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SUMMARY  We present a technology based on Nb/Nb,Si;_y /Nb junc-
tions, with barriers near the metal-insulator transition, for applications in
superconducting electronics (SCE) as an alternative to Nb/AlO, /Nb tunnel
junctions. Josephson junctions with co-sputtered amorphous Nb-Si barri-
ers can be made with a wide variety of electrical properties: critical current
density (J.), capacitance (C), and normal resistance (R,) can be reliably
selected within wide ranges by choosing both the barrier thickness and Nb
concentration. Nonhysteretic Nb/NbySi;_x /Nb junctions with 7.R, prod-
ucts greater than 1 mV, where I, is the critical current, and J, values near
100kA/cm? have been fabricated and are promising for superconductive
digital electronics. These barriers have thicknesses of several nanometers;
this improves fabrication reproducibility and junction uniformity, both of
which are necessary for complex digital circuits. Recent improvements to
our deposition system have allowed us to obtain better uniformity across
the wafer.

key words:  amorphous alloy, Josephson device fabrication, Josephson
Junctions, superconducting devices

1. Introduction

Digital Superconducting Electronics (SCE), which has the
potential for lower power consumption and faster switch-
ing speeds compared to some semiconductor technologies,
is a promising technology to deliver ultra-high performance
computation. The eatliest SCE circuits used junctions with
lead and lead alloys, but these suffered from poor stability
and their properties deteriorated after repeated thermal cy-
cling. Presently, the preferred technology for high-speed su-
perconductive digital circuits, which was developed in the
early 1980’s, is based on Nb/AlO,/Nb junctions with barrier
thicknesses on the order of 1nm [1]. These junctions have
proved to be stable, reproducible, and able to yield uniform
devices.

Important developments have been achieved using this
technology; some of the most impressive achievements in-
clude a T-flip-flop circuit operating up to 770 GHz [2] and a
4 kbit memory operated at 580 ps and 6.7 mW [3]. For the
highest speed and density, circuits rely on high critical cur-
rent density (J.) junctions and submicrometer junction di-
mensions. Tunneling Nb/AIO,/Nb junctions are hysteretic
and need shunting resistors to bring them to the critically
damped regime, limiting the circuit density and introduc-
ing parasitic inductances. Only very high J, Nb/AlO,/Nb
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junctions (> 200 kA /cm?) [4] with deep sub-micron dimen-
sions are self-shunted due to their very thin oxide barriers,
one or two monolayers thick. Self-shunting in this case is
due to metallic micro-shorts across the barrier [5]. For these
junctions, J. uniformity is much more difficult to achieve
and may be inherently limited by the random distribution of
micro-shorts.

Other attempts have been made to obtain suitable junc-
tions for SCE, with high J. and no hysteresis, including
SINIS [6] and SNIS [7] (S=superconductor, I=insulator,
N=normal metal) junction technologies, with Al and AlO
as normal metals and insulators, respectively. AIN has
been evaluated as a barrier material [8] as have SNS junc-
tions with high-resistivity barrier materials such as TiNy
[9], NbN, [10] and TaNy [11], for which the resistivity is
changed according to the nitrogen concentration and sub-
strate temperature. The only technology that has been par-
tially competitive with Nb/AlO,/Nb has been NbN-based
junctions with various barriers, with the higher transition
temperature superconducting NbN, having the advantage of
circuit operation near 10 K [12].

We propose an alternative technology for SCE based
on Nb/Nb,Si;_,/Nb junctions. By choosing x < 0.05, the
Nb-Si barriers can be reproducibly tuned between metallic
and insulating behavior [13]. A junction with a several-
nanometer thick Nb-Si barrier would produce comparable
electrical performance to that of high-J, tunnel junctions,
but has the potential for better reproducibility and unifor-
mity.

2. Fabrication of Nb/Nb,Si;_,/Nb Junctions

NIST has been developing Nb/NbySi;_/Nb junctions to re-
place previously successful junction technologies for volt-
age standards, most notably PdAu and MoSi, barrier SNS
junctions. Typically, these junctions have a low normal re-
sistance R, and, as a consequence, low values of I.R, (if
I, is to be kept within practical limits). This makes them
unsuitable for high-speed electronics. However, unlike tun-
neling junctions, whose electrical properties are tuned by
the oxygen exposure, which defines the barrier thickness,
in Nb/Nb,Si;_/Nb junctions two controllable parameters,
thickness and composition of the barrier, determine the junc-
tion’s properties [14]. The control of the composition is
achieved through the co-sputtering of Nb and Si as shown
in Fig. 1.

While the deposition time and rate determine the thick-
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Fig.1 = Cosputtering allows for control of barrier composition as well as
thickness, enabling junctions with a wide variety of properties.
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Fig.2 I R, vs. barrier thickness for Nb/Nby Sij_«/Nb junctions with dif-
ferent Nb content in the barrier determined by the power of the Nb sputter-
ing gun. The Si sputtering gun power was set at 200 W for all junctions in
the figure.

ness, the composition is determined by the relative powers
of the Nb and Si sputtering guns. This allows a continuous
spectrum of barrier properties from low resistance, Nb-rich
barriers, to insulating barriers of pure silicon. Within a wide
range of possible values, J. and R, can be reliably and in-
dependently selected, giving junctions of varied character-
istics. Of particular interest for SCE are junctions with thin
barriers in the insulating regime, which have I.R, products
greater than 1 mV and J, near 100 kA /cm?. Figure 2 shows
a variety of IR, values for junctions with different barrier
deposition conditions.

In our system, a three-inch diameter silicon wafer sub-
strate with 150 nm of silicon oxide is held against a rotating
platen located at approximately 15cm from the sputtering
targets. The platen is cooled with flowing nitrogen gas and
a heat sinking film or plate is placed at the back of the wafer
against the platen. Patterning of junctions is done by re-
active ion etching in a mixture of SFg and C4Fg, giving an
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excellent vertical profile and allowing for the fabrication of
uniform vertical stacks of junctions [15]. Silicon oxide in-
sulation is deposited by electron cyclotron resonance (ECR)
plasma-enhanced chemical vapor deposition, giving a low-
stress, high quality oxide. Vias through the oxide are done
by reactive ion etching in a mixture of O, and CHFs;.

To improve the uniformity of the junctions, an Argon
plasma etch is applied to the base electrode and, in the
case of vertical stacks, each middle electrode. This process
smooths the Nb surface prior to the barrier deposition. In
the case of thin barriers, a rough surface would contribute
to non-uniformities in J,. Roughness particularly affects
stacks because it accumulates as the stacks are grown ver-
tically [16]. A good etching profile of stacked junctions al-
lows for uniform properties with potential for high-density
vertical stacks of junctions for application in output circuits
with very small parasitic inductances.

3. Junction Properties

Josephson junctions made with co-sputtered Nb-Si barriers
have already been shown to have excellent uniformity and
reproducibility in Josephson voltage systems in which tens
of thousands of junctions all have sufficiently similar prop-
erties to each other in order for 10V to be obtained from
the addition of their first constant voltage step under mi-
crowave bias. These junctions are more robust than SINIS
(S=superconductor, I=insulator, N=normal metal) junctions
that have AlOy for the insulator, which have also been used
in voltage standard applications. SINIS junctions seem to be
affected by plasma processing, giving a low yield of work-
ing devices [17]. Junctions with Nb-Si barriers, on the other
hand, are more robust, due in part to the increased thickness
of the barriers, which is of the order of several nanometers.
For voltage standards, it has been straightforward to change
the characteristic frequency of junctions from 20 GHz to
70 GHz by choosing the appropriate composition and thick-
ness. Excellent uniformity was demonstrated with large cir-
cuits of ~70000 nearly identical junctions [17]. Similarly,
much faster junctions suitable for SCE with characteristic
frequencies above 500 GHz have also been fabricated [18].

An important and desired feature of any junction tech-
nology for applications in SCE is the reproducibility of junc-
tion properties. For our junctions this can be seen in the
dependence of J. on barrier composition and thickness, as
demonstrated in Ref. 16. For a fixed barrier composition,
J. has a nearly exponential dependence on the barrier thick-
ness. This allows us to accurately target the properties of the
junctions according to the desired application.

High values of I.R, can be achieved with a variety
of thickness and composition combinations. More metallic
barriers produce large values of J,, which require smaller
lateral fabrication dimensions to maintain practical /. val-
ues. These junctions are ideally suited for SCE logic, be-
cause they are intrinsically critically damped, as shown in
Fig.3. Without the need for shunt resistors, they avoid the
parasitic inductances arising from shunts and can achieve
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Fig.3 IV curve of a single junction with lateral dimensions
2.5 pm % 2.5 pym with 10.8 nm barrier thickness. The deposition powers
were 16/200 W for Nb/Si. The inset shows a curve of the same junction
limited to low currents.
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Fig.4 Current-voltage characteristic for six pairs of junctions designed
to have similar J, but different composition and thickness. Curves are dis-
placed on the voltage axis for clarity. Thinner barriers with lower Nb con-
tent display higher characteristic voltage /R, and more hysteresis.

higher circuit density. More resistive barriers will allow
larger lateral junction dimensions, but the reduced damping
will increase their hysteresis. Hysteretic junctions are suit-
* able for latching logic and output circuits, such as Suzuki
stacks [19].

The simultaneous but independent control of composi-
tion and thickness allows us to obtain junctions with a cho-
sen J. but with different resistance and capacitance, so that
they have different characteristic frequencies and a different
amount of damping, which produces different magnitudes
of hysteresis in the current-voltage curves (/VC). As an ex-
ample, Fig. 4 shows a set of six IVC for pairs of parallel
Jjunctions with dimensions of 2.5 um x 2.5 um. The junction
pairs have different composition and thicknesses, but are all
designed to have the same value of J,.. As the concentration
of Nb decreases, the junctions become more resistive and
also more hysteretic, because the less metallic barriers be-
come more resistive. The preferred properties for a specific
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Table 1 ~ Growth parameters and properties of Nb/NbySij_x/Nb
junctions.
Power Thickness Je C I/ Lrer €
Nb/Si (W) (nm) (kAfem?)  (pF)
16/200 11 3.9 2.1 1.00 658
15/200 10 4.1 2.1 1.11 593
14/200 9.4 2.9 1.0 1.13 275
13/200 8.3 3.0 1.3 1.86 309
13/200 8.5 2 0.9 1.52 215
12/200 7.7 3.7 1.0 2.04 213
10/200 6.7 2.6 0.6 4.07 121
10/200 6.3 39 0.6 4.02 108
9/200 6.3 1.6 0.5 445 85
9/200 5.8 35 0.6 4.39 91
9/200 58 4.1 0.7 4.64 114
9/200 58 5.1 0.7 375 117
9/200 5.8 6.4 0.6 332 100
9/200 5.8 74 0.7 2.28 110
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Fig.5  Specific capacitance, C’ and dielectric constant €, of the barrier
in Nb/NbySi;_x/Nb junctions. Note that the barrier thickness is decreased

together with Nb concentration to maintain J, constant. This group of junc-
tions is identical to those plotted in Fig. 4.

application can be obtained through the correct choice of
thickness and composition. For high-speed digital electron-
ics, for example, high values of IR, can be achieved with a
variety of combinations of thickness and composition.

Table 1 shows the growth conditions and measured
properties of junctions with different barriers (from different
wafers), including J,, capacitance C, amount of hysteresis
(1. divided by the return current, 1,.;), and dielectric constant
(e) of the barrier. Capacitances were inferred by measuring
voltage resonance steps in the 7VC of SQUIDs in which flux
was coupled by adjusting the current in a directly coupled
wire, as described in [20]. The values of C and e decrease
as the Nb content of the barrier decreases. Figure 5 shows
these trends for the same group of wafers with similar J, as
in Fig. 4.

In Fig. 3, we can see that the value of the resistance
in the sub-gap region (R,) near to I, is considerably larger
than R, (the resistance above the superconductor gap volt-
age). Consequently, I.R,, is much larger than I.R,. This
value of IRy, may be more representative of the speed of



466

the junction, as it is the value in the region close to the oper-
ation point of the junction. Likewise, based on capacitance
measurements, for the /VCs in Fig. 4 with little or no hys-
teresis, the expected value of damping parameter 3. should
be around and not much bigger than 1. If we use the val-
ues of Ry, near I and the calculated capacitances from volt-
age resonance steps, the values for 8, obtained are 1.3 (for
16/200 W) and 2 (for 15/200 W), compared to values a fac-
tor of ten smaller when R, is used. This suggests also that
- the value of Ry, near I, better represents the junction dynam-
ics and also suggests faster operation than that given by the
I R, values in Fig. 2 [21]. '

4. Improvements in Deposition Conditions

It has been found that junctions having barriers with low
Nb content are particularly susceptible to residual impu-
rity gases in the chamber during deposition. Voltage stan-
dard circuits operating at 75 GHz were found to have large
J. nonuniformity across the wafer [22]. The origin of the
non-uniformity was found to be outgassing from the cooling
graphite foil (used to heat-sink the wafer during deposition)
and possibly also the platen in back of the wafer. The effect
was more pronounced in circuits that were located nearest
to the flat of the wafer, where there was a small opening in
the wafer holder. A new holder plate with no gap improved
the uniformity. Experiments on thicker films made of only
the barrier material showed considerable improvement in re-
sistivity uniformity after a new “gapless” holder plate was
installed. Before this change, a film deposited with 8/200
W (Nb/Si power) had a mean resistivity of 7.4 mQQ-cm with
a standard deviation of 5.6 mQ-cm. After removing the gap
and reducing the residual gases, a wafer with similar junc-
tion deposition conditions had less than half the average re-
sistivity (3 mQ-cm) and more than 10-times lower standard
deviation (0.4 mQ-cm). A further increase in J, and -de-
crease of barrier resistivity was obtained by replacing the
graphite foil with a solid Al metallic disc for wafer cool-
ing. Unfortunately, it was unclear which residual gas was
responsible for the depressed value of J,.. Preliminary stud-
ies show that it is also possible that residual water vapor may
be responsible for suppression of the critical current density.

As expected, the value of J, increases either as the Nb
content increases or the barrier thickness decreases. J, also
increases when the material impurities in the barrier are re-
duced. The last five entries of Table 1 show samples with
the same composition and thickness; they all have similar
values of C and e, but those near the bottom, corresponding
to improvements in wafer mounting in the deposition cham-
ber, have higher J, and, at the same time, less hysteresis.
Future work will evaluate the reproducibility of the electri-
cal properties under these deposition conditions.

5. Conclusion

We have shown that the versatility of co-sputtered
Nb/NbySi;_x/Nb junctions permits the fabrication of junc-
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tions with electrical properties suitable for SCE. Their fab-
rication is similar to existing technologies, with only the mi-
nor modification of cosputtering the barrier. The junctions
have been shown to be reproducible and uniform. Work is
presently underway on the fabrication and testing of simple
digital superconducting circuits based on these junctions.
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