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Abstract

Over the last thirty years, much research has been done on the development of failure
event databases and fatigue modeling of crack growth in pressure vessels and piping. According
to a USNRC report (NUREG/CR6674, 2000), results of a fatigue crack growth model showed
that "cracks initiate rather early in the (nuclear power) plant life. There is about a 50-percent
probability of initiating a fatigue crack after only 10 years of operation. Over this 10 years, about
50 percent of these initiated cracks are predicted to grow to become leaking cracks."

To improve processing of failure event reporting and more timely risk assessment of
critical structures and components, we applied a computer linguistic concept (Schank, 1972) and
a natural language toolkit (Lopez, 2002) to develop a software code named ANLAP. This tool
will automatically extract statistical data from failure event reports with linkage to fatigue
modeling codes for life estimation and risk assessment of aging structures and components.

Introduction

Over the last thirty years, much research has been done on the development of failure
event databases and risk-informed fatigue modeling of crack growth in aging structures such as
pressure vessels and piping in powerplants, and bridges (see, e.g., Fong, et al. [1]).

For instance, in the case of an aging bridge as shown in Figure 1, information in a bridge
failure event database [2, 3, 4] is used to guide the development of a bridge flaw inspection
database and a crack-growth model [1]. This model, as conceptually represented in Figure 1, be
it deterministic or stochastic, needs specific input from a total of five databases, namely, Failure
Event Database-1, Flaw Detection, Location & Sizing Database-2, Material Property Database-3,
Deterministic or Probabilistic Damage and Remaining Life Estimation Model Parameter
Database-4, and Loading/Constraints Database-5, in order to predict the remaining fatigue life of
an aging structure.
_________________________
*Contribution of the National Institute of Standards & Technology. Not subject to copyright.
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It is well-known that the prediction of a crack-growth model [1] is not an exact science.
As shown in Figure 2, a fatigue crack growth modeling result by Khaleel, et al. [5, p.9.7] for a
surge-line elbow of a typical nuclear powerplant in the United States showed that

" . . . cracks initiate rather early in the plant life. There is about a 50-percent
probability of initiating a fatigue crack after only 10 years of operation.

" . . . Over this 10 years, about 50 percent of these initiated cracks are predicted
to grow to become through-wall or leaking cracks.

" . . . The frequency of through-wall cracks increases significantly over this 10-
year period and then remains relatively constant over the remainder of the 60-
year plant life."

Figure 1 A conceptual representation (after Fong and Marcal [2] and Fong, Ranson, Vachon, and Marcal [3]) of
the information flow plus the uncertainties and potential errors associated with and inherent in (1) Failure Event
Database-1 (Uncertainty-1, or, e1 ), (2) Flaw Detection, Location & Sizing Database-2 (Uncertainty-2, or, e2 ),

(3) Material Property Database-3 (Uncertainty-3, or, e3 ), (4) Deterministic or Probabilistic Damage Models
(Uncertainty-M, or, eM ) and Remaining Life Estimates (Uncertainty-4, e4 ), and (5) Loading/ Constraints

databases, Photo at the upper left corner is from the 100-year-old Jonathan Hulton Bridge, built in 1909, of
Pittsburgh, PA, courtesy of reference [4]. Photo at the lower left corner by Fong during a visit to the bridge in 2006.

about 7 to 30 days
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The report [5, p.10.1] concluded that

". . . it is recognized that there are uncertainties in these calculated failure
probabilities and core damage frequencies.
" . . . Sources of the uncertainties come from assumptions made in the fracture
mechanics and probabilistic risk analysis models themselves and from the inputs
to the models." [Note: Words in red are altered by authors for emphasis.]

In other words, engineers dealing with failure probability or time-to-failure predictions need to
formulate their models with stochastic variables to account for the uncertainties mentioned in
Ref. [5]. Furthermore, engineers need to include in their analysis models as many source
uncertainties as possible to account for the input to the models such that estimates of the so-
called remaining life of an aging structure can be given with uncertainty for risk assessment.

As a follow-up of the above observation, we present in this paper (1) a new approach to
periodic inspection of aging structures based on stochastic modeling, and (2) an application of a
recently-developed artificial intelligence (AI) tool to probabilistic fracture mechanics models for
remaining life prediction. A remark on human-machine partnership using AI is also included.

Figure 2 Calculated Probabilities of Crack Initiation and Through-Wall Crack for the Surge-Line Elbow of the
Newer Vintage Combustion Engineering Plant (after Khaleel, Simonen, Phan, Harris, and Dedhia [5]).
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A New Approach to Periodic Inspection of Aging Structures

To prevent catastropic failure of aging structures such as bridges, dams, high-rise
buildings, pressure vessels and piping of the nation's physical infrastructure, engineers
traditionally use an assortment of nondestructive tools such as ultrasonic testing, acoustic
emission technique, etc. to discover cracks and conduct repairs by following a deterministic
periodic inspection design as described in Fig. 3 (after Dowling [6, p. 491, Fig. 11.2]).

It is well-known that all of the quantities plotted in Fig. 3 contain uncertainties such as
those reported in Ref. [5], and it is incumbent upon the engineers to devise a new approach to
account for such uncertainties. An example of such a new approach, based on a stochastic
model of fatigue crack growth using direct measurements [1], is given in Fig. 4. In particular,
four new measures of uncertainties. are added:

(1) qad , for the detectable or initial crack length, ad ( = ai ),
(2) qac , for the critical or final crack length, ac ( = af ),
(3) qNif , for the remaining fatigue life cycle, Nif, , and
(4) qNp , for the number of cycles from the initial to the second inspection, Np .

Here, the q's are the so-called tolerance intervals with formulas well-defined in the statistics
literature (see, e.g., Nelson, et al. [7, pp. 178-187]).

Figure 3 An application of the crack-length-based approach to fatigue (after Dowling [6, p. 491, Fig. 11.2]) is
illustrated in two formulations: (a) deterministic, as shown above, and (b) stochastic, as shown in Figure 4.

In each case, several plots of crack length a vs. cycle number N , appear where two types of crack lengths are
defined: ad = the minimum crack size that can be "reliably" detected by NDE, and ac = the critical

crack length that causes a structure or component to fail and is related to material properties such as KIc .
Three cycle number parameters, Nif, Np, Nhat, and a safety factor on life, XN, are also defined:

Nif = no. of remaining life cycle after initial detection without further inspection, Np = no. of cycles
from the initial to the 2nd inspection, Nhat = no. of remaining life cycles expected in service

after initial inspection with the detection of ad , and XN = Nif /Nhat , the safety factor on life.

= Nhat
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Application of Artificial Intelligence (AI) Tools to Fatigue Damage Modeling
and Remaining Life Estimation

As shown in Fig. 1, the formulation of a stochastic crack-length-based periodic inspection
design (Fig. 4) addresses only two uncertainties, i.e., e2 and eM , of the complete modeling
effort in predicting the remaining life of an aging structure. In this section, we introduce a
recently-developed artificial intelligence (AI) tool named ANLAP [8, 9] to automate the human-
dependent input process associated with the other two uncertainties, namely, e1 and e3 , which
correspond to the failure event reports and material property testing, respectively. As shown in
Ref. [8], ANLAP was developed by adopting the early works of Schank [10, 11] and a recent
work of Lopez and Bird [12], and is coded in Python [13, 14].

Figure 4 An application of the crack-length-based approach to fatigue (after Dowling [6, p. 491, Fig. 11.2])
using a stochastic formulation as defined by Fong, et al. [1] (see Sect. VI of [1] using Eqs. (19)
through (22) and Conditions S-1 through S-6 in that paper [1] ). In this case, several plots of

crack length a vs. cycle number N , appear where two types of crack lengths are defined:
ad = the minimum crack size that can be "reliably" detected by NDE, and ac = the critical crack

length that causes a structure or component to fail and is related to material properties such as KIc .
Three cycle number parameters, Nif, Np, Nhat, and a safety factor on life, XN, are also defined:

Nif = no. of remaining life cycle after initial detection without further inspection,
Np = no. of cycles from the initial to the 2nd inspection, Nhat = no. of remaining life cycles

expected in service after initial inspection with the detection of ad , and
XN = Nif /Nhat , the safety factor on life.

Furthermore, as defined by Fong, et al. [1, Section VII ], four new measures of uncertainties
are added: (1) qad , for the detectable or initial crack length, ad ( = ai ),

(2) qac , for the critical or final crack length, ac ( = af ),
(3) qNif , for the remaining fatigue life cycle, Nif, , and

(4) qNp , for the number of cycles from the initial to the second inspection, Np , where
the q's are the so-called tolerance intervals with formulas well-defined in the

statistics literature (see, e.g., Nelson, et al. [7, pp. 178-187]).

= Nhat

of Ref. [1]
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Figure 5 A typical output of using an artificial intelligence tool named ANLAP [8, 9] to read
a failure event report and extract critical information with statistical graphics and analysis
as input to probabilistic fracture mechanics damage and remaining life estimation models.

Figure 6 A schematic representation of a two-stage refinement of mathematical and computational models, where
the stage-1 gap, G1 , between facts (laboratory experiments, operating experience, or failure event statistics) and
predictions are computed using an uncertainty estimation plug-in, PD-UP , as formulated by Fong, et al. [18],

such that a ranking of the relative importance of uncertainty-contributing factors becomes available
to guide the modeler in obtaining an "improved" stage-2 model ( i.e., gap G2 < G1 ) .
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Application of Artificial Intelligence Tools (Continued)

A common problem associated with data collection in failure event databases, NDE
databases, and material property databases, is the proliferation of technical reports written in
natural languages. In Ref. [8], we describe an application of an Automatic Natural Language
Abstracting and Processing (ANLAP) tool to reduce uncertainty e1 of a failure event report
database. A typical output of ANLAP in extracting a page out of a DOE 1998 Nuclear Facility
Operating Experience Weekly Report is given in Fig. 5.

Using Python as a "wrapper" of computer script languages such as ANLAP [9], and
DATAPLOT [15, 16] that does statistical data analysis and design of experiments [17, 18], we
show in Fig. 6 a typical modeling refinement exercise, where a computer plug-in named PD-UP
[18] allows a user to rank the relative importance of a large number of factors and their
interactions in order to produce a "better" model. In Fig. 7, we illustrate an application of
ANLAP in estimating the uncertainty e3 of a material property database by displaying the
results of an investigation [19, 20] on the static crack initiation toughness, KIC , of a high-
strength steel.

Figure 7 Plot of an estimated static crack initiation toughness ( KIc ) value with an expression of uncertainty
(error bar in red) based on fictitious design-of-experiments(DOE)-generated results

at 120 oF (48.9 oC), in a K vs. (T - RTNDT) diagram where KIc and KIa data
from three thermal shock experiment (TSE) test cylinders, TSE-5, 5A, and 6, and

ASME Section XI KIc and KIa curves over a broad range of temperature shift, (T - RTNDT),
were plotted by Cheverton et al [19] and reported by Interrante, et al. [20] and Fong, et al. [1].

Note that all experimental data or design curves are for comparable steels having a room
temperature yield strength of about 90 ksi (620.6 MPa) (after Interrante, et al. [20]).

(Based on a
fictitious

9-run design of
experiments on

(Based on a fictitious
9-run design of
experiments on

Charpy energy data)

(26.78)

(29.43)
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Human-Machine Partnership in Structural Health Monitoring

As shown in Refs. [1, 21, 22] and Fig. 8, the use of Python in the development of AI tools
such as ANLAP to manage uncertainties in the "health" state of an aging structure using a
stochastic model, leads naturally to the design of an internet-based aging-structure health
monitoring system.

Such a system, clearly, depends on the availability of very fast computing speed, large
computing memory, sophisticated database technology, and transparent computer coding
practice for modular debugging. When properly designed and implemented, such systems are
capable of assisting engineers in giving early warning signs of rapidly degrading structure.

However, those warning signs need interpretation by humans, whose experience and
judgment are invaluable in weeding out "false" signals. AI tools with a human partnership are,
therefore, more reliable and cost-effective in managing an aging structure.

Figure 8 A schematic design of the internet-based aging-structure health monitoring system involving
the use of ANLAP [8, 9](to manage e1 , WUPI [1] to manage e2 , DPA [21] to manage e3 , and
PD-UP [18] to manage eM for a stochastic fracture mechanics-based crack growth model [22].

Note that in this web-based computational exercise, the five source uncertainties,
e1 , e2 , e3 , e, e ,

are being combined with the model uncertainty, eM , in a functional relationship, f ,
with the result uncertainty, e4 , being given by four uncertainty components,

qad , qac , qNif , and qNp , of the inspection interval design diagram (see Fig. 4 and Ref. [1]).

Deterministic
or Probabilistic

Fracture
Mechanics

Modeling [22]

PD-UP

[18 ]
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Concluding Remarks

In this paper, we describe an uncertainty-based methodology, using a Python-coded
artificial intelligence (AI) tool, ANLAP [8], and its linkage with a statistical analysis tool,
DATAPLOT [15, 16], for managing the "health" of an aging structure so as to minimize the
chances of a catastropic failure.

In addition to introducing a new approach to periodic inspection of aging structures, we
also touched upon the concept of a dialog-box design for an uncertainty analysis plug-in, which
effectively allows the engineer to come to grips with uncertainty issues without being over-
burdened by the mathematical rigor that comes with any attempt at probabilistic modeling.

As a concluding remark, the following quote from the "Introduction" of a book by
Giurgiutiu [23] best summarizes our thoughts on the timeliness and societal impact of a need for
developing an uncertainty-based and risk-informed approach to managing aging structures:

"The United States spends more than $200 billion each year on the
maintenance of plant, equipment, and facilities.

"Maintenance and repairs represents about a quarter of commercial
aircraft operating costs.

"Out of approximately 576,600 bridges in the U.S. National inventory,
about a third are either 'structural deficient' and in need of repair, or
'functionally obsolete' and in need of replacement,

"The mounting costs associated with the aging infrastructure have become
an on-going concern. Structural health monitoring systems installed on the aging
infrastructure could ensure increased safety and reliability."
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