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ABSTRACT 
 
Three dimensional shape retrieval is a fairly new concept being studied all over the world. It is 
notable and essential because it can be applied to multiple disciplines, including: computer vision, 
CAD models, computer graphics, molecular biology, etc. For this project, 907 3D models from 
the Princeton Shape Benchmark (PSB) were rendered as depth images from 20 views. The 
models are categorized in 92 different classes, ranging from humans to houses. David Lowe’s 
Scale Invariant Feature Transform (SIFT) algorithm was used in this project to normalize the 
images, find ‘key points’ on each of the views, and create a specific feature vector to describe its 
respective key point.  
 
A comparison of these 907 objects was done by finding similarity between key points and their 
feature vectors on each of the objects’ corresponding views. After using the SIFT algorithm, the 
results were further filtered using Euclidean distance differences and spatial restrictions. By 
adding the spatial restrictions, it prevented the code from matching a hand to a foot; this is 
because the x and y coordinates of the key points would not be in the same general ‘spatial area’. 
Lastly, the overall similarity of two objects is calculated. The different objects were then ordered 
based on similarity and stored in a ‘distance matrix’. The accuracy of the code and the results 
were evaluated by comparing the retrieval results to the results yielded from twelve other shape 
descriptors (not SIFT) using the PSB base classification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ii



  iii

ACKNOWLEDGEMENTS 
 
The funding and support for this report was made possible by the Systems Integration for 
Manufacturing Applications (SIMA) and the Summer Undergraduate Research 
Fellowship (SURF) at the National Institute of Standards and Technology (NIST). My 
advisor, Afzal Godil, gave me his guidance and insight throughout the entire process of 
this research project, and I want to thank him for his consistent assistance and support. I 
would also like to thank my office mate, Helin Dutagaci, for being so patient and 
accommodating when helping me understand and adjust to the new project.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. INTRODUCTION 
 
1.1 Need for shape searching 
 
In the area of shape retrieval, the computer is expected to read in a query object, compare 
the query object to the computer’s database of objects, and retrieve the similar objects in 
decreasing order of similarity. In order for the retrieval system to work correctly, the 
internal programming of the shape retrieval algorithm must be accurate and efficient. The 
study of three dimensional shape retrieval is advancing, day to day, all over the world. 
Shape based retrieval of 3D data is included in disciplines such as computer vision, CAD 
images, object recognition, geometric modeling, computer-aided design and engineering, 
and chemistry. Specifically, the use of 3D models is increasing in manufacturing 
processes, especially injection molding and casting, where it is critical for the 
manufacturers to envision and comprehend the part accurately before spending a large 
amount of money building the tool [1]. In the field of computer vision, engineers are 
beginning to create products that use the computer vision algorithm to identify objects for 
the blind and handicapped. 
 
3D shape retrieval is very similar to text retrieval. A well known example of text retrieval 
is the Google webpage. When a user wants to find a website regarding a certain keyword, 
after typing in that keyword, Google searches through its database and compares the 
keyword with the database of online websites, journal articles, image descriptions, etc. 
However, 3D shapes are not as easily retrieved as text is.  
 
1.2 What is ‘shape’ and ‘similarity’? 
 
Three dimensional shape searching refers to ‘determining similarities among shapes from 
a large database of 3D shapes’ [1]. But, the definition of similar and of shape differs from 
person to person. Although there is no standard definition for shape, for the purpose of 
this paper, we will use Kendall’s definition of shape: ‘…all the geometrical information 
that remains when location, scale, and rotational effects (Euclidean transformations) are 
filtered out from an object’ [2]. To define the word ‘similar’, we will use the definition 
found in the Merriam-Webster Dictionary, ‘having characteristics in common: strictly 
comparable’ or ‘not differing in shape but only in size or position’. In this paper, 
similarity is measured in terms of a similarity metric, and will be quantified as a metric in 
database terms. Metrics has not only been used in 3D shape retrieval, but has been used 
and applied in databases to find similar documents, images, audio, and movies [1]. 
 
1.3 Outline of this paper 
 
In this paper, we will summarize which algorithms and databases were used in parallel 
with this project, as well as overview the process of writing an algorithm that performs 
efficient 3D shape retrieval using David Lowe’s Scale Invariant Feature Transform 
(SIFT) algorithm. 
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2. SCALE INVARIANT FEATURE TRANSFORM 
 
2.1 What is SIFT? 

 
Scale Invariant Feature Transform is an algorithm, published by David Lowe1 in 1999, to 
detect and describe local features in images. It is one of the most popular algorithms in 
the description and matching of 2D image features.  
 
2.2 What is a feature vector? 

 
When the original SIFT algorithm is applied to an object, multiple feature vectors (also 
known as shape descriptors) are created specific to different key points on that object. 
The goal of the shape descriptor is to uniquely characterize the shape of the object. 
Before a feature vector is formed, there are a series of steps SIFT performs to calculate 
the vector. These series of steps give the algorithm its name because it transforms image 
data into scale-invariant coordinates relative to local features. The following are the 
major stages of computations used to generate the set of image features [3]: 

 
1. Scale-space extreme detection: The first stage of computation searches over 

all scales and image locations. It is implemented efficiently by using a 
difference-of-Gaussian function to identify potential interest points that are 
invariant to scale and orientation. 

2. Key point localization: At each candidate location, a detailed model is fit to 
determine location and scale. Key points are selected based on measures of 
their stability. 

3. Orientation assignment: One or more orientations are assigned to each 
keypoint location based on local image gradient directions. All future 
operations are performed on image data that have been transformed relative to 
the assigned orientation, scale, and location for each feature, thereby 
providing invariance to these transformations. 

4. Key point descriptor: The local image gradients are measured at the selected 
scale in the region around each keypoint. These are transformed into a 
representation that allows for significant levels of local shape distortion and 
change in illumination.  

 
A pro to this approach is the ability of SIFT to generate large numbers of features that 
densely cover the image over the full range of scales and locations. For a typical image of 
size 500x500 pixels, this scale invariant approach will produce around 2000 stable 
features (varies with image content and various parameters) [3].  
 
By using the SIFT algorithm, the result will be two matrices; the first matrix stores 
location of the feature vector (includes x, y, and z coordinates), and the second matrix 
stores the actual feature vector. 

                                                 
1 David Lowe is a Canadian computer scientist and a professor in the computer science department at the 
University of British Columbia. Lowe is a world renowned researcher in computer vision and is the 
patented author of the scale invariant feature transform algorithm.  
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2.3 SIFT matching algorithm 
 
For this project, we not only used SIFT to create the various feature vectors for each 
image, we also used the SIFT matching algorithm. The matching algorithm matches 
images by individually comparing features from the query image to the features of all the 
images stored in a database. It finds matching features using the Euclidean distance of 
their feature vectors. The smaller the distance, the more similar the two images are.  
 
The matching algorithm will yield two matrices: the matches and the distance between 
the matches. When finding the features on each image, SIFT numbers each feature 
vector. After using the matching algorithm, the results will look similar to  
Figure 1: 
 
 

Matches 0 4 5 23 12  45 7 1 9 

 0 8 4 12 4 5 1 6 21 

 
Scores 0         3434 4223 12342 23288 93458 23223 42358 24350

 
 
Fig 1: Example of the matches and scores matrices resulted from using the vl_ubcmatch function 
 
 
In the ‘matches’ matrix, the number of columns represents the number of ‘matches’ the 
matching algorithm found between feature vectors of two images. The first row stores the 
feature vector number of the first image, and the second row is the corresponding 
‘matched’ feature vector number from the second image. So, in this example, it shows 
that feature vector ‘4’ (also known as keypoint number ‘4’) from the first image matched 
with feature vector ‘8’ from the second image, and their Euclidean distance is 3434. 
Figure 2 shows an example of this matching. Note that the drawing is not drawn to scale.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: visual image of the matching algorithm and the numbered key points. Drawing not drawn to 
scale. 
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3. PRINCETON SHAPE BENCHMARK 
 
3.1 What is the Princeton Shape Benchmark? 
 
The Princeton Shape Benchmark (PSB) is a publically available database of polygonal 
models collected from the World Wide Web. It is a suite of tools for comparing shape 
matching and classification algorithms. There have been many algorithms written 
specifically for 3D shape retrieval. The PSB provides a way to compare and evaluate the 
algorithms. The main purpose of the PSB is to promote the use of standardized data sets 
and evaluation methods for research in matching, classification, clustering, and 
recognition of 3D models. 
 
Before the PSB was created, there were no standard benchmarks available for matching 
3D polygonal models representing a wide variety of objects. Recently, many new 
benchmarks have been made available in addition to the PSB benchmark created by 
faculty and students of Princeton University. Benchmarks from the University of 
Konstanz, Utrecht University, and Purdue University have also been open to the public 
for use [4]. The PSB database contains 1,814 models downloaded from the web, 
subdivided into a training set and a test set. Each set has 907 models each, each evenly 
classified into 90 and 92 classes respectively. The creators of the benchmark collected 
over 20,000 models from more than 2,000 websites, went through each of the 20,000 
models individually, and hand picked the 1,814 models that are included in the final 
benchmark. 
 
The Princeton Shape Benchmark not only provides the test set of models for 
standardizing the evaluation of 3D shape retrieval algorithms, they also provide several 
evaluation tools. The evaluation tools are as followed [4]: 
  

• Best Matches: a web page for each model displaying images of its best matches 
in rank order. The associated rank and distance value appears below each image, 
and the models in the query model’s class are highlighted with a thickened frame. 

• Precision-recall plot: a plot describing the relationship between precision and 
recall in a ranked list of matches. For each query model in class C and any 
number K of top matches, “recall” (the x axis) represents the ratio of models in 
class C returned within the top K matches, while “precision” (the y axis) indicates 
the ratio of the top K matches that are members of class C. A perfect retrieval 
results in a straight horizontal line at the top of the graph, precision = 1.0. 

• Distance image: an image of the distance matrix where the lightness of each 
pixel (i , j) is proportional to the magnitude of the distance between models i and 
j. The smaller the magnitude, the more similar the two objects are. 

• Tier image: an image visualizing nearest neighbor, first tier, and second tier 
matches. This image is often more useful than the distance image because the best 
matches are clearly shown for every model, regardless of the magnitude of their 
distance values.  
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• Nearest Neighbor (NN): the percentage of the closest matches that belong to the 
same class as the query. An ideal score would be 100 %, and higher scores 
represent better results. 

• First-tier and Second-tier (FT and ST): the percentage of models in the query’s 
class that appear within the top K matches, where K depends on the size of the 
query’s class. For a class with C members, 1−= CK for the first tier, and 

12 −∗= CK for the second tier. These statistics are similar to the “Bulls Eye 
Percentage Score”. An ideal matching result gives score of 100 %, and higher 
values represent better results.  

• E-measure (E-M):  a composite measure o the precision and recall for a fixed 
number of retrieved results. In general, a user of a search engine is more 
interested in the first page of query results than in later pages. This measure 
considers only the first 32 retrieved models for every query and calculates the 
precision and recall over those results. The maximum score is 1.0, higher values 
indicate better results.  

• Discounted Cumulative Gain (DCG):  a statistic that weights correct results 
near the front of the list more than correct results later in the ranked list under the 
assumption that a user is less likely to consider elements near the end of the list. 
Higher numbers are better.  

 
3.2 How the PSB was used in this project 
 
Programmers, from all over the world, use different shape descriptors in their 3D shape 
retrieval algorithm and use the Princeton Shape Benchmark to evaluate and assess their 
3D shape retrieval algorithm. By using the PSB in this project, it gives us the opportunity 
to compare our results to the results of other algorithms using different shape descriptors. 
Some other shape descriptors, not including SIFT, are [4]:  
 

• D2 Shape Distribution (D2) 
• Extended Gaussian Image (EGI) 
• Complex Extended Gaussian Image (CEGI) 
• Shape Histogram (SHELLS) 
• Shape Histogram (SECTORS) 
• Shape Histogram (SECSHEL) 
• Voxel 
• Spherical Extent Function (EXT) 
• Radialized Spherical Extent Function (REXT) 
• Gaussian Euclidean Distance Transform (GEDT) 
• Spherical Harmonic Descriptor (SHD) 
• Light Field Descriptor (LFD) 

 
In this project specifically, we mainly evaluated our algorithm based on the following 
tools: nearest neighbor, first-tier, second-tier, E-measure, and DCG. We compared our 
results (NN, FT, ST, E-M, and DGC) with the results of other algorithms.  
 

  5



4. SIMILARITY DISTANCE 
 
4.1 What is similarity distance? 
 
As mentioned above in section 2, the Euclidean distance is used in SIFT to compute the 
difference between two feature vectors. However, finding the distance between two 
feature vectors does not automatically transfer to how similar the two objects are. 
Because every image has several feature vectors, 3D shape retrieval algorithms need to 
be able to compare all the matched feature vectors of an image and create an overall 
similarity distance for two objects.  
 
For this project, each object had 20 views. In our algorithm, when trying to match two 
objects, we had to compare all 20 corresponding views, find the matching feature vectors 
for each view, and calculate an overall similarity distance for the two objects; the smaller 
the similarity distance, the more similar the objects are. 
 
4.2 How the similarity distance was computed using SIFT matching 
 
Throughout the process of the project, many different drafts of the similarity distance 
equation were created. The distance equation began as a fairly simple equation; the 
similarity distance was just the inverse of the number of matches (using vl_ubcmatch) 
between image 1 and image 2 over the average number of key points on image 1 and 2.  
 
 For 20 views, (x) being the view number: 
  S = S + # of matches on view (x) between image 1 and image 2  
       average of key points on image 1 and image 2, view (x) 
  

Finally, at the end of the algorithm: 

  
S

D 1
=  

 
However, after testing this equation on several different images, we discovered that the 
vl_ubcmatch code does not give the same results when we switch the order of the images. 
When using the vl_ubcmatch function, the format of the code looks like this:  
 

[matches, scores] = vl_ubcmatch(image1, image2); 
 
Left of the equal sign are the two matrices that will store the matches as well as the 
Euclidean distance of the matches between image1 and image2. However, the order of 
the images on the right side of the equation is crucial; by switching the format to:  
 

[matches, scores] = vl_ubcmatch(image2, image1); 
 
it will change the results of the matches and scores. We decided to add in an additional 
equation to our algorithm to make sure we included all the matches from the two images; 
the final matches between two images would resulted from comparing image 2 to image 
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1, as well as the matches resulted from comparing image 1 to image 2. So, the similarity 
distance equation evolved into: 
 
 For 20 views, (x) being the view number: 
  S = S + # of matches on view (x) between image 1 and image 2  
   average of key points on image 1 and image 2, view (x) 
 
  P = P + # of matches on view (x) between image 2 and image 1  
   average of key points on image 1 and image 2, view (x) 
 
 Finally, at the end of the algorithm:   

  
⎟
⎠
⎞

⎜
⎝
⎛ +

=

2

1
PS

D  

 
4.3 How the similarity distance compared to other results 
 
Before any filters were put on the matches yielded from the SIFT matching algorithm, 

⎟
⎠
⎞

⎜
⎝
⎛ +

=

2

1
PS

D  was used when testing our algorithm using the PSB base classification.  

 
By only using the above equation in our algorithm, the results are close to the results of 
the D2 shape descriptor. Figure 3 shows where our results rank with the other 12 shape 
descriptors using the PSB base classification: 
 
 
Shape 
Descriptor 

Discrimination 
Nearest 

Neighbor 
First 
Tier 

Second 
Tier 

E- 
Measure 

DCG        
( % ) 

LFD 65.7% 38.0% 48.7% 28.0% 64.3 
REXT 60.2% 32.7% 43.2% 25.4% 60.1 
SHD 55.6% 30.9% 41.1% 24.1% 58.4 
GEDT 60.3% 31.3% 40.7% 23.7% 58.4 
EXT 54.9% 28.6% 37.9% 21.9% 56.2 
SECSHEL 54.6% 26.7% 35.0% 20.9% 54.5 
VOXEL 54.0% 26.7% 35.3% 20.7% 54.3 
SECTORS 50.4% 24.9% 33.4% 19.8% 52.9 
CEGI 42.0% 21.1% 28.7% 17.0% 47.9 
EGI 37.7% 19.7% 27.7% 16.5% 47.2 
SIFT (our 
algorithm) 

31.6% 19.5% 28.8% 16.9% 48.4 

D2 31.1% 15.8% 23.5% 13.9% 43.4 
SHELLS 22.7% 11.1% 17.3% 10.2% 38.6 
Fig 3: Comparing our results with the results of the other 12 shape descriptors using the PSB base 
classification 
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The algorithms used in our results table (Figure 3) are all similar in that they all include 
three main steps. The differences between the algorithms lie mainly in the details of their 
shape descriptors. The three main steps are as follows: 
 

1. Normalization: normalize the models for differences in scale and possibly 
translation and rotation 

2. Shape Descriptor: generates a shape descriptor for each model 
3. Distance: computes the distance between every pair of shape descriptors 

 
 
5. FILTERING SIFT MATCHES USING EUCLIDEAN DISTANCE 
 
5.1 Irrelevant Comparison using the SIFT matching algorithm 

 
Because our results were not as high as expected, we started adding in filters to the SIFT 
match results. When using the SIFT matching algorithm, the algorithm goes through each 
feature vector on image 1 and compares them to all the feature vectors, one by one, on 
image 2. When graphing the images and their matches, we saw that although the 
comparing is an extremely thorough process, it sometimes makes irrelevant comparisons. 
For example, when matching two images of a plane, the SIFT matching algorithm might 
mistakenly match the head of the plane in image 1 to the tail of the plane in image 2. 
Figure 4 shows an example of a perfect match as well as an example of a poor match. 
 
 
A) 
 
 
 
 
 
 
 
 
 
 
 
B)  
 
 
 
 

Fig 4.  
A) An example of a 
perfect match  
B) An example of an 
irrelevant comparison 
using the SIFT 
matching algorithm 
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After we received results from our first distance computation (section 4.2), we tried to 
filter out the results the SIFT matching algorithm returned. The first method we tried 
included sorting through the Euclidean distances stored in the ‘scores’ matrix from the 
SIFT matching function. We knew, from researching Euclidean distances, that the 
smaller the distance, the more similar the two feature vectors are. In distance 
measurements, there is a threshold value that yields the maximum and best results. We 
decided to find that threshold value through a long guess and check process.  
 
5.2 Finding the Threshold Value 
 
When we first started filtering the matches using the Euclidean distance, we took an 
educated guess for what the threshold value was. We first considered having the 
threshold be 10% of the size of the image. However, the units of the images and the 
Euclidean distances are not the same, so it would be hard to convert and compare the two 
sizes.  
 
We then looked at a few ‘scores’ matrices, to see what the Euclidean distances were for 
matches that were very similar and what the distances were for matches that were very 
dissimilar. We observed that most of the matches that were irrelevant had distances over 
30000; most of the irrelevant matches had at least 4 significant figures. From this 
observation, we made our first threshold value 30000. We decided that if the distance 
stored in the ‘scores’ matrix is over the threshold value, we would not count that as a 
‘match’.  
 
This method is different from our first similarity distance computation because before, 
we included all the matches in the calculations (refer to section 4.2), relevant and 
irrelevant. Now, instead of having the numerator be the number of all the matches, it will 
now be the modified number of matches. Every time a Euclidean distance in the ‘scores’ 
matrix is over the thresh value, the number of matches will decrease by one. The pseudo-
code is as follows: 

 
Thresh_value = 30000; 
--------------------------------------------- 
 
[matches, scores] = vl_ubcmatch (image 1, image 2); 
 
Number of matches = original number of matches (without filtering); 
 
Have a for-loop that goes through all the values in the scores matrix: 
 If (value > thresh_value) 
  Number_of_matches = Number_of_matches – 1; 
 End 
 
S = S + Number_of_matches [# of matches (after filter) between image 1 & 2]; 
  Average number of key points on image 1 and image 2 

 

  9



----------------------------------------------- 
 

[matches2, scores2] = vl_ubcmatch (image 2, image 1); 
 
Number_of_matches2 = original number of matches (without filtering); 
 
Have a for-loop that goes through all the values in the scores2 matrix: 
 If (value > thresh_value) 
  Number_of_matches2 = Number_of_matches2 – 1; 
 End 
 
P = P + Number_of_matches2 [# of matches (after filter) btwn image 1 & 2]; 
  Average number of key points on image 1 and image 2 

 
 ----------------------------------------------- 
 

After comparing all 20 views of two images: 

  
⎟
⎠
⎞

⎜
⎝
⎛ +

=

2

1
PS

D  

 
After implementing the filter using the Euclidean distances, with the threshold value 
being 30000, our results increased only minimally. However, after further narrowing 
down the threshold value, we concluded that the threshold value needs to be around 4000 
to yield the best results. With the threshold value now being 4000, our results ranked just 
above the results of the Complex Extended Gaussian image (CEGI) shape descriptors 
(refer back to figure 3 in section 4.3). Yet, we still wanted our results to improve, so we 
began researching and reading about other algorithms that also used SIFT and some kind 
of additional filter.  

 
 

6. OTHER METHODS USING SIFT 
 
Several articles were read during the research portion of this project. There were two 
SIFT methods, in particular, that had results better than the LFD results. Those two 
methods were outlined in an essay titled ‘Salient Local Visual Features for Shape-Based 
3D Model Retrieval’ [5]. The two methods are the Bag-Of-Features SIFT and the 
Individual Match SIFT.  
 
6.1 Bag-Of-Features SIFT and Individual Match SIFT 
 
The Bag-Of-Features SIFT (BF-SIFT) algorithm and the Individual Match SIFT (IM-
SIFT) algorithm are fairly similar. Both compares 3D models using David Lowe’s 
original SIFT algorithm, but both add in additional step to the SIFT algorithm to filter the 
results to achieve more accurate matches. They differ in their ways to compute the 
similarity distance between two sets of visual features.  
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The BF-SIFT uses the ‘bag of words’ approach to compute the similarity distance. The 
algorithm renders range images of the models from several viewpoints and uses SIFT to 
find local features on each of the viewpoints. It then converts those local features into a 
‘visual word’ using a ‘visual codebook’. The quantized local features are then 
accumulated into a histogram, storing the frequencies of each of each ‘visual word’. The 
result of using BF-SIFT is a global feature vector specific to the image, generated from 
the histogram. Kullback-Leibler divergence (KLD) is then used to calculate the 
dissimilarity among a pair of feature vectors.  
 
The IM-SIFT algorithm is aimed at retrieving rigid models using local features. The IM-
SIFT performs full pose normalization, including scale, position, and rotation. By having 
the entire image normalized and leveraging the positions of the features, the IM-SIFT 
algorithm tries to avoid irrelevant comparison of local features. The algorithm only 
compares features extracted from corresponding areas in the pose-normalized coordinate 
frame. Also, to improve the performance, the IM-SIFT compute two independent 
distances using two pose normalization methods, mass-PCA and normal-PCA [5]. At the 
last stage of the algorithm, it only takes the minimum of the two distances (the smaller 
the distance, the more similar) as the similarity distance. Figure 5 is a picture of how IM-
SIFT compares the features. To learn more about the BF-SIFT or IM-SIFT method, refer 
to the article mentioned above. 

 
Fig 5. A feature in the model to the left is restricted to its proximity in the model to the right in the pose-
normalized coordinate space. The correspondence assumes successful pose normalization. 
 
 
7. FILTERING SIFT MATCHES USING SPATIAL RESTRICTIONS 
 
7.1 Spatial Restriction Filtering  
 
The original SIFT matching algorithm, as seen in section 5, does not account for spatial 
locations when matching feature vectors. Without spatial restrictions, the matching 
algorithm will make irrelevant matches. Although we cannot completely prevent the 
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program from making irrelevant matches, spatial restrictions will help filter out the 
significantly extraneous matches. 
 
After reading about the other methods that used SIFT, the ideas used in the IM-SIFT 
technique seemed the easiest to modify and replicate. The algorithm we were writing 
already used the original SIFT algorithm to create local feature descriptors and matched 
the different images on corresponding viewpoints. Since the algorithm has all the feature 
vectors and their matches stored in memory, instead of rewriting the entire code to only 
match feature vectors in corresponding areas, we will use the ‘matches’ matrix and filter 
out the results that are too far, spatially, from each other.  
 
7.2 How far is spatially ‘too far’? 
 
In order for this filtering to work accurately, we had to determine how large our ‘spatial 
boundaries’ will be. Just like how we analyzed the Euclidean distances in the ‘scores’ 
matrix, as explained in section 5, we now analyzed the x and y coordinates of each of the 
feature vectors. After studying the coordinates of the descriptors, we decided to make the 
‘area sections’ +/- 15 units away, for the x and y coordinates, from the feature vector. 
This number was chosen through a process of guess and check after the first educated 
guess, after studying the coordinate of the descriptors. After the first estimated number, a 
series of distances were tested to see which distance yielded the best results. After several 
tries, the distance is chosen as 15 for x and y coordinates.  
 
So what does this number, 15, mean when the algorithm is filtering the results? This 
numbers means that if a feature descriptor is at coordinate (63.9808, 150.9524), then they 
will only consider feature descriptors between (48.9808, 135.9524) and (78.9808, 
155.9524) a match. We are able to do this simply because all 3D models were normalized 
in scale, position, translation, and rotation in the beginning of the algorithm. If the models 
were not normalized, this method would not work. 
 
This process of filtering in our program is very similar to the IM-SIFT algorithm. IM-
SIFT sets the spatial boundaries before the matching algorithm is run. In our algorithm, 
since the matching has already been completed and the matches are already been stored 
in memory, we just applied the spatial filter last. 
 
7.3 How spatial filtering affects the similarity distance computation 
  
By adding in spatial restriction filtering to our algorithm, it affected the similarity 
distance computation just like how the Euclidean distance filter did. For the spatial 
filtering, there was an if-statement in the program:  
 
 In addition to the ‘S’ and ‘P’ variable calculations, we add in a ‘Q’ variable. 
 

---------------------------------------- 
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  Num_of_matches3 = number of original matches using SIFT matching algorithm; 

 
 If (the ‘matched’ feature vector is not located inside the spatial boundaries) 
  Num_of_matches3 = num_of_matches3 – 1; 
 End 
 
 Q = Q + Num_of_matches3 [# of matches (after filtering) between image 1 & 2]; 
    Average of key points on image 1 and image 2 
 ---------------------------------------- 
 At the end: 
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8. RESULTS 
 
8.1 Our Results compared to the results yielded from other shape descriptors 
 
When we used the Princeton Shape Benchmark to evaluate our final algorithm, our 
results increased drastically after applying the two filters, the Euclidean distance filter 
and the spatial restriction filter. Before adding in the spatial restrictions, the results 
yielded near the CEGI results. However, by including a spatial boundary to our matching 
algorithm, our results now yielded above the EXT results. A visual comparison of the 
results can be seen in Figure 6.  
 
 
Shape 
Descriptor 

Discrimination 
Nearest 

Neighbor 
First 
Tier 

Second 
Tier 

E- 
Measure 

DCG 

LFD 65.7% 38.0% 48.7% 28.0% 64.3% 
REXT 60.2% 32.7% 43.2% 25.4% 60.1% 
SHD 55.6% 30.9% 41.1% 24.1% 58.4% 
GEDT 60.3% 31.3% 40.7% 23.7% 58.4% 
SIFT (Our 
algorithm) 

51.8% 30.7% 40.9% 24.4% 57.2% 

EXT 54.9% 28.6% 37.9% 21.9% 56.2% 
SECSHEL 54.6% 26.7% 35.0% 20.9% 54.5% 
VOXEL 54.0% 26.7% 35.3% 20.7% 54.3% 
SECTORS 50.4% 24.9% 33.4% 19.8% 52.9% 
CEGI 42.0% 21.1% 28.7% 17.0% 47.9% 
EGI 37.7% 19.7% 27.7% 16.5% 47.2% 
D2 31.1% 15.8% 23.5% 13.9% 43.4% 
SHELLS 22.7% 11.1% 17.3% 10.2% 38.6% 
Fig 6: Comparing our results, after adding in the Euclidean distance filter and the spatial restrictions, with 
the results of the other 12 shape descriptors using the PSB base classification 
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Although the nearest neighbor from my algorithm falls fairly low on the table (between 
SECTORS and VOXEL), the rest of the evaluation results are comparably higher than 
most of the results yielded from other shape descriptors. As stated in section 4, by using 
only the original SIFT algorithm and our similarity distance computation equation, the 
results yield around the results of the D2 shape descriptor. By adding in spatial filters, it 
doubles the percentages in the results.   
 
The precision and recall graph, for the 13 shape descriptors, is shown in figure 7. As seen 
in the graph, SIFT graph falls near the EXT & GEDT coordinates.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 7. Precision-recall curves computed for 12 shape descriptors for tests with the PSB base classification. 
The results of the SIFT algorithm are represented by the dots, not connected by a line (not drawn to scale). 
 
The precision and recall coordinates for the SIFT algorithm is in the table below, figure 
8.  
 

Fig 8. Table of the recall and precision coordinates for the SIFT algorithm. 
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9. CONCLUDING REMARKS 
 
Overall, using David Lowe’s Scale Invariant Feature Transform algorithm, to compare 
3D shape models, yields acceptably good results. It can be concluded that using SIFT in 
parallel with further filtering and implementing spatial restrictions can produce results 
better than most other shape descriptors. Although the results from the SIFT algorithm 
did not achieve the highest results, it performed relatively well and ranked high among 
the results yielded from using other shape descriptors.  
 
Despite the many advantages of the SIFT algorithm, there are still some things that can 
be improved in the algorithm. For the next algorithm, instead of setting the spatial 
restrictions after the comparison, it would be better to write the algorithm similar to the 
IM-SIFT algorithm. Although setting the restrictions after the matching saved energy 
from rewriting the matching algorithm, it did not reduce the cost of feature comparison. 
By setting the boundaries before the matching process, it would have saved time and 
memory. Instead of comparing all of the feature vectors, the program would only 
compare those shape descriptors inside the spatial boundaries.  
 
Another part of the code that could be improved would be the similarity distance 
equation. The equation used in the SIFT algorithm was just the simple average of the 
variables ‘S’, ‘P’, and ‘Q’. More time could be spent on finding a better distance equation 
so that the program could yield better results. Instead of finding the percentage of 
‘correct’ matches (what the variables ‘S’, ‘P’, and ‘Q’ represented in this SIFT 
algorithm), the similarity distance could be, for example, related to the Euclidean 
distance of the shape descriptors. 
 
In conclusion, there is one last limitation to be mentioned about the SIFT 3D shape 
retrieval algorithm. This algorithm assumes that the objects being compared are 
normalized in scale, position, translation and rotation. However, if this algorithm were 
applied to computer vision or geometric modeling, the objects used then may not be 
normalized, and thus the results of this algorithm would be skewed.  
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