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Sphere Fitting as a Check
of 3D Imaging System Performance

Marek Franaszek, Geraldine S. Cheok, Kamel S. Sandi Christoph Witzgall

Abstract—Multiple scans of the same object acquired with 3Dmaging system (e.g., laser scanner) in the sama&perimental
conditions could provide valuable information aboutthe instrument’'s performance (e.g., stability, exstence of bias, measurement
error). Geometrical primitive may be fitted to multiple datasets and the variances of the fitted objée parameters may serve as a
measure of instrument’'s performance. We test this npcedure on simulated data as well on the data acged in a laboratory. Two
different error functions (orthogonal and directional) are used to fit a sphere of known radius to thelata. A spread of sphere centers
fitted with the directional function to simulated data is in agreement with theoretically calculated ariances of fitted centers. For sphere
centers fitted to the data acquired in a laboratory the variances do not agree with the spread. Thigct is interpreted as an evidence of
a non-zero bias in the recorded range data. The throgonal fitting yields sphere centers in disagreeent with theory both for simulated

and laboratory datasets.
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|. INTRODUCTION
Current 3D imaging systems may acquire hundredwaisands of 3D point data within a second [1].

Subsequent processing is often necessary to labegeribe, and identify geometrical objects witthinse
point clouds. One approach is to model an objetgrims of parameters that characterize attribuiek as
location, pose, width, height, etc. [2, 3]. Heres are working with Nonlinear Least Squares (NL8niy
methods, based on determining model parametersntivditnize a specified error function. A major
challenge is how to propagate an instrument eadhe errors of fitted parameters. Usually, vareanand
covariances of fitted parameters are determined tiee inverse of the Hessian matrix of an errocfiom.
This approach follows from a common practice okdéinzation of the nonlinear error function near its
minimum [4-8].

Among geometric objects, the spheres of known saRiplay a special role in a use of 3D imaging
systems: sphere center is the only parameter wieehls to be determined. In addition, a sphere ean b
scanned from different directions without any atijuent of the sphere with respect to the instrumehnis
renders spheres convenient targets to be usedistregion of two or more datasets acquired froffecent
instrument positions [9]. It also establishes sphers unique artifacts for protocol testing thégoarance
of the instrument because the relative distanced®t two fitted sphere centers can be directly @
with ground truth. In both of these applicatiorig tincertainty of fitted sphere center has to bebéshed
in order to subsequently derive the margins ofreiwo registration as well for deviation from a gral
truth.

In our previous reports [10, 11] we investigate® tyeneral approaches to fitting as applied to ssher
the orthogonal and the directional fitting method& showed there that the orthogonal error functias
two minima while the directional error function hasly one. In [12] we derived closed formulas nekttie
calculate variances and covariances of coordinaftephere centers fitted by minimizing either ogésh

two error functions. Our derivation was more gehtivan the common approach based on a linearizafion
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an error function around its minimum. We estimatadances directly from sensitivities which, inrtucan
be evaluated analytically. The only assumption vakenconcerns noise level: we assumed that the noise
perturbing range measurement is small.

In the current paper we use these closed formalashéck the performance of 3D imaging systems.
Specifically, we investigate if tiny bias in rangeasurement (much smaller than instrument randogera
error) could be detected. We first check the fdaswn spheres fitted to the data generated in atanp
simulations and then apply the same procedure éodta acquired in a laboratory with a 3D imaging
instrument. Results obtained for simulated datavstimat sphere centers fitted with the directiorabre
function are within the calculated errer from the truth. Results obtained with the orthaaoarror
functions applied to the same simulated data shaifitted centers differ from the true center byo3 4c.

For datasets acquired in a laboratory, the trueergphenter is not known in the instrument’s cocatén
system and closed formulas are checked only faratgbility. In the repeatability test, the sprefdphere
centers fitted to a few datasets acquired undesdh@ experimental conditions is compared withavenes
provided by closed formulas. If the spread is lss or equal to the calculated errors for mostspai
sphere centers then the test is passed, othenwestsi For almost all datasets acquired in a tatmyy and
both types of error function, repeatability teskefdh This could happen if the instruments usedsfanning
were collecting range data with systematic smasbCalculated variances of fitted sphere centaie &
1/N with the number of points in a datasets. Thustypical datasets containing hundreds or thousahds
points, the resulting variances are very small &llgwone or two orders of magnitude below the Sipeti
instrument’s range error) and therefore they ate abreveal the presence of even small bias imised
range data.

The paper is organized as follow: in section Il kreefly review the derivation of variances of filte
sphere center; in section Il two error functiors®d in minimization are defined; in section IV welme

experiments while in section V we provide the dstaf numerical calculations. In section VI we pes
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obtained results followed by discussion in secWdinFinal conclusions are presented in sectiorl.VII

Il. VARIANCES OF FITTED PARAMETERS
In each of our experiments, a sphere of known sdjlbut of presumed unknown center location is

fitted to a given point clouBy;. To this end, an error functider (U, Py ) is minimized by varying the
model parameterd = [X, Y, Z], which represent a generic sphere center, wigitpkg the data poinB,
={P;,j = 1,...,N} unchanged. Actual values Bf are measured in the experiment witibeing a number
of points in the dataset. For convenience, the mdgrece of the error function on the radiiwill be
dropped as iis treated as a constant. Following the Least Sguapproach [13-24], each error function
considered here is a mean of squares of individisglaritiesgj(U, P;) between “experimental” poinf

and corresponding “theoretical” points:
er(u, {N}) ZEZ( ) ) (1)

The desired result, the fitted parametdts= [X*, Y*, Z*], is then the result of minimizing the error
function with respect to the parameters with data variables set to represent the exparial data, that is,
the actual point cloud at hand. For any admisgiblat dataPy; kept fixed, however, minimizing the error

function will produce corresponding parameters

u'( {N}) [X ( {N}) Y*(BN})’ Z*(BN})]’ (2)

which will be considered as functionsRjf,. For 3D imaging systems, experimental noise prexdantly
affects the range measuremgri25]. The bearings of every experimental pdipare treated as noise free
control variablesd;, 6;) and thus; =r; [, y;, z], where
X; =cosf;)cos@,;), Yy, =sin(,;)cosP,;), z =sin@®;). 3)
In order to calculate the variances of fitted pastarsX*, Y*, Z*, we assume no correlations betwe¢m
andj-th measurements (i.e. lack of correlation betweeasured rangesandr;). Then, the standard error

propagation formula yields the following first ordestimates for variances and covariances of fafgtere
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center coordinates [26, 27]

var(X*) = i{ x (R _{N} )} varr,) , (4a)

j=1

= o or,

NI 9X oY’

COV(X*,Y*) = Z{ ( Py )}{ ( {N})}var(r ) (4b)
J

and similarly for other two componentsandZ. The estimates provided by Equations (4a) and {bé)
generally considered acceptable if the experimerdede of the range measurements weak, that is, the

fitted sphere center remains within a linear donwimesponse to data perturbation. This requiras th

we were to acquire two point cloudy) and R{? for the same control variablesg{(4), j = 1,...,N },

then the following should hold for two fitted spberenters

U'(pi)=u i)+ 25 r(ffiﬁ)}) (r@=rf). Q

j=1
This implies the error of measured ranigg) and, consequently, the distance betweé@P}) and

U (P{(NZ})) have to be small in comparison to the sphere raglius

The coefficients in the Equations (4a) and (4byesent sensitivitiedX"/dr; , dY'/dr, anddZ"/dr;. In
order to calculate them, we refer to the fact thatvanishing of the gradient — if it exists — ecassary for

a minimum to occur. In particular, it follows thaibstituting the functiom*(aN}) into the gradient of the

error function — with respect to the variablés- vanishes for any admissible data specificatioother

words, the vector function

DEr(U° (R, 0, 6)

) P)
which now depends on the variabRgg; alone, is identically zero. Differentiation witespect to the range
variabler; produces again an expression which is identi@@p, and which according to the chain rule

leads to the following 3x3 system of linear equadidor every;:
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H(U*(F}N})’P{N})Sj(am})z_vj(U*(F}N})'F}N}) ' (7)

where vectorsS, ande are defined as

oX () 0°Er(U.Ry)
or. or. oX
S (P ): aY*(ri){N}) v (U 5 )= aZEr(U,F}N}) (8a)
i \"{N} ! i\ N}
! *arj ! 2 or. oY
0Z (P{N}) 4 Er(IU,P{N})
i or, | i or, 0Z |
Matrix H is the hessian of the error functiBn(U, Py;)
| 9°Er  0°Er  9°Er |
X% 0XaY 0Xoz
0°Er  0°Er  0%FEr
HU, Ry )= (8b)

aY oX oY? oY oZ
0°Er  0%Er  0%Er
(0ZOX  ozoY 0z |

Let us note that every element of the malttixn Equation (8b) contains the sumMbterms, as follows

from Equation (1). On the other hand, vedtpon the right side of Equation (7) contains onlg ¢&rm
derived from a givelg;(U, P,). Therefore, the components of the sensitivitymes§; must scale as W/and

so do the variance and the covariance of fitte@spbentelJ*. The fact that variances of model
parameters fitted by Least Squares methods scdllas well known. What is unusual for the fitting
procedure discussed in this paper is the magnititle as we mentioned, 3D imaging systems may collect
hundreds of thousands of points in a second. Tdarsgsponding variances of fitted parameters may
become intriguingly small when compared to varianakinstrument’s measurements. Equations (4a) and
(4b) provide general expressions for the variamcecvariance af)*. The particular form of the
expressions depends on a choice of an error funased in NLS fitting.

lll. SPHERE FITTING
Two error functions were examined in this stud tiithogonal and the directional error functioneifh
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geometrical meaning is illustrated in Figure lathi& orthogonal case, the deviatigrin Equation (1) is
the distance between the measured @dgiand its orthogonal projectidd; on a sphere surface. The

distance is thus given by

2
EjZ(U’Pj):(\/(X “xr -y fez-znf - R) ©)
wherex;, y;, z are given by Equation (3). In the directional efuoction, the deviatiok; is a distance
betweerP; and its projectio; onto the sphere surface along the directioR; off the line from the

instrument througlf; does not intersect the sphere surface, then tiné [pois constructed as in Figure 1b.

Using the following notations:

P =XX+Yy;+22;, q z\/(in_ZjY)z g X=x,z) + (Y -y x)

the deviatiorE; for the directional error function can be writi@s

2 .
(pi _\/Rz_qu_rj) if g, <R

E(u.P)= (10)
(p,— _rj)2+(qi _R)Z it g 2R
The quantitieg; andg; are illustrated in Figure 1b for situations where R. Explicit forms for the hessian
matrix H and the vectoY; , needed to solve Equation (7) for sensiti@tand ultimately to calculate the
variance and covariance of sphere center, wergeadem [12] for the orthogonal and the directioaabr

function.

IV. EXPERIMENT
Data presented in this paper were collected irriasef experiments. Table | provides the summéry o

experimental settings. In total, 87 datasets welleated by scanning four spheres from differestahices
and using three different instruments. In somes;abe location of the sphere center was alsottiirec
measured with a total station or a laser trackegifound truth determination. The first column iable |
(Group) labels six major groups of experiments A-F withtlier differentiation in some of the groups. All

datasets in a single group were acquired by the sastrument, scanning the same sphere. Withisahse
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group, different datasets were collected eithereutite same or different experimental conditions.
Azimuths of sphere centers in subgroup Al diffenfrazimuths in A2 by 180°, point clouds in subgroup
D1 were acquired with much higher scanning derbay in D2, similarly datasets in subgroups E1-E3
were collected at different scanning densitiesaBetis in all groups, except those in subgroups EvEre
acquired for various distances between the instriiiwed the sphere, respectively. The second col@#mn
Dist) shows the total number of these distances imgitren group/subgroup of experiments. The next two
columns Min_D andMax_D) provide the smallest and the largest of thosedces in meters. The
following two columns lin # Points andMax # Points) provide the smallest and the largest number of
points among all datasets in the given group/sulgro

The next two columns in Table $there Type andRadius) indicate which sphere was scanned. There
were four spheres scanned and these spheres weeeaindifferent materials, were of different sizesl
had different surface finishes (see Figure 2). BggandB are made of anodized aluminum, sphere
made of styrofoam, and sphdédas made of titanium. The surface of sph€ris rough compared to the
other spheres. SpheBas not a full sphere but a SMR (Spherically MouhiRetroreflector) which allows
its center to be measured with a total station.

The next two columns in Tablelhétrument Model andErr) indicate the instrument used for scanning
and its range uncertainty in millimeters as speditry the manufacturer. The three instruments vt
experiments fall into two categories: instrumbrit has a maximum range of 24 m and range uncertamty
sub-millimeter level. This instrument is typicallged in indoor applications (e.g., in assemblgdim
manufacturing facilities). The other two instrunghn2 andIn3, have maximum ranges greater than 100
m and range uncertainty of a few millimeters. Theg used in both indoor and outdoor applicatiorgs (e
at construction sites).

The next column in Table #(Runs) gives the number of scans acquired under the saperimental

conditions (i.e., the same instrument to spher@ce and scanning density). The columot ¢ Sets) is a
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multiplication of the second colum# Dist) and the columr#Runs) and it equals to the total number of
datasets for the given group/subgroup.

Finally, the last columnAlt Instr) states whether a sphere center was measure@nather more
accurate instrument: a total station (TS) with anufacturer specified range error £0.2 mm or arlase
tracker (LT) with measurement error £3M. These precise measurements were obtained idinate
systems different from the coordinate systems iitlwvthe point clouds were acquired (the origin of
coordinate system is defined by the location oingtrument: a scanner, a total station or a lasekér).
Therefore, only relative distances between spheméecs fitted to point clouds and those measunextidly
by the LT or the TS could be compared. All scanseveellected indoors under controlled conditiofisie
points for the sphere in each acquired dataset mareially segmented.

In addition to point clouds acquired with laserrsgars in a laboratory, datasets were generated in
computer simulations. For a given pair of azimutll alevation angles/(6), the intersection of a ray from
the origin with a hemisphere facing the origin wasermined (bearings which did not yield intersacsi
were ignored). The resulting range, #) was then perturbed by a small amount obtained igpseudo
random generator of Gaussian noise. The correspgr@hrtesian coordinates of the perturbed poinewer
stored for later processing.

V. NUMERICAL CALCULATIONS

A sphere of known radiuR was fitted to each dataset using a quasi-Newtoinmzation procedure
[28]. Exit conditions for the optimization processre defined by two parameters, the relative stagth
and the relative decrease in the value of the é&uration. Both were set to T0AIl calculations were
performed to double precision on a 32-bit compukbe centroid of the point cloud was selected as a
starting point for the minimization. Two differeatror functions were used: the orthogonal erroctiom
(Equation 9) and the directional error function (&tion 10), each of them yielding fitted spheretees)

Uo = [Xo, Yo, Zo] andUq = [ Xy, Y, Zd], respectively.
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In addition to the fitted sphere centers, the vargs and covariance bf, were calculated: vax(),
var(Yy), var,), cov(Xe, Yo), COV(Xo, Zo), coV(Yoe, Zo), and similarly folUy. These error bounds were
calculated from closed forms derived in [12] witie tassumption that the bearings ¢;) of the recorded
pointsP; were determined without errors (i.e., they weeatied as control variables) and the only source of
experimental error was due to range measuremept d;). The numerical values of the range eregry
were chosen according to instrument specificatposided by the manufacturers, as given in Table |,
columnErr.

For each dataset and the corresponding paik, @ndUy, a separation distane€U,, Ug) was evaluated

asA =F(U,, Ug), where

F(Ul’Uz):\/(Xl_x2)2+(Y1_Y2)2+(Zl_22)2 . (11)
The corresponding error &(U;, U,) can be derived from the error propagation formula

G(,,U,)=yW(u,,U,)/F(U,U,), (12)
where
W(U,,U,) = (X, - X, P (var(X,) + var(X,)) + 2(X, - X,)(Y, - Y,)(comX,.Y,) + co( X,,Y,)) +

(v, - Y. ) (varlY,) + var(Y, )+ 2(¥, - Y, )(Z, - Z,)(cor(¥,. Z,) + cor(Y,.. Z,)) + (13)

(z,-2z,)(vafz,)+vadz,)) + 2(z, - Z,)(X, - X,)(coMZ,, X,) + coMZ,, X,)) .
With this notation, the error of separation disas(@) = G(U,, Ug). If the separation distan@€U,, Uy) is
less than its errar(A) then both fitted sphere centéfs andUq are considered the same within the
statistical error. The ratia/a(A) shows how the two error functions used in th@nfitof a sphere to the
same dataset can yield two different sphere centers

For some groups of experiments, a sphere was stanoee then once in the same experimental settings

(column# Runsin Table | with entries larger than 1, i.e. suhg® Al, A2, E1-E3 and group B). For these
repeated measurements, the spread of the fittextespbnters and corresponding errors may serve as a

useful indicator of the repeatability of the scavgnprocedure. For each pain,(n) of datasets collected at a
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given sphere to scanner distance, the separastendss(U, U,) = F(Un, Un) between the fitted sphere
centers and the corresponding error of separat(®= G(Un, U,) were calculated using Equations (11,12).
The number of different pairsn( n) available for a single sphere to scanner disteegqual t&K(K-1)/2,
whereK is the number of repeated measurements listedlummn# Runs in Table I. These calculations
were repeated independently for sphere centergebitasing the orthogonal and directional errorction,
yielding 6o, 6(d0) anddp, o(dp), respectively. Again, the two fitted sphere cestd, andU, are considered
the same within statistical error if the separatistanced(m, n) is less thaw(d). A use of different error
function may yield different result for the samergen, n).

For some groups of experiments, the sphere cemtemnveasured with other more accurate instruments:
total station or laser tracker (colurAit Instr in Table 1). Measurements with these instrumergsew
repeated many times and the mean and standardidewias recorded for each sphere. The resulting
standard deviations of sphere center locations atleast an order of magnitude smaller than trepf
sphere centers fitted to point clouds acquired Wieh3D imaging systems. These measurements wede us
to calculate the relative distances between sptereers which were later used as the ground GUilm,

n). For datasets in Al, B, C, and D2, relative dis&s between fitted sphere cente(s, n) = F(Uy, Uy)
from the same subgroup were calculated togethérauitresponding errorgD) = G(Ur, Uy). Then, the
deviationss(m, n) from ground trutfGT(m, n) were calculated agm, n) = D(m, n) - GT(m, n). We
assumed no error in the ground tr@&h(m, n) and therefore the error of deviation was equah&oerror of
a relative distances(¢) = o(D). These calculations were repeated independemtihé results from the
orthogonal and the directional fitting, yieldingadg two pairs of characteristies, o(eo) andep, o(ep).

Contrary to the laboratory experiments where tleation of sphere centers are unknown, the absolute
location of sphere center is known for the simulatatasets. For these datasets only, the deviatigrof
fitted sphere centdd, from the ground truth and its errefu) were calculated using Equations (11,12)

wheren labels different realizations of Gaussian perttidna Again, these calculations were repeated
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independently for the results from the orthogomal the directional fitting and yielded two sets of

deviationsuo(n) andup(n).

VI. RESULTS
In Figures 3 and 4, typical results from fittinghepe to simulated data are shown. A sphere of sadiu

R=0.0762 was located & = [19.99, 0.23, 0.02] (arbitrary length units, .emeters). Nine different
realizations of the Gaussian noise with zero meahstandard deviation equal 0.007 were used torgene
the nine datasets, each containing 1,255 poinggir&i3 shows deviatiop(n) of fitted sphere center from
Q for the orthogonal and the directional fittimgs 1,...,9. Nine noise realizations yield 36 pairslafasets.
For each pair, the separationits errors(8) and the rati®@/c(5) were calculated. In Figure 4 a histogram of
the ratio is shown for both error functions.

In Figure 5 a similar histogram shows the rafi®(5) calculated for datasets acquired in lab experimen
Scans repeated in the same settings yield 9 padatasets for A1 subgroup of experiments, 4 for 22
for B, 6 for E1 and E3, and 3 for E2. In total, gdirs were used to calculate the raiie(d) and to create
the histogram shown in Figure 5.

In Figure 6, a histogram of the rathdo(A) calculated for all 87 datasets is shown whtiie a distance
between sphere centers fitted with the orthogondlthe directional error function to the same dzttas

Finally, for groups of experiments Al, B, C, and,DBe deviations(1, n) from ground truth as a

function of relative distance between sphere ce@@(1, n) are shown in Figures (7-10).

VIIl. DISCUSSION
Histogram in Figure 4 shows that nearly 70 % ofpalirs of sphere centers fitted to simulated dath w

the directional error have their separation distaidg less than corresponding errei(6p) (i.e.,
dp/o(dp) < 1). The spread of fitted sphere centers agreds thit Gaussian distribution and the directional
fitting passes the repeatability test for datapetsurbed by Gaussian noise. In contrast, datasgtsred in

the laboratory using 3D imaging systems and precess the same way yield the histogram shown in
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Figure 5. This time, the separation distabgés always greater thas(op). In fact, nearly 70 % of all pairs

are large outliers wittbp > 40(dp). It is obvious that repeatability test fails fuirese datasets. This

distinctive disagreement in the performance ofdinectional fitting applied to simulated and expegntal

datasets may be due to the fact that the repefyabgt assumes that multiple datasets were aadjwith a

scanner operating in a stable mode, i.e. instrusipatameters were not drifting or slowly oscilhafi This

assumption becomes especially important when tlog ef fitted sphere center is much smaller tham th

range erros(rj). The assumption could not be independently \etiin the performed experiments.
Figure 5 shows that sphere centers fitted to empmrial datasets with the orthogonal error funcéiso

fail the repeatability test. Only 10 % pairs of flieed centers have separation distabgéess thams(5o)

and large outliers constitute almost half of alles It is clear that the performance of the ohagfitting

is equally poor as the directional fitting for degts acquired in a laboratory. However, for sinadat

datasets the orthogonal fitting is noticeable d&ife from the directional fitting discussed presiyu

Figure 4 shows that only 20% of all pairs havegséearation distand® less thars(60), and 40 % of pairs

are outliers at a level 0680). In other words, the spread of sphere centaelfivith the orthogonal error

is at odds with the Gaussian distribution. Thus,dithogonal fitting procedure violates the repedita

test for multiple datasets perturbed by statiol@ayssian noise. A possibly different performancthef

directional and the orthogonal fitting was alreaagntioned in [12]. Th&; component of the directional

error function is in a form of a deviation betweba measured, i.e. noisy quantifyand the theoretical

quantitytj(Uq, ¢j, 6;) which does not depend explicitly onas in Equation (10). Therefore, vectgr

defined in Equation (8a) does not depend on thesured range;. This causes sensitivity vect8rgiven

by Equation (8a) to be practically independent; ébr typical datasets (aN measured ranges contribute to

the Hessian matrix in Equation (8b) but the inflicenf an individuat; is negligible for typical datasets

with largeN). Thej-th component of the orthogonal error function deeshave this property and vectgr

as well as the corresponding sensitivity ve§atepend om;. As a consequence, the covariance matrix of
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sphere center fitted with the orthogonal error fismcmay be prone to individual random variatiomghe
dataset. The orthogonal fitting of a sphere to eath@fa is an example of more general “non-explicit”
regression discussed in [12].

The difference in the performance of the orthogamad the directional fitting is not limited to the
repeatability issue only. Simulated data allow r@cti comparison of a fitted sphere center withgreund
truth. Deviationgip(n) shown in Figure 3 for nine datasets clearly desiraite that for most casgs is less
thano(up) for directional fitting and fitted sphere centare within the statistical error from the true tegn
For orthogonal fitting, in most cases the deviatigns a few times larger than corresponding es(@io).

In addition, the deviationg is usually a few times larger than the deviatign This indicates a systematic
bias in a location of sphere center introducedneyarthogonal fitting procedure.

For datasets acquired in a laboratory with the 2aging systems, a similar comparison between the
orthogonal and the directional fitting cannot beedecause the true location of sphere centett isnoovn
in the instrument coordinate system. Neverthelashjstogram of the ratid/a(A) shown in Figure 6
partially supports the conclusion drawn from sinedhadatasets: fitting a sphere to the same datatet
the orthogonal and the directional error functioeld/ two statistically different centers for modt the
processed datasets.

In Figures (7-10) the deviatial, n) of a relative distance from the correspondingugobtruthGT(1, n)
is shown. The relative distanB41, n) between thd-st andn-th fitted sphere center is calculated and
compared with the relative ground truth distaGd€1, n) for experiments Al, B, C, D2. If the deviations
from the ground truth were caused by a purely randoocess, there should be an equal number of
deviations with a positive and negative sign. Hogvethe data presented in Figures (7-10) cleadicate
the presence of systematic bias which increasésthat relative distand8T(1, n). All deviationse for
datasets acquired with the scanner Inl1 (subgroyhAde a positive sign, most deviations for dataset

acquired with In2 have a negative sign (groups @ @nsubgroup D2). Systematic deviations from gdoun
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truth are seen for both directional and orthogdittathg. After collecting datasets in experimentadd D,
but before B, the scanner In2 was sent to the naatwrier for regularly scheduled maintenance service
(discussed here results were not known at thedinservice). The regular pattern observed for two
different instruments belonging to two differeragdes reveals the presence of a systematic dféget t
increases with distance.

The error bars of individual points for the spadsgasets D2 shown in Figure 10 are much larger than

corresponding error bars for dense scans Al, Qs in Figure (7-9), as predicted by Equationsafig
(7).
VIIl. CONCLUSIONS

Fitting sphere to range data with the directiomedrefunction is a very sensitive and conveniest td
instrument performance. The described proceduablesto generate a single point in 3D space witargt
small error, much smaller than the experimentalresf individual range measurement. This is duth&
fact that modern 3D imaging systems can collectdhenfs of thousands of data points within a secodd a
the variances of fitted sphere centers scaleMsvith the number of data points. Thus, even small
irregularities in the instrument performance (fample, departure from stationary regime) could be
detected.

The comparative study of NLS sphere fitting to angta reveals that the choice of error function fo
minimization is important. Investigation of two fttions, the directional and the orthogonal functsmow
that the orthogonal fitting should not be usedeti the instrument performance. The results oldaioe
simulated datasets show that orthogonal fittindgdgisphere centers systematically different frotmua
sphere location. This, in turn, causes the sprééittexl centers to be a few times larger than waled
variances of those centers and a failure of repdiyaest. Directional fitting yields very diffent results:
sphere centers fitted to the same simulated datasetwvithin calculated variances from a grounthteund

repeatability test is passed.
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For datasets acquired in a laboratory, repeatalbdst fails for sphere centers fitted with theedtronal
error function: the actual spread of fitted centerf®ur or more times larger than calculated etrdhis
could happen if the instrument used for scannitr@duces a non-zero bias to the collected range dae
bias and associated spread are smaller than tinenment range error. Yet, they can both be detected

because variances of sphere centers fitted tatge Hatasets scale abl1/
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Table and Figure Captions

Table I) Summary of experimental settings (seeftaxdetails).

Fig. 1) Geometrical interpretation of two erronétions used in NLS sphere fitting?; is a measured
point andQ; is the corresponding theoretical point for thehogonal fitting. D; is the corresponding
theoretical point for the directional fitting whéne-of-sight coming trougl®P;: a) intersects with the sphere

surface; b) does not intersect.

Fig. 2) Four spheres used in laboratory experim@tfter [11]).

Fig. 3) Simulated datasets: comparison of thead®nsu(n) of the fitted sphere center from the ground

truth. The spheres were fitted using the orthogamal the directional error function. Each deviatign)

has its own error bar determined from Equation$, ((LP).

Fig. 4) Simulated datasets: two histograms fohagonal and direction fitting showing the normatize

separation distancess(o) of pairs of sphere centers.

Fig. 5) Lab experiments: two histograms for orihvog and direction fitting showing the normalized

separation distancess(o) of pairs of sphere centers.

Fig. 6) Lab experiments: histogram of the normedizeparation distancéss(A) between sphere centers

fitted with the orthogonal and directional erronétions to the same datasets.
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Fig. 7) Lab experiments, subgroup Al: deviati¢h n) of the relative distancB(1, n) between the first

and then-th fitted sphere center from the correspondingigdbtruth as a function oD(1, n): a) orthogonal

fitting; b) directional fitting. Error bars were @emined from Equations (11), (12).

Fig. 8) The same as in Figure 7 but for datasetgoup B: a) orthogonal fitting; b) directiondtihg.

Fig. 9) The same as in Figure 7 but for dataseggoup C. a) orthogonal fitting; b) directiondtifg.

Fig. 10) The same as in Figure 7 but for datasesubgroup D2: a) orthogonal fitting; b) directadn

fitting. Large error bars are consequence of loanaing density and small number of data paMts
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Group # |Min_D |Max_ D| Min# | Max # Sphere Instrument # | Tot# Alt Instr
Dist| [m] [m] | Points | Points [Type [R[m] [Model Err [mm]|Runs| Sets

Al 9 4.05 21.19 88B 1,199 D| 0.0508 In] 0.4 4 1B LT
A2 4 1.74 23.88 1,093 1,196 D| 0.05p8 In}l 0.1 P g LT
B 6 15.04 159.9 543 741 B| 0.07¢2 Ind 7 B 18 TY
C 7 9.99 99.9 1,096 1,297 B| 0.07p2 Inp 7 i3 1 TS
D1 11 10.8f 65.8 1,248 3,813 D] 0.0508 Inp 7 1 i LT
D2 11 10.8f 65.8 13 39 D 0.05¢08  InZ 7 | 11 LT
El 1 6.24 6.2p 177,336 187,469 A 0.1d15 InB 1( 4 I N/A
E2 1 6.24 6.2 45513 46,31 Al 0.1015 InB 10 3 K N/A
E3 1 6.24 6.2 19,942 20,03 A] 0.1015 InB 10 il q N/A
F 3 5.84 6.0 13B 245 C| 0.07¢2 Ind 10 | 3 N/A

Table I. of experimental settings (see text foads}.
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a)

b)

Figure 1. Geometrical interpretation of two ernandtions used in NLS sphere fittin; is a measured point aj is the
corresponding theoretical point for the orthogdittihg. D; is the corresponding theoretical point for theediional fitting
when line-of-sight coming troug®: a) intersects with the sphere surface; b) doemtersect.

Figure 2. Four spheres used in laboratory expetsngfier [11]).

m Ort
O Dir

Deviation p(n) [mm]

Dataset n

Figure 3. Simulated datasets: comparison of théatlemsp(n) of the fitted sphere center from the ground triihe
spheres were fitted using the orthogonal and trextidnal error function. Each deviatian) has its own error bar
determined from Equations (11), (12).
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Figure 4. Simulated datasets: two histograms ftirogronal and direction fitting showing the normatizeparation
distance®/c(8) of pairs of sphere centers.
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Figure 5. Lab experiments: two histograms for ogthtal and direction fitting showing the normalizeparation distances
d/o(8) of pairs of sphere centers.
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Figure 6. Lab experiments: histogram of the norpegliseparation distanc&&s(A) between sphere centers fitted with the
orthogonal and directional error functions to thee datasets.
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Figure 7. Lab experiments, subgroup Al: deviatidn n) of the relative distand®(1, n) between the first and thmeth
fitted sphere center from the corresponding graumth as a function oD(1, n): a) orthogonal fitting; b) directional

fitting. Error bars were determined from Equatioll), (12).
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Figure 8. The same as in Figure 7 but for datasegeoup B: a) orthogonal fitting; b) directiorféting.
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Figure 9. The same as in Figure 7 but for datasegjeoup C. a) orthogonal fitting; b) directiondtihg.
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Figure 10. The same as in Figure 7 but for datasestsbgroup D2: a) orthogonal fitting; b) directa fitting. Large error
bars are consequence of low scanning density aatl somber of data points.



