O-U contribution diverges,
in much the same manner that the linewidth above threshold di-
verges in (55) as the current approaches threshold from above.
Of course, as discussed earlier in the context of phase noise at
currents above threshold, this simple analysis breaks down at a
sufficiently large current, for several reasons. First, the low-tem-
perature approximation will eventually break down as v — 0,
requiring the application of the same approximations used in the
derivation of (54), with the result that the oscillator line shape
is expected to take on a Gaussian profile with a linewidth that is
independent of excitation amplitude. Second, and more impor-
tantly, as v — 0, the fluctuations in § will become sufficiently
large that the approximations that are used to treat (15) as a first
order stochastic differential equation will no longer be valid, re-
quiring a numerical treatment to calculate the phase noise close
to threshold. Numerical methods to determine the validity of
phase noise solutions will be further discussed in Section VIIIL.

VI. ASYMMETRIC SPIN TORQUE

‘We now consider how the inclusion of spin torque asymmetry
affects the previous equations for phase noise. While the in-
clusion of spin torque asymmetry is not fundamentally prob-
lematic for the case considered here, this does require some
messy algebra that will not be presented. Instead, we will focus
on the primary results, insofar as the inclusion of spin torque
asymmetry does act to significantly reduce the phase noise and
linewidth associated with the O-U process.

Various authors have proposed that the spin torque factor (1)
in metallic nanopillars also contains an additional dependence
on the relative angular orientation of the magnetization with re-
spect to the fixed magnetic layer [3], [43]-[45] to account for
the fact that the free layer also affects the spin accumulation in
the nonmagnetic conductive layer between the free and the fixed
layers. Such an angular dependence is used to explain why spin
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torque induced switching in nanopillars has an asymmetric de-
pendence on current polarity [46], [47]. The form proposed by
Slonczewski for such a dependence is [43]

B(I,0) = ((I)g(0) (60)
where
. Ih
)= Yoo M2V (61)
and
P 2
9(6) = A ()

(A2 +1)+ (A2 =1)cosf’

In (62), P is the asymmetry of the magnetoresistance and A
is the aymmetry of the spin torque, with A = 1 equivalent
to symmetric spin torque switching, i.e., the magnitude of the
switching current does not depend on the sign of the current.

Inclusion of such an asymmetry alters the results for the O-U
contribution to phase noise (i.e., phase noise due to field fluctu-
ations h ) in two ways. First, the polar angle for steady-state os-
cillations is now determined by solving the following quadratic
equation:

0=\ +1)z*+ [(A\? + 1) + (Ho/Hy)(\ = 1))z

+ {(1110/1%)(/\2 +1)— PA* ()M,

I } (63)

where 2 = cos f, subject to the constraint |z| < 1, whereby

we obtain
6o = arccos { —B- VB - 4AC} (64)
24
with
A= (AN +1), (65)
B=(A2+1)+ (Ho/Hp)(N\ =1) (66)
. 2 _ PN¢(I)M;
C = (Ho/Hp)(A* + 1) i (67)

The physical constraint 6y € [0, 7] implies the existence of a
Hopf bifurcation [48] at the minimum current I, which satisfies
this constraint. Second, in the limit of fluctuations sufficiently
small to permit linearization of (33), we obtain

d (66 .
% = awkq(0o) sin? 0060 + |y|pohy (1) (68)
where
Hy/H
a(b0) =1~y Lo TI) o8l (69)

(A24+1)/(A2 —1)+cosby’

Thus, the mode restoration rate is modified to be n =
awrq(fo) sin?#fy, and the general form for the low tem-
perature linewidth is now

wr

ouU _
Alr = 2ra[mq(6o)]?

(70)

For the case of steady-state dynamics with Hy, < 0, we see
that q(8) > 1, implying that the spin torque asymmetry acts to
accelerate the return to steady-state after a thermal fluctuation,
thereby reducing both the phase noise and the commensurate
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Fig. 2. Linewidth as a function of steady-state precession angle ¢ obtained with
(70). The parameters are & = 0.02,7 = 300 K, V' = 1.4 x 10* nm? ellipse,
M, = 800 kA/m, H, = —M,, Ho/H) = —1.3,and XA = 1 or 1.6. The red
solid curve is for A = 1, the orange dashed curve is for A = 1.3, and the blue
dotted curve is for A = 1.6.

linewidth. In Fig. 2, we plot (70) as a function of steady-state
angle 6 for the conditions o = 0.02,7 = 300K,V = 1.4x10*
nm?3, M, = 800 kA/m, Hy/Hy, = —1.3,and A = 1, 1.3, or 1.6.
For the case of A = 1, the linewidth diverges at #y = 0,7 and
it has a minimum at §, = 7/2. We see that the spin torque
asymmetry for A = 1.6 reduces the linewidth by a factor of
anywhere from 1.3 to 8.4, depending on the steady-state angle,
with increasing reductions at larger values of . The minimum
linewidth is reduced by a factor of 4.5, and the minimum is
shifted to a larger angle of y ~ 120°.

By solving (64), we can plot linewidth A fOU as a function
of current with the same parameters used in Fig. 2, as well as
Ms/H;, = —1 and P = 1. The results are shown in Fig. 3.
While the linewidth for A = 1 displays a “U” shaped curve,
with nearly symmetric behavior about 2.1 mA, the behavior for
A = 1.6 is substantially different, with A f®U monotonically
decreasing until 1.5 mA, at which point the magnetization dis-
continuously switches to p = m. At its smallest value, the
linewidth for A = 1.6 is reduced by an approximate factor of
2 relative to the minimum at A OV = 1.08 GHz for A = 1.

The magnitude of the calculated linewidths deserves further
attention. As will be discussed in detail in Section X, our the-
oretical linewidths for smaller currents are substantially larger
than those generally reported in the literature. However, there
are actually scant data for the case of a near-saturation perpen-
dicular applied field with nanopillars. What few data exist sug-
gests that experimentally measured linewidths for the perpen-
dicular geometry are on the order of hundreds of megahertz,
which is comparable to those calculated here for m =~ 1. In
addition, the analytical theory described by (70) breaks down
for sufficiently small amplitude motion, as will be shown in
Section VIII. Finally, as explained in Section III-B, thermal fluc-
tuations establish an effective lower bound for the mean value
of m. Thus, the divergence of the linewidths at small and large
currents in Fig. 3 should not be construed as physically accurate.
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Fig. 3. Linewidth as a function of dc current obtained with both (64) and (70).
Parameters used for the calculation are stated in the text. The red solid curve is
for A = 1, the dashed orange curve is for A = 1.3, and the dotted blue curve is
for A = 1.6.

VII. COMPARISON WITH KiM, TIBERKEVICH, AND SLAVIN
(KTS) THEORY

Recently, the KTS theory has provided a thorough analysis
of spin torque oscillator noise in the context of a specific non-
linear differential equation for spin wave modes with third-order
nonlinearity in excitation amplitude [7], [9]-[11]. As such, KTS
theory could be considered a more general theory than that pre-
sented here. However, while it is always possible to expand
the equation for spin wave dynamics to third order in mode
amplitude, quantitative comparison of the theory with exper-
iment without fitting parameters requires detailed information
concerning the particular excited spin wave mode in question.
In addition, this method introduces some difficulty in extrapo-
lating KTS theory to excitations for an arbitrarily large polar
angle . For example, there exist experimental data for large
amplitude excitations close to and even beyond saturation, i.e.,
0o = 1 [49]-[51]. In this section, we analytically compare our
method to the results of KTS, and we find that the equations for
phase-noise limited linewidth derived by both methods agree,
given a proper translation of variables between the equation of
motion of the spin wave amplitude for KTS and our own equa-
tions for a macrospin dynamics in polar coordinates.

The KTS theory starts with the following equation for the
complex spin wave mode amplitude [52]:

da .
7 +i(wo + Nla|?)a + To(1 + Qolal?)a

—Ts(1 = Qslal*)a = fult) (71)
where a = |a|exp(—i¢), N is a nonlinear frequency coeffi-

cient, I'y is a linear damping coefficient, I'5 is the linear spin
torque coefficient, )¢ is the nonlinear damping coefficient, Q4
is a nonlinear spin torque coefficient, and f, () is the thermal
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noise source term. If we make the substitution § = |a|, we can
rewrite (71) as

d¢ . 2 Im[fn(t)eid)]
g = (w0 N0+ = 72)
and
df 2 2
=7 = ~To(14Qob%)6 +Ts(1 - Q,6%)6
+ Re[f(t)e?). (73)

We can now see that (72) and (73) are equal to (13) and (14) in
the limit of small #, with the following equivalencies:

wo = |v|po[Ho + Hy] (74)
Ty = aly|pwo[Ho + Hg] (75)
FS = ﬂ(I)LLJ]\/[ (76)
1 H,
= 77
Qo 2 [Ho + ] )
1
N = _§|’Y|M0Hk' (79)
From the KTS theory, the linewidth is calculated to be
1 kT N\’
Af=—Ts| — ] |1
I= 5 °< Eq > +<reg) ] (80)

where Ej is the stored energy of the oscillation and I'eg is the
effective damping coefficient, defined as Togr = T'o(Qss+ Qo).
with the supercriticality factor ¢ = (I — I..)/I.. The oscillator
energy in the small amplitude limit is given by [53]

Q (6 = 0) m2M,V

Ey =
2|9

81)

where (2 is the angle-dependent precession frequency defined
in Section III. Using (74)—(79), and (81), we can rewrite (80)
to be identical to (55). Thus, we find that our equations for
linewidth in the limit of both low temperature and small ampli-
tude agree with that derived by KTS, with the caveat that the var-
ious linear and nonlinear coefficients in KTS theory are set by
(74) through (79), as obtained from the Landau-Lifshitz-Slon-
czewski equation (9).

We hasten to add that our principle motivation in this section
is to show the equivalence of (55) and (80) in the limit of small
amplitude oscillations near the oscillation threshold: Doing so
substantiates our claim the our results are consistent with those
derived by KTS. However, we recognize that (80) is a general
result for oscillator linewidth near oscillation threshold that is
not restricted to the particular high symmetry geometry consid-
ered here. Indeed, (80) has also been derived in [12] by a Taylor
series expansion of (9) about an in-plane symmetry axis.

We note the following essential differences between our
derivation of (55) and that of KTS theory. First, our derivation
employs equations of motion that are derived from the LLS
equation for arbitrary steady-state polar angle 6y, whereas
(71) is fundamentally based upon a third-order Taylor’s series
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approximation that is quantitatively accurate only for y < 50°.
While both approaches arrive at the same final result for
linewidth at low temperature and small amplitude, they differ
in that our approach allows us to determine the temperature
range over which the approximations used to derive (55) are
valid by comparison of the analytical results with numerical
solutions to (19) and (20). This will be explained in more detail
in Section VIIL.

There is a second essential difference between KTS and our-
selves in the derivation of (55). In [9], )¢ is not derived from a
general dynamic equation such as LLS, but is instead treated
as a phenomenological parameter, with an assumed value of
Qo = 3. The argument to treat the damping in such a manner
was first proposed in [21], where the authors suggest that the
damping parameter itself is not a constant. By using such a large
value for the nonlinearity in comparison to what is expected
from Landau-Lifshitz in (77), the linewidths calculated using
(55) were sufficiently reduced to match published data. Without
adjusting the nonlinearity in such a manner, we find that the cal-
culated linewidths tend to be 5 to 10 times greater than those
measured.

VIII. SIMULATION RESULTS: LIMITS OF LINEAR
APPROXIMATION FOR df) /dt

The derivation of (34), a linear equation of motion for the per-
turbed dynamics about steady-state, from (33), the fully non-
linear equation of motion, requires use of the approximation
that the thermal fluctuations are sufficiently small to permit lin-
earization via Taylor series expansions. Thus, it is mandatory
that the range of temperatures and/or amplitudes that permit
such an approximation be clearly determined before any attempt
is made to compare this theory with experimental data. In other
words, at a given temperature 7, the approximation used to de-
rive (34) is valid only for a sufficiently large value of #y. To
date, this has not been adequately addressed in the literature. In
this section, we demonstrate the use of numerical methods to
determine the range of temperatures and amplitudes that permit
linearization of (33) for a specific set of parameters. The numer-
ical methods described here are quite elementary in nature, and
should prove useful for making such determinations when these
equations are used to analyze data for arbitrary experimental
parameters. For the sake of simplicity, we will restrict our the-
oretical analysis to the low-temperature form of the linewidth
given in (55).

We can numerically integrate (33) to determine the range of
validity for the approximation used to derive (51). For the nu-
merical integration, we used a time step criteria of 6t = 1/257),
where 7) is the mode restoration rate, as defined in Section III-B.
This ensured convergence for the numerical integration using
a fourth-order Runge-Kutta fixed step method. To demonstrate
that our numerical integration scheme agrees with the analyt-
ical theory, we compare in Fig. 4 the numerically calculated fre-
quency noise spectral density SGU with the theoretical predic-
tion of (40). For sufficiently large amplitude of excitation and
sufficiently small temperature, the numerical and analytical re-
sults are in excellent agreement, as will be discussed in detail
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Fig. 4. Comparison of frequency noise spectrum calculated by means of an-
alytic result and numerical integration. The dashed blue curve represents the
analytical result of (51), and the red solid line is the result of numerical inte-
gration of (33). The parameters for the comparison were T = 300 K, o =
0.01,V =1.4 x 10* nm3, H, = —M,,and m = 1.

below. (Note that the units for the frequency noise spectral den-
sity is Hz2/Hz = Hz.)

Convergence for integration of the Langevin equation was
verified by checking that the numerical results were unaltered
when both the noise pulse width At and the Poisson rate A of the
field noise pulses were varied. For the simulation results shown
here, 6t = At.

To numerically estimate the linewidth, we start by estimating
the phase diffusion constant from the discrete time series data
generated when integrating (33) over the time interval [0, 7] with
a time step of 6t. The generated time series data ¢, = ¢(p - 6t)
form a vector of length P = 7/6t € T +, which is then divided
into J € I'" non-overlapping sub-series ¢/ = ¢(r-6t-+(5/J)7),
where j € [0,1,...,J — 1] and7 € [0.1,...,(P/J) — 1]. We
then calculate the time-dependent variance of the phase with the
standard estimator:

sl (61 -4)
J -1 ’

(@*(r - 6t)) = (82)
We fit the resultant data with (¢?(r - §t)) = D - r - &t for
r - 6t > 1/n to estimate the asymptotic diffusion constant at
long times. The linewidth is then calculated with (26). (This
particular method for determining the linewidth specifically ig-
nores the nonlinearity in the dependence of phase variance on
time, thus avoiding the complications associated with distortion
of the line shape from the ideal Lorentzian form. This permits
us to compare the numerical results with analytical formulae de-
rived in earlier sections.)

In Fig. 5, we show the dependence of linewidth Af =
AfWVE 1 AfOU on excitation amplitude m = sinf. We see
that the analytic theory works well for m > 0.2. For excitations
of smaller amplitude, the linearization of (33) that leads to
(34) is no longer valid because the excursion angles at room
temperature are too large to permit the small angle approxima-
tion for the expansion of the trigonometric functions in (33).
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Fig. 5. Comparison of linewidth calculated by use of analytical theory and
numerical integration of (33). The red curve is directly calculated from (33)
and (82), as explained in the text, while the blue dots are the results of nu-
merical integration. The parameters for the comparison were 7' = 300 K,
a=0.01,V =1.4 x 10* nm?, and H, = —M,.

We note that, while the nonlinearities in (33) appear to lead
to a significant reduction in the linewidth relative to what is
predicted in the analytic theory in Fig. 5, we cannot guarantee
the accuracy of our numerical integration in the case when the
stochastic differential equation becomes highly nonlinear. The
methods for the proper integration of such equations remain a
topic of ongoing research that goes well beyond the scope of
this paper [29], [54].

The breakdown in the linear expansion of (33) can be graphi-
cally demonstrated in Figs. 6 and 7, where we plot the restoring
torque, i.e., the right side of (33), alongside the thermal fluc-
tuations in #(t). Fig. 6(a) shows the time series resulting from
integrating (33), while Fig. 6(b) shows the restoring torque on
the horizontal axis over the same range of 6. For this large am-
plitude (m = 1) case, the linearization of (33) is clearly valid.
Fig. 7 shows a small amplitude (m = 0.259) case where thermal
fluctuations at room temperature are too large to justify the lin-
earization of (33). The complete parameters for both cases are
given in the figure captions.

The nonlinearities that affect phase noise at small amplitudes
will also affect the dependence of linewidth on other parame-
ters. For example, (55) predicts a linear dependence of linewidth
on temperature. In Fig. 8(a), we see an example of such linear
dependence for m = 1, with good agreement between the pre-
diction of (55) and numerical simulations. However, results are
very different at smaller amplitudes where the differential equa-
tion for the polar angle dynamics is no longer linear. In Fig. 8(b),
we see a comparison between theory and numerics for m =
0.34 (fg = 20°). Here, we see that the temperature dependence
changes slope at 7' = 150 K. Alternatively, in Fig. 8(c), at an
even smaller amplitude of . = 0.17 (§; = 10°), we see that
the linewidth saturates for 7' > 50 K as a result of the nonlin-
earity inherent in (33). Note also that the simulated linewidth
for T > 150 K are greater than those expected from the theory
for 8p = 20°, but less than those expected from the theory for
6o = 10°, reflective of the complicated manner in which the



SILVA AND KELLER: THEORY OF THERMALLY INDUCED PHASE NOISE IN SPIN TORQUE OSCILLATORS

3567

95

93

91

6 (degrees)

89
)

87

(sea169p) o

85

85

0 100 200 300 400 500

t (ns)

8 6 4 -2 0 2 4 6 8
d(66)/dt (degrees/ns)

Fig. 6. Example of numerical solution of (33) for conditions where restoring torque acting on magnetization fluctuations is linear in fluctuation amplitude. Part
(a) shows a sample trace of the fluctuations in the polar angle theta as a function of time. Part (b) shows how the restoring torque acting on the magnetization
fluctuations behaves with varying angle. In this case, the restoring torque is clearly linear over the range of perturbations acting on the magnetization. Simulation
parameters are 7' = 300 K, « = 0.01, V = 1.4 x 10* nm?, H, = —M,,m = 1.
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Fig. 7. Example of numerical solution of (33) for conditions where restoring torque acting on magnetization fluctuations is not linear in fluctuation amplitude. The
vertical axis of part (a) includes negative polar angle values. These are physically degenerate with positive polar angles, but we use this representation to indicate
events where the magnetization precession undergoes a 180° phase jump as a result of fluctuations driving the magnetization through the pole at & = 0. Simulation
parameters are T = 300 K, « = 0.01,V = 1.4 x 10* nm?, H, = —M,, m = 0.259, (6o = 15°).

nonlinearities of (33) affect the linewidth relative to the analyt-
ical predictions.

These results demonstrate that care must be taken when an-
alyzing linewidth data with precession amplitudes of less than
about m = 0.4 (at room temperature), for which nonlinear-
ities intrinsic to the dynamics make comparison with theory
problematic. Such nonlinearities may explain earlier observa-
tions of a nonlinear dependence of linewidth on temperature for
steady-state oscillations in nanopillars and point-contacts [55],
[56]. We stress that (13) and (14) are strictly applicable only in
the case where the applied field is parallel to the anisotropy axis
of the device, unlike the experiments in [55], which were con-
ducted while a magnetic field was applied in the plane of the de-
vice. Nevertheless, we expect that the basic principle concerning
nonlinear SDEs can be extended, insofar as the relevant SDE
will be only approximately linear in fluctuation amplitude for a
sufficiently large precession amplitude at a given temperature.

IX. POINT-CONTACT DEVICES

We can extend our results to the case of point-contact struc-
tures by estimating mode volume and mode damping using the
well known solution of Slonczewski [57]. In this case, the spin
torque excites a mode consisting of spin waves that radiate from
the point-contact into the surrounding magnetic film. We begin
by assuming that the spectral density of the field noise is uncor-
related in both time and space, such that

Ch(?v T) = <h(F7 t)h(F+ ﬁvt + T)>
2OZI€BT

= 222 8(r)6(7).

—5 (83)
Yud M,

This assumption forms the basis for the inclusion of thermal
effects in many micromagnetic simulations [58], though a rig-
orous theory justifying such an assumption has not yet been pre-
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Fig. 8. Theoretical and simulated dependence of linewidth on temperature. In
part (a), we show an example where the simulations based upon the numerical
solution of (33) agree well with the analytical result (55). Such agreement is
not the case for parts (b) and (c), where we see significant differences between
theory and modeling owing to the intrinsic nonlinearity of (33), as discussed in
the text. For part (b) with 8, = 20°, the simulations agree with theory only up
to a temperature of 100 K, at which point the linewidth grows faster with tem-
perature than theory would predict. Note that linear regression of the simulation
results for I' > 100 K results in a negative intercept at 7 = 0. For part (c), we
find that simulated linewidths saturate for 7" > 50 K.

sented. Nevertheless, the spectral density for the field noise is
then

“+oo

Sh(?,w)://ch(Pﬁ)

oo

x exp(—iwT) exp(—ik - p)drd®p

2akpT
= =B (84)
’YN’OMS
The point-contact is centered at the origin. We presume the
existence of a spin torque excited magnetic mode u(7,t) =
mg(7) exp(—iwt), where g(0) = 1 such that m is the mode
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amplitude at the origin. The normalized Fourier transform of
the mode profile is

Jy 9P (=it "R
max [fv g(7) exp(—ik T'p'°)d3r]

As previously stated, a rigorous theory for the effect of spatial
thermal fluctuations on eigenmodes has not yet been developed.
Nevertheless, we can extend well known principles of linear re-
sponse theory to estimate the spectral density for frequency fluc-
tuations of the excited mode. Let us assume that the partial dif-
ferential equation for the magnetic system allows for a Fourier
transform solution .J (E w) for a given eigenmode. Let us also
assume that, under some approximation, we can factorize .J into
its spatial and temporal components, G and F'. Now we can mul-
tiply the field noise spectral density by the temporal and spatial
Fourier transform of the excited mode:

G(k) = (85)

Sa(k,w) = (y0)*| T (K, w)|”Sa(F,w)

- = o 2aly|kpT
~ | F(w) Pl (Ryp 2 kaT

M. (86)

In (86), |G(K)|? acts as a spatial filter function, whereby uni-
formly distributed thermal fluctuations in k-space are averaged
by the mode structure.

The factorization of the transfer function into spatial and tem-
poral components presumes weak dispersion of the thermally
excited spin waves. In general, this is not the case, and (86)
should be considered only an approximate result for excitations
near the bottom of the spin wave band, i.e., close to the fer-
romagnetic resonance frequency, in systems where the dipolar
contribution to the dispersion is negligible.

We can now integrate (86) over all reciprocal space to obtain
the spectral density of the frequency fluctuations alone:

1 .
Salw) = W/sg(k,w)d%
Vi
B o 2a|y|kpT
= |F(o)p et &)
where
3
(2m) (88)

TFT = =S .
Sy, |G(EB) Pk

In the case of a point-contact spin torque oscillator, the mode
at threshold is described in terms of Hankel functions, which
asymptotically approach a plane wave solution far from the
origin. Thus, we estimate the Fourier transform of the mode
profile as

K,Z

(ky — ko) + 12

12

G(k)|? (89)

where k = k,p+k.%. Equation (89) is characteristic of an expo-
nentially decaying plane wave radiating away from the origin,

with a decay constant £ and wavenumber k. Integrating over
reciprocal space, we obtain

_ Ade

Vet = — 0
=7 (90)
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with film thickness d and spin wave decay length £ = 1/k.
Using the Landau-Lifshitz model for our particular geometry,

the small amplitude spin wave lifetime is given by [41]
1
= . 91
"7 2a0,(0) ©h

The spin wave decay length can be estimated by use of

{=wvgt
_ Ug
- 20{90(0)
2Dk

= 92
2ah(Qsw + QrMR) ¢2)

where v, is the spin wave group velocity, €, is the spin wave
frequency shift due to exchange, D is the spin wave exchange
parameter, where Q,, = Dk? /h, and Qpyr is the FMR fre-
quency, given by Qpyr = |v|po(Ho + Hy). From [57] we can
estimate (), at threshold to be

D
Oow =2 1.43—
' hr2

*

(93)

where 7, is the nanocontact radius. Substituting (93) into (92),
we obtain

2k
t= 1.43 : A ' O
Ny
Substituting (94) into (90), we end up with
8d
Vg = (95)

1.43 | KQpur )
20 (5 4 M)

The inverse proportionality of Vg on o is understood in terms
of the propagation distance of the mode into the surrounding
magnetic medium, resulting in a substantial increase in the ef-
fective mode volume relative to the volume of the material di-
rectly under the point-contact. The significant enhancement of
the mode volume suggests that we can restrict our analysis to
the low temperature limit for linewidth, i.e., (70), since is it now
very unlikely that wy > |wi|a?m? for any realistic set of ex-
perimental parameters, given that wy scales inversely with mode
volume.

By extension of the derivation of (70), the low temperature
linewidth for a point-contact is given approximately by

2 |’y|kBT 1.43 hQFMR
AFOU = 2
fix w(mq(eo»?Msd(Tz T ) oo

where we include the effects of spin torque asymmetry. Oddly,
this simple model predicts that the linewidth for a point-contact
is actually independent of the damping parameter, in contrast to
that for nanopillars, which is expected to have an inverse depen-
dence on the damping parameter in the low temperature limit.
We find that the inverse proportionality of the effective volume
on « cancels out the proportionality of the mode restoration rate
on «. If « is large, the mode restoration rate is faster, resulting
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in less phase noise for a given perturbation size, but the effec-
tive mode volume shrinks in such a way that the net result is

unchanged.
For typical device parameters at room temperature, with
Qrvr = 20 GHz, D = 4 meV-nm?, m = 1 (maximum

amplitude), A = 1.6, = 4 nm, and r, = 30 nm, we calculate
a linewidth of 32 MHz, which is on the order of linewidths
measured in point-contacts with a perpendicular applied field
[59].

X. DISCUSSION

Houssameddine et al. recently proposed that phase and fre-
quency noise constitute two distinct contributors to linewidth in
spin torque oscillators [60]. However, as should be clear from
the details of the analysis presented here, there is no distinction
between frequency and phase from the perspective of oscillator
noise theory. While there may be multiple physical mechanisms
that contribute to oscillator phase noise, and each mechanism
may have a substantially different dependence of the spectral
density on Fourier frequency, it is always the case that com-
plete knowledge of the phase noise spectral density is sufficient
to calculate the line shape of the oscillator spectrum [4], [30],
assuming that amplitude noise is negligible.

The magnitude of the predicted linewidth by use of (55)
warrants further discussion. When spin torque asymmetry is
taken into account, (70) predicts linewidths of 600 MHz or
greater, depending on the excitation amplitude (parameters:
a=0.02,T = 300K,V = 1.4 x 10* nm?3, M, = 800 kA/m,
(Hy)/(Hg) = —1.3, and A = 1.6). Experimentally determined
linewidths at room temperature for nanopillar spin torque oscil-
lator devices typically range from 25 to 500 MHz, depending
on the particular experimental parameters [37], [50], [S51], [55],
[61]-[66]. For all but one of these experimental investigations,
the applied magnetic field was in the sample film plane. In [50]
Kiselev et al., observed room-temperature linewidths anywhere
between 250 and 700 MHz when the applied perpendicular
field was sufficiently large to saturate the Permalloy free layer
parallel to the applied field. (The Co reference layer was canted
by 30° out of the film plane.) In the same experiments, when
the magnetic field was sufficiently large to saturate both the
free and fixed layers parallel to the applied perpendicular field,
microwave signals were no longer observed. This is to be
expected, because the plane of the magnetic precession orbit is
predicted to be perpendicular to the magnetization direction of
the fixed layer, thereby precluding ac modulation of the device
resistance via the giant magneto-resistance effect. Thus, for
experimental conditions that are a practical approximation to
the high-symmetry geometry considered in the present work,
the scant data are at least within the same magnitude as the
predictions of our thermal noise theory at large amplitudes
(m = 1).

For experiments with an in-plane orientation of the applied
magnetic field, we expect significantly narrower linewidths than
those predicted by the theory presented here. This can be under-
stood in terms of the basic process that underlies the O-U source
of phase noise: Due to the ellipicity of the precessional orbit,
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the effective damping rate for the in-plane geometry is signif-
icantly larger than that for the perpendicular geometry [41] ,
implying that the restoration rate is also faster. Since the phase
noise is, in general, inversely proportional to the restoration rate
(because phase fluctuations are proportional to the time integral
of the frequency fluctuations,) we expect that in-plane experi-
ments will usually yield much narrower linewidths than for the
case of a perpendicular applied field.

The functional forms of the phase noise spectral densities in
(23) and (39) present the opportunity to experimentally distin-
guish between the different sources of phase noise. In partic-
ular, the occurrence of a knee frequency in the spectral den-
sity predicted by (39) should be easily detected using conven-
tional phase noise measurement techniques. For example, if « =
0.01, poHy = —25 mT, and m = 0.5, the knee frequency in
the phase noise is expected to occur at 11 MHz, which is easily
measured with existing methods [5]. The occurrence of a low
frequency knee in the phase noise would be a distinguishing fea-
ture of phase noise that results from amplitude fluctuations.

The predictions made here for phase noise have implications
for applications of STOs. Practical digital and communication
applications require a phase noise figure typically in the range
of —100 dBc/Hz for 1 MHz offsets [67], [68], where we de-
fine the phase noise figure in terms of the one-sided phase-noise
spectral density given in (118) of the Appendix. (Such a value
for phase noise is equivalent to a phase-noise limited generation
linewidth of approximately 1 kHz, assuming the phase noise is
purely diffusive in character.) Using (39), (118), and including
the effects of spin torque asymmetry (A = 1.6), the minimum
predicted phase noise figure is on the order of —42 dBc/Hz at 1
MHz offset when the same parameters are used as those in the
generation of Fig. 2. Thus, the phase noise for a STO in this par-
ticular geometry, i.e., a nanopillar that behaves like a macrospin
in a perpendicular applied field, will probably always be consid-
ered unacceptable for the vast majority of practical applications.
Even with a material that exhibits damping larger by an order of
magnitude, the noise figure would be improved by only 10 dB.
For a point-contact with the parameters used in Section IX, the
larger effective mode volume should have some benefit, but the
phase noise is reduced again by only 10 dB, with a minimum
of approximately —58 dBc/Hz at a 1 MHz offset. Use of mate-
rial of low anisotropy does not change the low frequency phase
noise, as mentioned in Section III-B, but it does shift the knee
frequency for the phase noise spectrum to lower frequencies.
The knee frequency could be pushed down to a few megahertz
by use of very low anisotropy materials. If we ignore spin torque
asymmetry, we could possibly achieve a phase noise as low as
almost —87 dBc/Hz at a 10 MHz offset by use of a material with
wHy = —1 mT. However, if we include spin torque asymmetry
(A = 1.6) and assume an applied field of ugHy = 1 T (as re-
quired for high frequency operation), any advantage associated
with reduced anisotropy is eliminated, and the resultant phase
noise is —62 dBc/Hz at a 10 MHz offset.

We are therefore led to the conclusion that there are no ob-
vious means (as indicated by the simple theory presented here)
to substantially reduce phase noise in spin torque oscillators in
this particular geometry of high-symmetry to make them com-
petitive for most microwave applications. Of course, substantial
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data exist to the effect that linewidths can be much narrower
than what are predicted here, simply by working in a low sym-
metry geometry where the applied field is in the plane of the
nanopillar. Indeed, room-temperature linewidths on the order
of 10 MHz have been reported on several occassions [63], [64],
[66]. As mentioned above, the dependence of linewidth on the
polar applied field angle can be partially explained in terms of
the dependence of the restoration rate on the ellipticity of the
precessional orbit, where a highly elliptical orbit should also
exhibit an enhanced restoration rate. In addition, enhanced spin
torque asymmetry (see Section VI) can lead to further line shape
narrowing. However, even a linewidth of 1 MHz is still three or-
ders of magnitude too broad for practical consideration, and a
clear path for further reductions of phase noise remains elusive.

APPENDIX 1

To provide a proper model of phase noise in a linear system, it
is useful to review basic properties of stochastic processes and
how phase noise can be calculated based upon knowledge of
the fundamental noise processes involved. Much of the material
found here is based upon an excellent review of Gaussian sto-
chastic processes found in [31]. We will indicate random vari-
ables in bold type.

The autocovariance function for a time-evolving random vari-
able z(t) is defined as

Cr(ty, t2) = ([w(t1) = (2(t))][2(t2) — (2(t2))])

where the average is taken with respect to all possible realiza-
tions of the random process. If z(¢) is a stationary process of
zero mean, then we obtain the autocorrelation function

o7)

Co(7) = (x(t)x(t + 1)). (98)
The spectral density for z(t) is defined as
—+oo
Sp(w) = / Co(r)e™ ™ dr (99)
with a self-consistent inverse transform relationship
1 i
Co(1) = o / S, (w)e™ T dw. (100)
The variance of z(t) is defined as
(x?) = C.(0) (101)
1 b
= o Sz (w)dw. (102)

Suppose that the autocovariance function for z(¢) has the fol-
lowing form:

Co(7) = (7). (103)
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In this case, the noise is said to be “white”, with a flat spectral
density, such that

+oo
S, = cs / S(T)e”“Tdr (104)
=" (105)

A generalized, constant amplitude oscillatory signal f(¢) may
be written as

f(t)

where the instantaneous angular frequency w(t) is defined as
[69]

= Fsin(®(t)) (106)

. d®

w(t) = == (107)

Now, we can introduce a noisy component of the frequency (or,
equivalently, the phase) into our oscillator. The instantaneous
frequency w(t) and phase ®(¢) are to be considered stochastic
quantities, with the relationship

d®

= Qo+ Q(7) (108)

where € is the mean of the frequency and €2(t) is the zero
mean component of the frequency noise. Equivalently, the in-
stantaneous phase for such a noisy oscillator may be written as

t

B(t) = / (Q + Q(r)dr

0
= Qot + ¢(t) (109)
where
t
S(t) = / Q(r)dr. (110)
0
The oscillator output is therefore
f(t) = Fsin(®(?))
= Fsin(Qot + ¢(1)). (111)

The phase is the most important figure of merit for oscillator
performance. In fact, once the total phase has been fully char-
acterized, it is possible to derive all other quantities associated
with the oscillator [4]. The phase noise is essentially a measure
of the stability of the oscillator, and once we know the phase
noise, we can specify the accuracy of a clock based upon the os-
cillator, and how that accuracy degrades with operational time.

Let us suppose that the oscillator frequency is deterministi-
cally related to quantity  in the time domain via the following
linear differential equation:

m

ZAde 2}

dix

e (112)
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The complementary relation in frequency space is
Qw) = H(w)#(w) (113)
where the transfer function H(w) is given by
" Bj(iw)?
H(w) = 2= Bi(iw) (114)

2—o Ar(iw)*

If we now allow z to be a random variable derived from a
stationary process, we can use linear response theory to relate
the spectral density for frequency noise to the spectral density
of x as

(@)[*Sa(w).

Similarly, from (110), we know that the spectral density for the
phase noise is related to the spectral density of the frequency
noise as

So(w) =|H (115)

(116)

Combining (115) and (116), we obtain the spectral density for
the phase noise in terms of the spectral density of x:

IH(W)IZS_T(W).

Sep(w) = 117
We note that the spectral density for phase noise is usually
specified in the literature in terms of the single-sideband spectral
purity function £(w), defined as
L(w) = 101logyo [Sg(w) - Hz] (118)
which is usually attributed as having the dubious units of “dBc/
Hz”, though it is in reality a dimensionless quantity.
From (101) and (115), the variance of the frequency noise is

+oo
1 2
_ %_/ M (w)[2 S, () doo

Generally speaking, we may assume that frequency noise is a
stationary process. In that case, phase noise cannot be a sta-
tionary process because it is defined in terms of the integral of
frequency noise [33]. As such, we are not allowed to invoke
(101) as a means to calculate the phase variance. Instead we
must rely on the original definition of variance to calculate the
time evolution of the phase variance correctly:

o (| fooe] )
:/t/t(ﬂ(n)ﬂ(n))dndm
= //CQ T1 — To)dT1dTo.

(119)

(120)
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If the frequency noise is white, we have (cf. (103))

~
S o+

(121)

where D is sometimes referred to as the phase diffusion con-
stant. Thus, the mean square phase deviation, like the mean
square displacement for a random walk, grows linearly in time
rather than approaching a constant as for a stationary process.
Note that D = Sq from (103) and (104), so the diffusion con-
stant for the random walk of oscillator phase is simply the spec-
tral density of fluctuations in oscillator frequency. Furthermore,
it can be shown that the phase diffusion in (121) results in a
Lorentzian spectral peak for the oscillator in the frequency do-
main with a linewidth [30]

D

"o

Af (122)

where A f is the full-width at half-maximum (FWHM) of the
peak. (When an oscillator is measured using a spectrum ana-
lyzer, there may be an additional contribution to linewidth due
to amplitude fluctuations. This is commonly ignored because in
applications it can be removed by following the oscillator with
a saturating amplifier.) When the frequency noise is not white,
(121) and (122) do not hold, as described in Section I'V.
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