The Properties, Reactivity and Variability of RP-1 and RP-2

MIPR F1SBAA8022G001 MIPR F1SBAA9118G001 MIPR-F4FBEX9205G001

Thomas J. Bruno

Physical and Chemical Properties Division

National Institute of Standards and Technology

Boulder, CO

First, a bit of history

RP-1:

- Rocket Propellant 1 (refined petroleum 1)
- Kerosene base, used with LOX in rockets such as the Saturn V
- Density 0.81 1.02 g/mL
- Oxidizer to fuel ratio = 2.56
- Temperature of combustion = 3,670 K

Good old days: <u>Fire it</u>, <u>Forget it</u> Nowadays: <u>Find it</u>, <u>Fix it and Fly it</u>

Fuel Composition Becomes More Critical:

- Sulfur spec. 500 ppm to 30 ppm to 1 ppm
- Ultimately in the ppb level
 - Required remeasuring all thermophysical properties of RP-1
- The debut of "ultra"
 - A very low S kerosene; became RP-2

Executive Summary, Project 1: AFRL-MIPR F1SBAA8022G001

- Characterization of a real fuel: RP-1/2

 i.e., chemical analysis, VLE, ρ, μ, λ, ss
- Complete RefProp fluids files for RP-1 and RP-2
- Perform thermal decomposition studies on RP-2:
 - no additives
 - with THQ, tetralin, +100 package

File Edit Options	Substance (e 1: T = 3	Calculate	Fluid Plot W K (0.00	Proper Vindow H	rties Ielp Cau	ions Select Properties	to Display		Estimated cri Temperatur Pressure: 5 Density: 9	ical properties e: 196.19 K i.0505 MPa 7532 mal/dre ³	
Te 1 2 3 4 5 6 7 8 9 10 11	emperature (K) (300.00 0. 300.00 0. 300.00 0. 300.00 0. 300.00 1 300.00 1 300.00 1 300.00 1 300.00 1 300.00 1 300.00 2	ressure (MPa) (1 20000 (0 .40000 (1 .60000 (1 .80000 (1 .2000 (1 .4000 (1 .8000 (1 .8000 (1 .8000 (1 .2000 (1 .2000 (1 .2000 (1 .2000 (1 .2000 (1)))	Density mol/dm [®]) 0.080467 0.16151 0.24313 0.32533 0.40812 0.49150 0.57547 0.66004 0.74521 0.83098 0.91735	Enthalpy (J/mol) 14696. 14693. 14631. 14598. 14565. 14532. 14499. 14466. 14433. 14400.	Entropy (J/mol-K 105.63 99.786 96.335 93.864 91.929 90.333 88.971 87.780 86.719 85.762 84.887	Thermodynamic Temperature Pressure Density Volume Int. Energy Enthalpy Cv Cp	Transport, Misc. Derj □ CpQ □ Cp/Cv □ Csat □ Sound □ Comp. □ Joule- □ Quality □ 2nd Vir ③ Bulk properties □ Bulk, liquid, and	vative 1 Factor Factor Thom. irial Coef. ial Coef. d vapor p	Components	and composition and composition nitrogen methane ethane propane isobutane Molar mass: 16.	Mole Fraction 0.002202 ▲ 0.021926 0.95311 0.015123 0.004471 0.000495 ♥ 873 g/mol Cancel
NIST uses its best data contained the However, NIST m that may result fror	300.00 2 Reference NIST Standard E.V Copyright 2 The I efforts to deliver serein have been s akes no warrantie n errors or omissio	Fluid Th Continue	I.0919 I.0919 REFF ermodyna ce Database n, M.L. Hub nd Chemica a U.S. Secret tes of Amer ality copy of the basis of fect, and N Database.	14333. PROP mic and T a 23, Versior er, and M.O al Properties etary of Com- ica. All Right the Databa of sound sci NIST shall n ormation	an sport an sport bivision merce on b the Reserve	Properties ly 09, 2007 ehalf of d. enify that the ement. for any damage	Elevation	U K MPa dm² g; mol J m/s µPa-s mW/m-K mN/m	nits	Reset Units SI with Celsius SI with Celsius Molar SI mks cgs Mixed English Unitless MPa m	Properties Mass Basis Composition Mass Basis Molar Basis QK QK

Documentation:

- Bruno, T. J., Smith, B.L., Improvements in the measurement of distillation curves part 2: application to aerospace/aviation fuels RP-1 and S-8. *Ind. Eng. Chem. Res.* 2006, 45, 4381-4388.
- Lovestead, T. M., Bruno, T.J., Comparison of the hypersonic vehicle fuel JP-7 to the rocket propellants RP-1 and RP-2 with the advanced distillation curve method. *Energy & Fuels* 2009, in press.
- Ott, L. S., Hadler, A., Bruno, T.J., Variability of the rocket propellants RP-1, RP-2, and TS-5: application of a composition- and enthalpy-explicit distillation curve method. *Ind. Eng. Chem. Res.* 2008, 47 (23), 9225-9233.
- Widegren, J. A., Bruno, T.J. The Properties of RP-1 and RP-2, Interim Report, MIPR F1SBAA8022G001; March, 2008.
- Magee, J. W., Bruno, T.J., Friend, D. G., Huber, M.L., Laesecke, A., Lemmon, E.W., McLinden, M.O., Perkins, R.A., Baranski, J., Widegren, J.A. Thermophysical Properties Measurements and Models for Rocket Propellant RP-1: Phase I, NIST- IR 6644, National Institute of Standards and Technology (U.S.),; 2006.
- Huber, M. L., Lemmon, E., Ott, L.S., Bruno, T.J., Preliminary surrogate mixture models for rocket propellants RP-1 and RP-2. *Energy & Fuels* 2009, 23, 3083-3088.
- Huber, M. L., Lemmon, E., Bruno, T.J., Effect of RP-1 compositional variability on thermophysical properties. *Energy & Fuels* 2009, in press.

Perform thermal decomposition studies on RP-2:

- no additives
- with THQ, tetralin, +100 package

Last Year, for the third task,

all I had was a teaser!

Executive Summary:

AFRL-MIPR F1SBAA8022G001

Perform thermal decomposition studies on RP-2:

- no additives
- with THQ, tetralin, +100 package
- All measurements have since been completed, and were presented at:
 - Joint NIST/AFRL Workshop on Rocket Propellants and Hypersonic Vehicle Fuels, September 25 and 26, 2008 at the Boulder, Colorado Laboratories of NIST
 - JANNAF 6th Modeling and Simulation / 4th Liquid Propulsion / 3rd Spacecraft Propulsion Joint Subcommittee Meeting, Orlando, Florida, 8-12 December, 2008.

Executive Summary, Project 2: AFRL-MIPR F1SBAA9118G001

• Study the additive concentration dependence of thermal decomposition for THQ

Executive Summary, Project 3: AFRL-MIPR-F4FBEX9205G001

- Evaluate the variability of RP-1:
 - For a set of orthogonal* samples
 - Measure composition, VLE (ADC), $\rho,\,\mu,\,ss$
 - Compare with RefProp predictions

*orthogonal means separate batches or different recipes.

• That's the administrative layout,

technical aspects will be presented in soap opera order.

Thermal Decomposition:

NIST-specific:

Ensure the quality of property data at high *T*Protect our expensive instruments from decomposition products

Insoluble deposit on a 4 µm wire used to measure the thermal conductivity of RP-1 at 427 °C

The kinetics of decomposition are important!

Application:

- The fuel cools the walls of the thrust chamber
- Avoid engine failure caused by fuel decomposition

Fuels are thermally stressed in stainless steel ampoule reactors

Reactors:

Maximum T and p:

500 °C / 773 K 15,000 psi / 103 MPa

Thermostat

Reaction conditions

- Initial pressure of 5000 psia (34.5 MPa)
- Temperature range: 375, 400, 425, 450 °C 648, 673, 698, 723 K
- Reaction times from 10 min to 24 h
- Thermal equilibration time of ~2 min

Extent of decomposition determined by analysis

Emergent suite of GC-FID chromatograms for RP-2

Light decomposition products are used for the kinetic analysis.

Pseudo-first-order kinetics on the emergent suite of decomposition products $A \xrightarrow{k'} B$

$$-\frac{d[A]}{dt} = \frac{d[B]}{dt} = k'[A]$$

The assumption of first-order kinetics is a necessary approximation for these complex mixtures.

 $t_{1/2} = \frac{\ln 2}{k'}$

The rate constant for decomposition, k', is obtained from the fit.

The rate constant for decomposition, k', is obtained from the fit.

Rate constants for RP-2 decomposition

<i>T</i> / °C	(k′ ± 1σ) / s ^{−1}
375	$(1.33 \pm 0.30) \times 10^{-5}$
400	$(9.28 \pm 2.01) \times 10^{-5}$
425	$(1.33 \pm 0.33) \times 10^{-4}$
450	$(5.47 \pm 0.80) \times 10^{-4}$

An Arrhenius plot is useful because it is predictive.

Decomposition of RP-2 with additives

RP-2 with 256 ppm of the additive mixture in JP-8+100
 metal deactivator, anti-oxidant, and dispersant

Decomposition of RP-2 with additives

5% THQ lowers the rate of decomposition by about an order of magnitude.

The decomposition of RP-1 and RP-2 is very similar.

Comparison of RP-1 and RP-2 decomposition -7 \diamond -8 -9 ln K $\overline{\diamond}$ -10 • RP-1 -11 ♦ RP-2 -12 1.35 1.40 1.45 1.55 1.50 1000/T

There is no significant difference between RP-1 and RP-2.

High-temperature shock tube data from Stanford

MacDonald, M. E.; Davidson, D. F.; Hanson, R. K. Decomposition Rate Measurements of RP-1, RP-2, n-Dodecane, and RP-1 with Fuel Stabilizers. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008; AIAA Paper 2008-4766.

MacDonald, M. E.; Davidson, D. F.; Hanson, R. K. Decomposition Rate Measurements of RP-1, RP-2, n-Dodecane, and RP-1 with Fuel Stabilizers. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008; AIAA Paper 2008-4766.

Andersen, P.C., Bruno, T.J., Thermal decomposition kinetics of RP-1 rocket propellant. *Ind. Eng. Chem. Res.* 2005, 44, (6), 1670-1676.

MacDonald, M. E.; Davidson, D. F.; Hanson, R. K. Decomposition Rate Measurements of RP-1, RP-2, n-Dodecane, and RP-1 with Fuel Stabilizers. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008; AIAA Paper 2008-4766.

Andersen, P.C., Bruno, T.J., Thermal decomposition kinetics of RP-1 rocket propellant. Ind. Eng. Chem. Res. 2005, 44, (6), 1670-1676.

Documentation:

- Andersen, P. C., Bruno, T.J., Thermal decomposition kinetics of RP-1 rocket propellant. *Ind. Eng. Chem. Res.* 2005, 44, (6), 1670-1676.
- Widegren, J. A., Bruno, T.J. The Properties of RP-1 and RP-2, Interim Report, MIPR F1SBAA8022G001; March, 2008.
- Widegren, J. A., Bruno, T.J., Thermal decomposition kinetics of the kerosene based rocket propellants 2. RP-2 stabilized with three additives. *Energy & Fuels* 2008, in press.
- Widegren, J. A., Bruno, T.J., Thermal decomposition of RP-1 and RP-2, and mixtures of RP-2 with stabilizing additives, December, 2008. *Proc. 4th Liquid Propulsion Subcommittee, JANNAF* 2008, December.
- Widegren, J. A., Bruno, T.J., Thermal decomposition kinetics of kerosene-based rocket propellants. 1. comparison of RP-1 and RP-2. *Energy & Fuels* in press.

Current Project on Determining the Concentration Dependence of THQ stabilization

Repeatability of RP-2 decomposition measurements taken 12 months apart

Measurements from last year overlay measurements from this year.

To toot our own horn a bit!

Yeah!

Summary of additive effects of THQ as a function of concentration:

RP-1, RP-2 Compositional Variability

• The RefProp EOS was based on single "reference" samples of RP-1 and RP-2.

File Edit Options	Substance (e 1: T = 3	Calculate	Fluid Plot W	Proper Vindow H	rties Ielp Cau	ions Select Properties	to Display		Estimated cri Temperatur Pressure: 5 Density: 9	ical properties e: 196.19 K i.0505 MPa 7532 mal/dre ³	
Te 1 2 3 4 5 6 7 8 9 10 11	emperature (K) (300.00 0. 300.00 0. 300.00 0. 300.00 0. 300.00 1 300.00 1 300.00 1 300.00 1 300.00 1 300.00 1 300.00 2	ressure (MPa) (1 20000 (0 .40000 (1 .60000 (1 .80000 (1 .2000 (1 .4000 (1 .8000 (1 .8000 (1 .8000 (1 .2000 (1 .2000 (1 .2000 (1 .2000 (1 .2000 (1)))	Density mol/dm [®]) 0.080467 0.16151 0.24313 0.32533 0.40812 0.49150 0.57547 0.66004 0.74521 0.83098 0.91735	Enthalpy (J/mol) 14696. 14693. 14631. 14598. 14565. 14532. 14499. 14466. 14433. 14400.	Entropy (J/mol-K 105.63 99.786 96.335 93.864 91.929 90.333 88.971 87.780 86.719 85.762 84.887	Thermodynamic Temperature Pressure Density Volume Int. Energy Enthalpy Cv Cp	Transport, Misc. Derj □ CpQ □ Cp/Cv □ Csat □ Sound □ Comp. □ Joule- □ Quality □ 2nd Vir ③ Bulk properties □ Bulk, liquid, and	vative 1 Factor Factor Thom. irial Coef. ial Coef. d vapor p	Components	and composition and composition nitrogen methane ethane propane isobutane Molar mass: 16.	Mole Fraction 0.002202 ▲ 0.021926 0.95311 0.015123 0.004471 0.000495 ♥ 873 g/mol Cancel
NIST uses its best data contained the However, NIST m that may result fror	300.00 2 Reference NIST Standard E.V Copyright 2 The I efforts to deliver serein have been s akes no warrantie n errors or omissio	Fluid Th Continue	I.0919 I.0919 REFF ermodyna ce Database n, M.L. Hub nd Chemica a U.S. Secret tes of Amer ality copy of the basis of fect, and N Database.	14333. PROP mic and T a 23, Versior er, and M.O al Properties etary of Com- ica. All Right the Databa of sound sci NIST shall n ormation	an sport an sport bivision merce on b the Reserve	Properties ly 09, 2007 ehalf of d. enify that the ement. for any damage	Elevation	U K MPa dm² g; mol J m/s mV/m-K mW/m-K mN/m	nits	Reset Units SI with Celsius SI with Celsius Molar SI mks cgs Mixed English Unitless MPa m	Properties Mass Basis Composition Mass Basis Molar Basis QK QK

So what about variability?

Compositional variability

 Distribution of paraffins, isoparaffins, aromatics, etc.

GC-MS

Approved for public release; distribution unlimited.

MS Ion Count

So what about variability?

- Compositional variability
 - Distribution of paraffins, isoparaffins, aromatics, etc.
- Property Variability
 VLE, ρ, υ, λ, ss, Cp, Cv, …

- One Manufacturer,
- one set of tight specs,
- many years of experience.

Treated as if "the sample"

has been passed down from on high

So, everything is fine, right?

- Questions arise in a Joint USAF, NASA NIST conference:
 - Launch contractors report p variations
 - note that ρ is insensitive
 - Rocket OEMs report kinetic variations in coking

So, everything is fine, right?

- Questions arise in a Joint USAF, NASA NIST conference:
 - Launch contractors report p variations
 - note that ρ is insensitive
 - Rocket OEMs report kinetic variations in coking

Bottom Line: We need to assess the variability of this sacrosanct fluid once and for all!

MS Ion Count

If a peak by peak comparison were needed for every sample, rocket scientists would soon become screaming lunatics

Can we use any of the thermophysical properties for this?

- Density, ρ (PVT surface), for a kerosene
 write in 0.8 g/mL and you'll be close
- Speed of sound, heat capacities, etc., change by a few %
- viscosity and thermal conductivity change by 4 %
- In contrast, volatility changes appreciably with composition

The ADC:

-true thermodynamic state points

–consistent with historical data

-temperature, volume and pressure measurements of low uncertainty

-qualitative, quantitative and trace analysis of fractions

-energy content of each fraction

-corrosivity of each fraction

-greenhouse gas output of each fraction

-thermal and oxidative stability of the fluids

Apparatus for ADC.

Comparison of RP Samples

- Obtain orthogonal batches of RP-1 and RP-2
- Measure ADC:
 - Initial boiling behavior
 - Full curves
- Examine, and model divergence

- We measure three parameters:
 - Onset
 - Sustained
 - Vapor rise

- We measure three parameters:
 - Onset (first bubbles appear)
 - Sustained
 - Vapor rise

- We measure three parameters:
 - Onset
 - Sustained (bubbles continue w/o stirrer)
 - Vapor rise

- We measure three parameters:
 - Onset
 - Sustained
 - Vapor rise (vapor rises into head)

- We measure three parameters:
 - Onset
 - Sustained
 - Vapor rise (vapor rises into head)
- The vapor rise temperature is the IBT of the fluid, thermodynamically consistent, modeled by EOS.

Experiments thus far:

- 3 samples of RP-1
 - We think we can find 3-4 more
 - searching AFRL, NASA, engine makers, launch contractors, etc.
- 2 samples of RP-2

The only samples produced as yet

Vapor Rise Temperature

Vapor Rise Temperature

Conclusions:

- The variability of RP-1 is far more significant than previously thought
 - all measurements and modeling done previously must be questioned.
- The variability of RP-2 is extremely large;
 - Only 2 batches have been made; plant upset?
 - regardless, this is disturbing.

Acknowledgements:

- AFRL-EAFB – Matt Billingsley
- AFRL-WPAFB – Tim Edwards
- CPIAC
 - Ron Bates
- Financial support: MIPR F1SBAA8022G001 MIPR F1SBAA9118G001 MIPR-F4FBEX9205G001

NIST Staff:

- Tom Bruno
- Jason Widegren
- Marcia Huber
- Eric Lemmon

and Students:

- Beverly Smith
- Lisa Ott
- Kari Brumbeck
- Amelia Hadler
- Tara Lovestead

And, of course, the NIST management team:

