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ABSTRACT

In this paper we develop a homogeneous matrix transfor-
mation to fit two streams of dynamic six degree of freedom
(6DOF) data for evaluating perception systems using ground
truth. In particular, we compare object position and orien-
tation results from a 6DOF laser tracker that we consider to
be ground truth with results from a real-time visual servoing
system from the Purdue Robot Vision Lab. A problem that
arises when comparing these two data streams is that they
are not necessarily in the same coordinate system. There-
fore, a method to transform one coordinate system to the
other is needed. We solve this problem by developing an op-
timization problem that minimizes the space between each
coordinate system. In other words, we construct a rotation
and translation which best transforms one coordinate space
to the other.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance attributes;
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; G.1.6 [Optimization]: Global opti-
mization; 1.4.8 [Scene Analysis]: Motion, Tracking; 1.5.4
[Applications]: Computer Vision

General Terms

Computer Vision, Laser Tracker, Dynamic 6DOF metrology,
Performance Evaluation

1. INTRODUCTION

In previous work [2] we reported on experiments in the
evaluation of the performance of a real-time visual servoing
system using a highly accurate, dynamic, six degree of free-
dom (6DOF) laser tracker. The purpose of the experiments
was to demonstrate a method for evaluating real-time 6DOF
dimensional measurements of an object or assembly compo-
nent under moderately constrained motion. By taking ge-
ometrically calibrated, time-synchronized data streams si-
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multaneously from the 6DOF servoing sensor system and
the laser tracker, the 6DOF system data can be evaluated
against the laser data serving as conventional ground truth.
In this paper we report on improved techniques for post-
experiment and geometric calibration and evaluation of the
experimental data.

Reliable, accurate real-time systems for 6DOF perception
would have applications in advanced manufacturing robotics
and automation, as they would enable greater interaction
with objects in motion and more flexible robotic workcells.
However, despite considerable advances in real-time vision
and in laboratory demonstrations [7,16,17], these systems
have not yet been widely commercialized and this would be
assisted by reference metrology systems for empirical per-
formance evaluation. Reference systems would include a
standard sensor system for ground truth along with appro-
priate metrics for the comparison of test systems with the
reference system. Standards and test procedures for dimen-
sional metrology are well-established and highly accurate for
static measurements, with coordinate measuring machines
and laser trackers giving position measurements to microns.
However, the theory, technology, and test procedures are not
well established for dynamic dimensional measurements in
uncontrolled environments.

To assist in establishing these test procedures, the ques-
tions addressed in this work focus on calibrating and com-
paring two 6DOF data streams. We assume the two vector
data streams include position as X, Y, Z, pose as roll, pitch
and yaw, and that the two data streams have been time-
synchonized so we have correspondence between individual
vectors in each data stream. But, we do not assume accurate
geometric calibration of coordinate systems between the two
data streams. During our initial experiments, accurate cal-
ibration proved difficult so we looked for a post-experiment
calibration approach that would compute an accurate trans-
formation between two coordinate systems, taking into ac-
count all information in the 6DOF data. Once the two data
streams have been calibrated, we wish to compare the two
for the magnitude and nature of the differences in order to
characterize the 6DOF system under test.

The real-time visual servoing implementation used in this
study was developed at the Purdue Robot Vision Lab' us-
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ing a subsumptive, hierarchical, and distributed vision-based
architecture for smart robotics [3,6,16,17]. This is a robust,
advanced dynamic visual servoing implementation with a
high-level of fault tolerance to non-cooperative conditions
such as severe occlusions and sudden illumination changes.
The Purdue system combines a ceiling mounted camera with
a trinocular system mounted on the robot end-effector, and
uses position based visual servoing (PBVS). The work in
this paper is aimed at the evaluation of sensors for PBVS,
in which the servoing system senses the position and orien-
tation of the part in 3D coordinates, as opposed to image
based visual servoing (IBVS), in which the servoing system
senses the position and orientation of the part in 2D image
coordinates.

2. PREVIOUSWORK

While pose estimation and visual servoing receive atten-
tion in the literature, evaluation of visual servoing usually
appears as a secondary element to the presentation of new
servoing approaches or algorithms. Many papers that present
a new approach include an empirical evaluation, but since
the paper emphasizes the development of the new approach,
the evaluation section is often brief. Two papers that do
focus on the evaluation of visual servoing algorithms are [1,
5]. In [5], there is a sensitivity analysis and simulation to
compute the contribution of image measurement errors to
the calculated pose and control trajectory for PBVS and
hybrid visual servoing. In [1], there is a modular analysis
of the elements of a visual servoing systems with the inten-
tion of supporting a design and evaluation framework, with
an emphasis on the control subsystem. The paper considers
many aspects of performance analysis for static and dynamic
cases, as well as accuracy and timing issues.

Most evaluation papers consider static pose only [6, 8]
and not 6DOF sensor measurements under motion. Refer-
ences [8, 9] use Monte Carlo simulation for the evaluation
of pose algorithm accuracy under noise and object orienta-
tions. In those articles, results are given for pose estimation
for a complex industrial part and the error from unidenti-
fied ground truth is plotted as position or orientation error
vs. the rotation of the object. The key result is to note
that the error as a function of part rotation varies consider-
ably, spiking at ambiguous orientations of the object. Two
papers that do consider dynamic pose are [7, 11]. In [11] dis-
assembly used car parts video sequences are used for tests of
a model-based algorithm with four parameter variations to
analyze the relative contributions of subcomponents such as
the edge detection operator or search technique. The results
are given as deviations from the results of the one parame-
ter set that successfully maintained track through the video
sequences, but the nature and quality of this retrospective
ground truth is not described in the article. In [11] three
tracking approaches for 6DOF pose estimation and grasp-
ing of hand-held objects are evaluated using ground truth
from an unidentified infrared marker tracking system good
to 1.5 m in position but with no rotation accuracy or mea-
surements per second cited. The three approaches run at
between 8 Hz and 25 Hz. The article gives results in graphs
that compare ground truth position and orientation data
to robot end-effector position and tracked position, but no
quantitative or summary statistics are given for the graphed
data.

The metrics used to evaluate pose estimation and visual

servoing systems vary. They include the mean and standard
deviation of a measure of error in world coordinates, includ-
ing individual differences for each coordinate, a norm for
position and orientation separately, and rarely a combined
norm for all 6 degrees of freedom. The orientation can be
compared in roll-pitch-yaw, quaternion, or angle-axis repre-
sentations. In experiments without ground truth in world
coordinates, or for IBVS in which pose in world coordinates
is not computed, errors are computed in the image domain.
In some visual servoing evaluations, the metric is the num-
ber of cases successfully completed during the experiments.
In physical experiments in the evaluation of pose estimation
or visual servoing, a mechanism must be used to generate
motion, frequently a robot arm [3, 4, 11]. [11] uses an arm
to move a camera towards a car battery through a known
trajectory linear in both translation and angle, and repeats
the motion 80 times to judge repeatability of the tracking
algorithm.

3. VISUAL SERVOING EXPERIMENTS

3.1 PurdueData

The Purdue system produces a 6DOF pose at the rate
of 30 Hz. The output consists of 3 translations and 3 ro-
tational angles, all relative to the robot base frame. The
object whose, pose is measured by the Purdue system, is
a typical engine cover about 0.5 m in width and 0.25 m in
height. Figure 1 defines the object frame.

Figure 1: Engine cover and the object frame: A,B
and C are coplanar in the YZ plane. O is centered
between A and B. OB is the Y axis, while the X-axis
is in the direction of the cross product of OB and
OC. The Z-axis is given by the cross product of axes
X and Y.

3.2 Laser Tracker Data

The laser tracker (LT) measures the 3D locations of a
smart track sensor (STS), which measures its own orien-
tation. Together, the two measurements give a complete
6DOF pose of the STS at a rate of up to 150 Hz.

In our experiments, the STS is rigidly attached beneath
the engine cover (object) as shown in Figure 2. The laser



Figure 2: Engine cover (object) and the STS

tracker measures the position and orientation of the STS,
while the Purdue system measures the position and orien-
tation of the engine cover (object). However, since the STS
and the engine cover (object) are fixed rigidly to each other,
the laser tracker can be utilized to compute the transforma-
tion between the two. A point of concern is that the Purdue
data is in the coordinate system of the robot base whereas
the laser tracker has its own coordinate system. Calibrat-
ing these two coordinate systems can be a daunting task.
Therefore, the objective of this paper is to use the data to
construct the best transformation of the robot base coordi-
nate system into the laser tracker coordinate system. The
methodology of this process is shown in Section 5.

3.3 Synchronization of the two systems

In order to achieve a matched-pairs design, we take si-
multaneous measurements and thus minimize the difference
in system outputs due to independent measurements taken
at different times and different rates. Another advantage of
taking simultaneous measurements is that we do not need
to know the object motion.

Synchronization can be easily achieved through a common
external signal to trigger data acquisition. We use a 30 Hz
square wave signal as the Purdue system requires a steady
30 Hz data stream (limited by the cameras’ frame rate).

Although a common external trigger signal is used to trig-
ger the data acquisition of both systems, the Purdue system
does not latch data instantly. This is because the cameras
in the Purdue system do not use a fixed shutter/exposure
time. After a trigger signal is received, the cameras open
their shutters for some amount of time to collect light. In
general, the amount of time changes from frame to frame,
depending on the lighting condition at the time. During
this exposure/integration time, motion blur can happen. Al-

though the integration time is small, it can be a source of un-
certainty in determining the exact pose of the object. Large
motion blur will increase pose uncertainty.

In order to be able to uniquely identify and track each
trigger signal, the data collection software from each system
maintains its own sequence counter and tags each count with
a time-stamp having microsecond resolution. Both data
collection software modules get their timestamps indirectly
from a common clock source via an Network Time Protocol
(NTP) server. However, instead of running an NTP client,
which attempts to model the clock drift over a long period
of time, we simply have the data collection computers syn-
chronize the NTP sever every 10 s. We find this setup allows
our data collection computers to stay synchronized to each
other within 3 ms. In general, the clock circuits in today’s
consumer computers are precise but temperature dependent.

3.4 Experimental Setups

We conducted two sets of experiments, one with the object
stationary and one with the object moving with a simple
linear velocity.

34.1 Sationary Tests

The stationary tests allowed us to evaluate the basic per-
formance of both systems and assure that the laser tracker
was performing to specification after shipping. The object
was placed in four positions and data were collected for 15 s
to 30 s each.

3.4.2 Linear Motion Tests

In the linear motion tests, the object was moved about
1.5 m left to right. For each trial, the motion was repeated
30 times as the object moved.

4. CALIBRATION

In order to compare data streams collected from the Pur-
due system with data streams collected from the laser tracker
system, which we consider to be ground truth, both systems
must first be placed in the same coordinate system. In other
words, a homogeneous matrix that transforms the Purdue
data into the coordinate system of the laser tracker system
data is needed. We define x Hy as the homogeneous trans-
formation from the coordinate system of Y to X. In other
words, x Hy defines the 6DOF pose of Y in X coordinates.
Therefore in this paper, we are searching for ;rHgrp where
LT is the output of the laser tracker system and RB is the
output of the Purdue system. In [2], a description of the
methodology for the output of both the Purdue system and
the laser tracker system is provided. A review is given in
Section 3. Here, we will give an overview of the necessary
components (Figure 3).

The Purdue system provides rsHo, where RB denotes
the robot base and O denotes the object of interest. Sim-
ilarly, the laser tracker system provides prHgsrs. However,
rtHo is what is needed. This can be calculated by noting
that

vrHo =t Hsts xsts Ho (1)
and
stsHo =sts Hir xur Ho (2)

is a fixed value and thus only one coordinate frame is needed
to construct it. stsHyir = (LTHSTS)_1 and tHo is con-
structed by using the laser tracker along with a spherically
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Figure 3: The necessary components of the Purdue
data stream and the laser tracker data stream.

mounted reflector (SMR) to calculate the Cartesian coordi-
nate position of three features on the object. These three
features are enough information to identify the object’s ref-
erence frame [2].

The output for the laser tracker system is rrHo whereas
the output for the Purdue system is reHo. Therefore, to
be able to compare the two outputs LTHgrgp is needed. The
following section describes a mathematical method that con-
structs LtHrp by forming the best homogeneous matrix
that fits the data rsHo from the Purdue system to the
rrHo of the laser tracker system.

5. MATHEMATICAL ANALYSIS
5.1 Homogeneous Matrix

In the previous section, an overview of how the data streams
are constructed from both the Purdue system and the laser
tracker system is given. The output of the Purdue system
is given as a series of homogeneous matrices
(RBHO)i = O 1 (3)
for time steps ¢ = 0,1,,n — 1. Similarly, the output of the
laser tracker system is a series of homogeneous matrices
R; ti-

0 1 (4)

(LTHO)i =

for time steps i = 0,1,,n — 1. We are interested in finding a
rotation R and translation t that best transforms the coor-
dinate system of the Purdue data into the coordinate system
of the laser tracker data. Specifically, we want to construct
the homogeneous matrix

a3

that solves

min |[HP — L|?
H
where
P = [(reHo0), (r8Ho0), (reHo),, ]
and
L = [(1tHo), (vrHo), (trHo),,_,] -

Shah develops an algorithm for constructing such an H in
[10]. Specifically, the best rotation has to first be con-
structed as

R =VDU”

where the singular value decomposition of

xX" =usv”’
with
X = [Ro to Ro-1 tn1]
X = [Ro %o Ro1 to-1]
and
1 n—1
t;=t; —t with tzggti (5)
- DU
ti=1t,—1 with t:ﬁ;ti. (6)
Also

if det(VUT) =1,

diag(1,1,1)
D= : .
if det(VU") = —1.

diag(1,1,—-1)

Once the rotation R is found, the translation t can be con-
structed by setting

t=7%— Rt

where t and ¢ are defined in (5) and (6), respectively.
5.2 Error Metrics

Given a general homogeneous matrix H — made up of a
rotation R and translation t — a series of metrics is now of-
fered to compare how well H transforms a given data stream
into another [10].

To see how well a given rotation R transforms a single
ggtation R; from the laser tracker data stream to a rotation
R; from the Purdue data stream, evaluate

IRR; — R,

IRR.|? — 2tr (RRiﬁ?) + R
= 6—2(1+2cosb)

where {1, cos 0+ sin 0} are the eigenvalues of RR;R7 . There-
fore,

0<||RR: — Ry <38,

since —1 < cosf < 1. Moreover,
1 =2
0§1—§||RRZ-—RZ~H <1

defines a metric between 0 and 1 where 1 denotes a perfect
fit.

A similar metric can be constructed to compare a given
translation ¢; from the laser tracker data stream to a trans-
lation tAl from the Purdue data stream. In this case we want
to see how close Rt; + t is to a Thus, we consider the
dot product between these two normalized vectors. In other
words, we evaluate

(Rt; +t)T%\i
R e[| T



Once again this defines a metric with values between 0 and
1 where 1 denotes a perfect fit. One should note that this
metric loses valuable information regarding the scaling of
the problem. For example, if the vectors Rt; + t and t;
point in the same direction (not necessarily the same mag-
nitude), then the metric would give an accuracy reading of 1,
though the vectors may not be equal. However, this metric
is problem independent allowing one to compare two differ-
ent problem setups. Another metric that can be used (but
is problem dependent) is to look at

IRt + t — ]|

However, this metric does not have a defined upper bound.
Instead, one could compare the magnitude of this metric
with the magnitude of the data used in order to calculate
the accuracy of the algorithm.

In the next section, experiments will be performed to see
how well the homogeneous matrix constructed in 5.1 per-
forms using the metrics just defined.

6. EXPERIMENTS

The algorithm in 5.1 that constructed the best homoge-
neous matrix H to fit two streams of 6DOF data was applied
to data streams that were collected from the Purdue system
and a laser tracker system at Purdue University in April of
2008 [2]. These data streams were obtained from two exper-
iments (see Section 3).

6.1 Stationary

In the stationary experiment, the object was placed in
four positions for 15 s to 30 s each. The mean distance
for each position was in the 3500 mm to 4100 mm range
with a standard deviation of 0.006 to 0.008 for the STS/LT
system. For the Purdue Line tracker system each position
was in the 2600 mm to 2700 mm range with a standard
deviation of 0.560 to 0.630 standard deviation. More details
can be found in [2]. Overall, the laser tracker system is two
orders of magnitude more accurate than the Purdue system.

The homogeneous matrix calculated from these stationary
data streams is

—0.79 —0.61 —0.11 715.94
He o — | 060 =079 0.07  2228.30
Stat = | _0.13 —0.01 0.99 —1133.76
0 0 0 1

We calculated the accuracy of this homogeneous matrix us-
ing the metrics provided in the previous section. Not sur-
prisingly, we have near 100 % accuracy for this homogeneous
matrix for both the rotation and translation as can be seen
in Figure 4. In addition, the translational error is around
12 mm — a two order decrease in magnitude compared to
the data position.

6.2 Linear Motion

In the linear motion experiment, the object was moved
1.5 m to the left and right. This motion was repeated 30
times for each trial and quickly returned back to the starting
position. It should be noted that this backward sweep was
ignored in the data collection for both systems.

The homogeneous matrix calculated from these linear mo-

Stationary

1

% Accuracy
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—— Rotational
—— Translational
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Figure 4: Error metrics from the stationary experi-
ment where the object was placed in four positions
for 15 s to 30 s each.

tion data streams is

—-0.79 —-0.61 —-0.08 666.20
Hyowo — 0.61 —-0.79 0.04 2271.00
ove —-0.09 -0.01 1.00 —1238.45
0 0 0 1

which is not very different from the stationary homogeneous
matrix Hseas. This should be expected since this experi-
ment should not have much noise introduced from the sim-
ple linear motion. Moreover, the minimal noise results in
Huiove having near 100 % accuracy for both the rotation
and translation as can be seen in Figure 5. In addition, the
translational error is only around 10 mm.

7. CONCLUSIONS

In this paper, we presented improved techniques for the
calibration of two 6DOF data streams. Previously, calibra-
tion was done by hand which was prone to errors. Here, the
data was used to mathematically find the best fit between
two given 6DOF data streams. Specifically, we constructed
the homogeneous matrix that best transformed the coordi-
nate system of one of the two data streams into the other.
Moreover, metrics were offered to evaluate the effectiveness
of this transformation.

We tested this method on two data sets collected at Pur-
due University. The first consisted of the object being placed
in four positions for 15 s to 30 s and the second consisted
of the object moving in a linear motion. We found that the
homogeneous matrix fit the data almost perfectly for these
two systems.
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