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Abstract

Experimental data have been gathered by applying i8iaging systems, such as
LIDAR/LADAR instruments, to spherical objects. $hieport provides a compilation of the
statistical and analytical procedures to be usedafo analysis of these data to be reported
separately. This analysis will be based on twoedgiit nonlinear least-squares approaches to
modeling objects, directional and orthogonal fgtinit is proposed to estimate variances of fitted
sphere parameters directly from their sensitiviteeslata perturbations rather than to follow the
common prescription of linearization. The senditdg are determined by implicit differentiation
of error gradients. Detailed descriptions of tireational and orthogonal fitting methods are set
forth as applied to spheres in a scanning envirorme particular, the report furnishes closed-
form expressions for those derivatives of the respe error functions which are needed for the
calculation of the parameter sensitivities withpexs to the full set of control variables.
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3D imaging systems, directional fitting, least sgsa LIDAR/LADAR, orthogonal distance
regression, parameter variance, parameter sehsityphere, statistical modeling

1 Introduction

A frequent task is to determine the shape chaiatitsy, size, location and pose of physical
objects for purposes of identification, locatioegistration, and calibration of coordinate frames.
Such tasks are needed, among others, for qualityatan manufacturing, determination of “as-

built” structures, construction automation and si@nitoring, e.g., [1, 2].

A common approach to these tasks is to acquire @ddmnates of data points considered to lie
on the surface of targeted objects. 3D Imagingte®ys, which include “line-of-sight”
LIDAR/LADAR devices, are increasingly used for thpsirpose. The latter instruments, in
particular, are capable of fast generation of lang@unts of data points or “point clouds”. They
scan an object by emitting laser pulses and prowgssturn signals in order to determine the
distance traveled and thus determine the distanceange” between the instrument and the
point of impact -- presumably -- on the object.eTdevice keeps track of the “bearings” such as
azimuth and elevation angle at which each particsignal was emitted. This process of data
acquisition suggested the use in this work of pepdrerical (“angle-angle-range”) coordinate



systems for representing data points. Also, transhtion to Cartesian coordinates would
introduce correlation.

Once the point cloud corresponding to an objectess determined, a computational process is
required to extract the desired features of thealdyom this data set. In typical applications, a
mathematical “model” is specified, based on fearearacteristic for a class of objects. The
model is “parameterized”, that is, it is definedwihe help of parameters that determine these
characteristics. Choosing values for these parametd result in the mathematical description
of a surface to represent a “virtual object”, whiohy then be compared to an image of the real
object as provided by the point cloud. By adjugtthe model parameters so that the virtual
object moves into a location that optimizes itsxpgroty to the object image, the desired
characteristics such as location, pose, size amgbestof the object are found within the
coordinate frame of the point cloud. This permiistermining the geometric relationship
between that object and other objects or featurat dre also represented in the point cloud
frame. If this frame registers to an establishealigd-truth frame, then absolute measurements
of location, pose and shape can be extracted.

Approaches to object modeling may employ the pawétferative Closest Point (ICP)” method

[3], or the “Hough Transform”, e.qg. [4]. Presenmn focuses on the extensively used “Fitting”
paradigm, which is based on minimizing a speci@ear function or on maximizing likelihood.

The reader may want to consult texts on “Statisadels” such as [5-7].

Of particular interest are two least-squares baggutoaches, “orthogonal” and “directional”
fitting. Orthogonal fitting, also referred to a®rthogonal Distance Regression (ODR)” [8, 9], or
“Geometric Fitting” [10], is a commonly used anddely commercialized method. Many
publications [10-19] discuss its application to fittng of spheres or circles. The alternate
approach, “directional fitting”, has been proposed discussed [20, 21] for data acquired by
scanning from a single instrument position. Hémne,orthogonal (closest Euclidean) distance to
the virtual object has been replaced by the digtam¢he direction of the scan by which the data
point had been acquired. While computational aspgeminate much of the field, our interest
here is in statistical and metrological issues.

At the core of this report is an approach to deteimg the “sensitivities” of fitted model
parameters, in general, and for spherical modelparticular. The report is also preparatory to
an experimental application of different fitting theds and their statistical evaluation [22].
Given specified variances for range measurememesdérivation of variances for fitted sphere
centers is a major interest. In Chapter 2, theegatiitting paradigm, based on the concept of an
error function, is described along with the genearaiputational formalism for calculating
parameter sensitivities. These sensitivities wal Bised to estimate parameter variances. In
dealing with spherical models, this approach isnetessity more general than the common
nonlinear least squares approach based on lindanzand homoscedacity. A comparative
discussion of these statistical procedures wilptmrided in a separate report. Chapters 3 and 4
are dedicated, respectively, to orthogonal andctlioeal fitting of spheres in a scanning
environment. Closed forms of the derivatives, ndefde calculating sensitivities, are reported.
The Appendix will feature detailed derivations dfetreported formulas so as to enable
verification.



2 The Fitting Paradigm

2.1 Error Function

Once a parameterized model has been selectedhatusal to ask for parameters that minimize
the extent to which the point cloud deviates frdma tesulting virtual object. The hope is that
such an, at least locally, optimal virtual objecd\pdes, within the coordinate frame of the data

points, an accurate representation of the actugdcbb Fitting a 3D model of a sphere of a
Cartesian centeC =[X,Y, Z] and known radiusR may be accomplished by specifying an

“error function”
(2.1.1) E=E(X,Y,Z2,d,¢,.6,4d,,¢,.6,,..,.d,,¢..6,)

to be minimized by varying the model parameteds,Y,Z, while the variables
d,¢,8,i=1..n, are coordinates of poimB:[di @, 49i] to be measured. The following

discussions, however, should not be construed daimieg only to this special scenario, but
rather as representative of full generality. Intipalar, the data may also be Cartesian, or not be
coordinates, at all. The choice of the error fimrctshould be such that it produces only
nonnegative values. A minimum of zero shouldcatk a perfect fit. An error functiod thus
furnishes a model description.

Given an actual data set of measurements
PO = [di(O) 2© Bi(O)]’ i=1..n,
the parameter values
X=XO y=y©® 7z=70
are thus determined by minimizing the expression
E=E(X.,Y,Z,d”,4°.6° d”, ¢, 6°....d.°.4.6)
for the variablesX, Y, Z, given the coordinate values of the data poRts
A common approach to constructing error functian®iassign an individual error
g=e(X,Y,Z,d,4,.6 )

to each data poin®, = [di @ Q], and to minimize the sum of squares



(2.1.2) E=)¢.

i=1

The orthogonal and directional fitting methods lbased on the Nonlinear Least Squares (NLS)
concept [17, 19]. In both methods, each data pBing assigned a “theoretical point” or “model

point” P located on the proposed virtual object. Thabtegcal point is seen as the desired

I
“correct” point, and the Euclidean distance betwgentwo points is considered the individual
error

¢ =[R -

of the data point with respect to the current lmcatind shape specification of the virtual object.

In orthogonal fitting, the theoretical poiﬂﬁ is chosen as a point that lies on the virtual cbje
and is closest to the data poif? in terms of Euclidean distance. In the 3D imaging
environment, however, the data poft is considered to lie on a particular “scan ray™lme-
of-sight”, which emanates from the instrument posit

In directional fitting, if the scan ray intersedtee virtual object, the intersection closest to the
instrument is thus chosen as the theoretical pBinfor the data poin®, . What happens if the

scan ray of a data poirf; does not intersect the current virtual object™itjht be tempting to
reject such an occurrence as unrealistic as th& plmud was generated from the real object. It
should be kept in mind, however, that during thénfy process, the virtual object will, in
general, not match the actual object. Indeedpbskang that match is the purpose of the fitting
process. It is, therefore, necessary to extenetoe definition to those data points whose scan
rays miss the virtual object. The following gewesrinciple for a continuous extension has been

proposed in [21]. Here, the theoretical poﬁ}ltis chosen as a point on the virtual object that is
closest to the scan ray in terms of Euclidean dcsa

2.2 Sensitivity

As we return to the general error functién(2.1.1), we examine a major aspect of analyzieg th
results of a fitting procedure. It concerns therfstivities” of the resulting parameters, namely,
their marginal rates of change caused by pertwbsinf the data coordinates. Such sensitivities
not only provide key information about a fittingopess, they also play a role in the estimation of
variances and covariances of the fitted paramedsraiill be discussed in the subsequent section.

With each set of stipulated data valugs ¢, 8,1,...,n, the error function E associates a set

of minimizing parameters. We may thus considesehminimizing parameters as functions of
these data variables



(2.2.1) X(d,,4,,6,,...d..4..0, )

in a suitable neighborhood of the actually measwatlies d©,¢®,89,i=1,.,n. By

definition,
X(O) X(d(o) ¢1(0) 9(0) d(O) ¢(0) 9(0) )

Y(O) - Y(d (0) ¢(0) 3(0) 'd(O) ¢(0) 9(0) )
Z(O) - Z(d (0 ¢(0) 3(0) 'd(O) ¢(O),9(O) )
are the desired results of the fitfimgcess.

In what follows, we will assume that the error ftiao E satisfies all necessary differentiability
conditions. We are particularly interested in teeihtives

OX OY 9z OX 9Y o0z X OY o0z _,

A g A ) A ) ) N T | y "'ln)
od, od, od, 04 0¢, 0¢ 06 06 06
because their values, fat = d®,¢. =9 ,8 =69, i=1,..,n
(2.2.2)
a_x‘(m _ X 4 © .69, a_x‘(O) _ X 4o oo a_x‘(m _ X 4@ ,...q9)
ad. ¢ on 26
a_Y‘(O):a_Y 4@ ... 0, GY‘(O) AN aY‘(O) N (@@ g9
od, -+’ gt 00 o
0Z 0Z 0Z
© = 4o . oy %40 - 4o . g0y 940 - 4o . go
ad\ o (@ n)m\ = ag G n)aa\ = 5g @76

represent the respective sensitivities of the patara X @, Y@, 7z©@ to perturbations of the
data valuesd®,$®,09,i=1,.,n. Implicit differentiation will now be used to dee

expressions for the sensitivities (2.2.2) from élxpression for the error functiof. Indeed, the
gradient ofE with respect to the parameters,

d

B Y.Z.0.6,6,....0,.8,.6)
(2.2.3) DXYZEz%E(X,Y,Z,d1,¢1,91,...,dn,¢n,6?n)

d

57 EX.Y.Z,d,0.6,....d,.¢,.6)




vanishes if the parameter,Y,Z have been minimized keeping the data variables
d,¢.,8,i=1..,n, fixed. As we substitute for the parametetsY, Z their corresponding

functions (2.2.1) in the above gradient componemésthus arrive at a set of derivative functions
which assume the value zero for any set of the datmblesd , ¢.,8,i=1..,n. In other
words, the following derivative expressions,

oE -
ox K06,), Y(dy,...6,), 2(0,.,6,), Ay, 6) = O

(2.2.4) Z—E(X(dl,...,en),Y(dl, 8),2(d,,...8,), d,,...8,) =0

|

oE
E(X(dw---ﬂn)’ Y(d,,...6,), 2(d,,....6,),d,,...6,) =0

vanish identically. Then so do the derivativeshafse expressions with respect to data variables
— for brevity stated below only for variabte -- , so that by the Chain Rule:

0°E 0X N 0°E 6Y+ 0°E az 0°E

OXZ od, © oXaY od * oxoZ od, T adax O
0°E OX  9°E QY 0°E 0Z  O°E _,
aYoX dd, oY? ad,  9YoZ ad. adiaY

0°E OX , 0°E 9Y AL 0°E 9Z , O°E 0.

370X od.  9z0Y ad, « az7 ad.  9doz

Evaluation using the fitted paramete’, Y°,Z° and the actual data’, ¢°, 8°, yields a

numericalmxm linear system of equations for the sensitiviti22 ) with respect to the data
variabled, . With the notations

azE‘(O)z 0 E(X(O) YO 70 4O 3(0)) ‘(0) 0’E (X(O) YO 70 4O ...6’(0)) etc.
S G aan oxoy T

this linear system takes the form

‘(0) ‘(0) +02_E‘(0)6_Y‘(0)+52_E‘(0)0_Z‘(0) - 0°E ‘(0)

ax 2 0XoY 0XoZ ad,0X
0°E | 0X 0°E | Y 0°E | 0Z 0°E
(2.2.5) ‘(0)_‘(0) + _2‘(0)_‘(0) + ‘(0)_‘(0) - _ ‘(0)
dYoxX' ad aY ad, 6Y62 od, od.aY
0°E ‘(0)‘3_X‘(0)+ 0°E ‘(O)G_Y‘(O) ‘(0) Z‘(O) - _ 0°E ‘(0)_
020X 0Z9Y 0z* 0d,0Z



The matrix of this linear system may be statectims of the Hessian

" 0°E 9°E 0°E |
X%  9XaY 0XoZ
0°E 0°E 0°E
aYoX aY? avYoz
0°E 0°E 0°E

| 0Z0X 9ZoY  9Z? |

(2.2.6) Hy,E=

of the error functiore. The linear system (2.2.5) may thus be written as

9X |0
ad.
Y o|__0 (0)
o =% g go
ad, ad, "

9Z |9
ad.

(2.2.7) H,,E®©

where again the symbol|© is meant to indicate the, -- a posteriori --, sitbsbn by

X©@ Y@ 7O and the actual data values. The resulting Hessitnix is positive definite, and
therefore nonsingular at any locally uniqgue minimoaithe error functionE. The linear system
is then solvable and yields the values of the s$gitg@s (2.2.2) with respect tad, and,

analogously, for the remaining data variables, dasethe same Hessian matrix.

Note that implicit differentiation can be used &t@mine higher order sensitivities such as

°X  9°X  9°X 94X 9*X  9%X
od.” " odog, ' ado6, " ag® 0406, 04>

The corresponding linear systems are based onatine $lessian matrix as in (2.2.7) but use
different right hand sides.

2.3 Noise Propagation

In, general, data variabled,,¢,,8 and the parameterX,Y, Z will be considered random
variables with expected valuesd©®,$®,8° and X©@,Y© z© | respectively. In many

applications, however, some data variables of ther dunction will be “control variables” or
“design variables” which are given and thus notdan. When fitting scanned objects, it is

commonly assumed that the noise in range measuterderdominates the noise in bearings.
Consequently, only the range coordinates are considered random, while the bearing angles



¢, and 8 are specified control variables. For scanningrimsents, it is generally safe to
assume that range variablds are independent of each other. The followingosxpon will be
based on these assumptions.

The sensitivities described in the previous sectdhbe instrumental in assessing the effects of
data noise on fitted parameters. The well knownrdEPropagation Formula” provides first

order estimates of the variances (see GUM [23] pt&hab)

var(X) 0> g—;(‘(o’ var(d,)
- -

(2.3.1) var(Y) Dzn: a—Y\@) var(d.)

var@z) O Z{GZ ‘(0)} var(d,) .

Similarly, one has for the covariances [24],

‘(0) oY ‘(0)

cov(X,Y) DZ{ }var(d) cov(Y, X)

(2.3.2) cov(Y,Z) DZ{ ‘(0) 0Z ‘(O)}var(di) = cov(Z,Y)

Z ‘(0) oX

cov(Z,X) O Zn:{g? ‘(0)} var(d,) = cov(X,Z) .

Note, that even as the measured quantitif® are independent, the fitted parameters

X©@ y© zOwill still be correlated.

In most applications, the condition of homoscedaisitsupposed to hold: Tat is, the variances
have the same value within a class of measurenmnth,as the clas$ of range measurements,

var(d) =vard,),i=1...n.

For the special cases of LS and NLS regressionntheidual errors in our scenario would take
the special form

g=d - fi(X,Y,Z, 4.6 .)

The matrix of variances and covariances can theappeoximated in an elegantly simple fashion
under homoscedacity as set forth in the genesgblare, e.g. [5-7, 25, 26]. Unfortunately, the



error functions considered here, in particular, dinnogonal error function (Chapter 4) and a
portion of the directional error function (Chapt®x do not fall into this regression category
because the required separation of the randomblasigrom the control portion cannot be
achieved. It is for this reason, that the moreegainapproach described in Sections 2.2 and 2.3
had to be adopted.

3 Directional Fitting of Spheres

3.1 Directional Errors

Introducing the trigonometric quantitie§,s, ¢, the Cartesian coordinates,y,,z of data
points will be expressed in the form

(3.1.1) X =d cosg, cosf =dg;, Vy =d;sing cosg =dzg, z =dsing =dg,

where Eiz +/7i2 + ciz =1. The vector(¢ ,n,,¢ )represents the direction of the scan ray along
which the data poinP, was acquired. Next we introduce the quantities:

p =X +Yi + 26,
(3.1.2) q°=X*+Y*+Z22-p?,
S2 -R? - CI-Z
Figures 1 and 2 illustrate the geometric meaninthe$e quantities.

If the scan ray of data poinP intersects the virtual sphere centeredCat[XY Z , w¢
associate with P the midpoint P’ of the resulting chord. The quantity =|P'| then
represents the distance of that “mid-chord” poronf the instrument at the origi@ =[00 .0]
Similarly, g =|P'~C| =0 represents the distance of the mid-chord from e center. It

follows that
g <R

is the condition for “true”, that is, non-tangentitersection. The quantitigs and g, are side
lengths of the right triangledOPR'C, with its right angle &' . Pythagoras thus yields the
relation (3.1.2) betweerp? and g*. The triangIeAI3i P'C, where the theoretical poin‘t3i
marks the entry point into the sphere, also hasglat mngle aP’. The quantitys thus
represents the length of the half-chord that néeds subtracted from the distanpe=|P’| to



arrive at the desired distanc#é” of the theoretical point from the origin. As asu#, the

directional error of the data poif is given by

(3.1.3) f,=p —-s—d (= “interior error” of P if g <R).

Figure 1. Geometrical interpretation of the directl error function when a scan ray
intersects the sphere surfad®.(marked by dark dot) is the experimental poimfihtidots

mark the theoretical point on the sphere surfécand the mid-chord poirR’. The length
of the bold line segment measures the effradefined by (3.1.3).

On the other hand, if

qz2R,

then the scan ray of the data poRtfails to truly intersect the virtual sphere. hat case, we

follow the general extension principle set forthSection 2.1 agnd determine the theoretical
point as that point on the virtual sphere whichl@sest to the scan ray. The line segment which
represents the shortest distance between the sphéerine scan ray has to be orthogonal to both
the sphere and the scan ray. The line segmenhtsiso be part of a line through the center of

the sphere, and also meet the scan ray at a ppiat a right angle. This defines again the right
triangle 40P'C, which we encountered before, and whose side lisngte againp, and g,

(Fig.2). The desired theoretical poilg?it thus lies on the sideHO] at distanceR from center
and at distanceq —R fromP'. The triangIeAFA} P'C is also a right triangle, has side lengths

10



A~
i

|P/= Pi]|= p, - d,and “R’—ﬁ“:qi—R. The length of its hypotenus#P—PiH thus

represents the error of the data pdit

(3.1.4) g = \/(pi —-d)*+(q - R)* (= "exterior error” ofP if g = R).

Figure 2. Geometrical interpretation of the dirextl error function when a scan ray does
not intersect the sphere surfadg.(marked by dark dot) is the experimental poimghtidots

mark the theoretical point on the sphere surfécand the point?’ on a scan ray which is
the closest one to the sphere cefitefThe length of the bold line segment measures the
error g, defined by (3.1.4).

If g —-R=0 thenf =g , so that the combined error function will be @onbus. While the
error expressiory; is everywhere twice continuously differentiablee error expressior; fails
to be so if and only ifs = Q -- the case of tangential intersection -- , vehiés gradient with

respect to the parameted§, Y, Z is infinite. In these cases, the resulting &rlor function

will also not be differentiable. However, thoseirpe will only amount to a closed set of
measure zero in parameter space. As a consequegcadient based numerical minimization
method such as the often relied upon “BFGS” mefl2ddl may still be used [21]. Similarly, the

probability of the error functionE not being differentiable for the fitted parameters

X y© 7O will be theoretically zero.

11



We find it convenient, to categorize only a trugeisections as a “hit”. A tangential intersection
is thus considered a “miss”, along with all casesvhich the virtual sphere is not met at all.
Accordingly, we divide the indices into two sets:

Int :{i:qi <R} and Ext ={j 1 q; 2R}.
The combined error function then takes the form

(3.1.5) Eya = Eqa(X,Y,Z,d,,8,,... 0., 8,,6,) = 7+ ijgjz

3.2 Derivativesfor the Directional Error Function

In this section, we list formulas for the gradiertsd the Hessians of the individual error
functions f, and g, with respect to the parametetsY, Z, along with the second derivatives

with respect to both these parameters and the databled , ¢ , 8. Gradients support

optimization methods and are the first step towatelermining the above second derivatives,
which are needed for the computation of the sefis#s and variances described in Sections 2.3-
4. Derivation of these formulas is provided in Ampendix as referenced.

In terms of the individual errord, and g, , the gradients and Hessians of the directiorrak er
function are:

|:|XYZ Edrct = iDIntDXYZ fiz + ZiDExtDXYZgiZ

H )74 Edrct = Zil]lnt H XYZ fi2 + ZiDEXt H XYZ gi2 '

Gradients are considered column vectors and ageneral, linear combinations of the vectors

X a
(3.2.1) U=lY| and 4 =1 |,
1 Z] K9

as, for instance (see (A.2.7-8) in Appendix A).

1

f. o f(f +d 1
(322) EDXYZ fizzglu — |( i |)

> _ . Ry . Rp
L 007 = AU+ (=) A
oA gt =AU -d)

Similarly, the Hessian matrices are linear comlamast of the following four symmetric
matrices:

12



(3.2.3) | =|{0 1 O] (Identity),
0 0 1
(X [x2 xy xz]|

uuT=|Y|[X Y Z]=[YX Y? YzZ|

Z ZX zY Z°?

X ¢ [XE+EX X +EY  X¢ +EZ

Ud +a4UT =Y ([& 7 gl+|m|[X Y zZ]=|Y§+nX Yo +nY YG+n2Z

z G | Z&+GX ZntgY  Zg G2 |

& & né &

a4’ =\n |l& n cl=|n& n° ng|.

G | 66 6§

Thus, (see (A.2.11-12))

1 p-d P ) (PR =d) L), T
SHx 1= -1 LT BRE S - = AT + AU
2 [ J ( s’ J ( S SJ(4+4 )

((p s)(p. Z(QS_S)inAT

(3.2.4)

[1 jl+—UUT Si(UA,.T+A,.UT)

R( +Y+ZJA1

(3.2.5)

13



Evaluated for optimal parameter¥©®,Y©®,Z©® and actual data point® =[d® ¢ §© | ]
these Hessian matrices support the left hand ditleear systems (2.2.7) for the corresponding
sensitivities. For the right-hand sides of thogegems, we have for the range variabdes

9 _ of.’ ag,’
DXYZaEdrec - ZiDIntDXYZH + ZiDExtDXYZ adi

where (see (A.3.1-2))

(3.2.6) %Dmi Ly-Pos >0

For the bearing variableg , 8, we obtain the individual derivatives in

0 of” ag,’
DXYszdrec - met XYz ¢ ZiDExtDXYZ a¢i ,

2

0 _ of 2
DXYZEEdreC - ZiDlntDXYZa_ei + ZiDExtDXYZ 69

by multiplying the vectors

—1; a;
0 a 0 _
(3.2.7) 2 —A = & |, 26 A =181,
L O LY

where a, = —cosg,;sing, B = -sing,sing, y; = cosd, by matricesr',(f* )and I',(g7 ) as
follows:

1 1
1 of2 1 99
3.2.8 -0 =TI, (f , Uwy —— =1T; :
628  SOags ST & | 0w gr = 0@ 4
O 0
_al_ _al_
1 6f<2 1 og’ 2
3.2.9 -0 =r(f>)| 8|, =04 — =T,(9
Vi ] LY

14



Here the two pre-multiplying matrices (see (A.38)3.11)) are given by

%Fi(fiz) = (E_MJUUT +(pi _S)((n +$)(p| _di) _E]AiUT

S s s S

(3.2.10)

p-d
+(p -§)|1-— |1,
(P —9) s j

2 2 2
(3.2.11) %ri(gf) = (—% UuT + R(u}gw +(?—dijl .

Because of the following orthogonality relations,

—1]; a
(3.2.12) A & |=0and 4’| B |=0,
[ 0 ¥

the above matrices may be replaced in (3.2.8Ya&2d9), respectively, by the following
symmetrized versions:

EFiS(fiz) - (1_ pi(pis_di)jUUT +(p, _5)[(p' +$)(3F’. -d) _3] (AUT +UA")
2 S S S

(3.2.13)
+(p -s) 1—Ldi} |,

3 3
i i

(3.2.14) %I‘f(gf) = (—& uu’ + R(Mj (AUT +UAT) + (%—dijl :

4 Orthogonal Fitting of Spheres

Here, the theoretical poiri’f’i , that is, the point on the sphere which is clos®she data point
P =[><i Y, zi], defines the individual error

n=[6 6] - le-pl-R=w-n

with respect to the sphere centérand the radiu®R. We thus represent the orthogonal fitting
approach by the full error function

15



(4.1.1) Eorth = Zhlz :Z(VVI — R)2 :VViZ _ ZRVVI + R2 ]
i=1

i=1
Consistent with the generation of point clouds tgmming from a single instrument location, and
as discussed before, the underlying coordinate dsalare again considered polar with the
instrument location at the origin:
X =d, cosp cosf =d§, Yy =d;sing cosf =dys, z =dsing =dg;.

For an analytic discussion of the orthogonal efumiction in terms of Cartesian data see [11].
With the definition (3.1.2) of the auxiliary quatitly p,, we have

(4.1.2) W= (X=x)2+(Y-y)?+(Z-2)* = (X*+Y*+Z%) -2d,p +d? .

A key vector, in which gradients and Hessians efitidividual orthogonal error squargémay
be expressed, is given by

(4.1.3) W =|Y-y |=|Y|-d|g|=U-d4,

Z-2 Z G

as W'W. =w’ . Also (see Appendix (A.4.3) and (A.4.5)),

1 . (R
(4.1.4) > Oeh -(1 W)Wi

and

1 R R
(4.1.5) EHXYZh2 = (1_WJI +vaivviT :

For the derivatives which define the right-hancesidf the linear system (2.2.7), we have first:

d n oh?
DXYZa_diEorth = ZDXYZaLdI

i=1

16



with (see (A.5.2))

1, o __R _[1-R
(4.1.6) 2072 5q = Ty (P AW (1 JA-

Again, the corresponding mixed derivatives withpexs to the bearing variablegs, &

are multiples of the vectmg%Ai and %Ai , defined in (3.2.6). Their common multiplier isth

matrix (see (A,5.4))

1. ov_ _4[4_R Rd 7
(4.1.7) ST = di(l Wj| + WU,

which, in analogy to (3.2.11), may be replaced blgds symmetrized form,

1. s,.2 - _ _B R_d. T
(4.1.8) STE) = d{l vvijl "
Thus
-n] -n]
1 a_kf: 2 = S 2
(4.1.9) 20ne g =T & | =120 &
L O . L O .
and
o o
1 a_hzz 2 = S(h2
(4.1.10) > O 20 )| 6| =) A
LV LV

This concludes the main part of the report. loikofved by the Appendix in which details about
the derivation of the key formulas are provided.
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Appendix A: Determination of Derivative Formulas Used for Calculating Sensitivities

Here, we provide step-by-step developments of thivative formulas referred to in Chapters 3
and 4 for the purpose of determining the paramstesitivities for directional and orthogonal
fitting. In Section A.2, the gradierit,,,E,. and HessiaH,,,E . of the directional error

function are at issue. The Hessian provides theixn&ir the corresponding linear system
(2.2.7). Also for the directional error functiothe derivatives of both parameters and data
variables, are derived in Section A.3, furnishihg tight hand sides of these systems. Finally,
Section A.4 provides the analogous informatiorhim ¢ase of orthogonal fitting.

drec

A.1 General Formulas

In what follows, the calculation of gradierits,,, and Hessians$d,,, will often be based on the
following straightforward reformulations of prodwatd chain rules:

(A.1.1) 0,,b(@) =b@0,,a ,
Oyab =al,,b+bl,,a,
0,,a° =2al,,a
o = Oyt =2 DXYZ\/_
and
(A.1.2) H ,b(a) = b'(@)0,,all a+b(a)H a,
H,,ab=0,,a0 ,b+0.b0,,a+aH,,b+bH,,a,
H,,a° =20,,a0},a+ 2aH,,a,

H,,a= nyz\/_ Oy’ 05,8 +%§Hma

These formulas are straightforward reformulatiohdPmduct and Chain Rules, and will not
always be referenced in what follows. Gradient$unictions are considered column vectors.
Gradients of row vectors will result in matricesthe elements of a row vector will become
columns of gradients. For vectdgsand 4 (3.2.1), we thus find

18



10 00
(A.1.3) DU =0y X Oy, YOy Z| =0 1 0 =1, Ou,4=0 0 0=0.
00 1 00

Formulas (3.2.8-9) and (4.1.9-10) are based onieeatwhich pre-multiply derivatives off. .
These matrices are the result of applying the idiffeal operator

T R
OX0& 09X, OXdc

A1.4 r=0,00 =
( ) i XZTEmG T 9YQE oYon, 0Yog

to error functions.

A.2 Gradients and Hessians of the Directional Error Functions

Recall the directional error function

Edrct == ZiDU fi2 + Zi[]v gi2

with individual errors (3.1.3-4),

ff=p-s-d, g :\/(pi _di)2+(qi -R)?,
based on the auxiliary quantitips g, s (3.1.2) and the direction cosines (3.1.1)
& =cosp cosd, n, =sing cosd, ¢ =sing .

Using (A.1.1) where indicated, we note:

(A.2.1) Oxe P = Oy (XE +Y7, +26) = 4, Oy, p° =2p4, ,
DXYZin = DX\rz(xz +Y2+ZZ) =~ Uz p|2 =2[U - p4],

11 1
Uyz0 = Uyyz qi2 :EEDXYZin :E[U - piAi] ,

19



(A.2.2) DX\(ZS2 =0y (R -0%) = _DXYZin = _Z[U - p|A|] ,

11 1
vazs = vaz 32 =§§vaz§2 =__[U - piAi] )
1 1
vaz_ =" vazs = [U - p|A1]
S S

All HessiansH,,, determined in this section will be linear combioa$ of the four matrices
(3.2.3). Again we begin with the auxiliary quaietst

(A.23) Hy,p =0, H,, 0} = 205, P 0%, P = 2447 by (A1.2),
He® = Hoop (X2 +Y2+2%) = H o, 07 = 2(1 - 447)

Hx\(zs2 = _HXYzqi2 = _Z(I _AiAiT) ’

From Hessians ofj*, s we pass to Hessians gf , s, using (A.1.2)

11
XYZinDI(YZqiz + E_ H XYZin

5 U=pa)u-pa) (- a47)

1 T, B p? T, 1 T
== UUT+ L (UA + AU) - AT+ = (1 —AA").
q’ o & o ol 44

2

-1
Hyxzq = Hxz 4 :7

Qw| =

Thus

2
(A.2.4) H,,q =qi| —iauuT +%(u4 + AU) —(% +3]44T.

Concerning the last term, note

+ =
3 3 3

G d G G

iiz izpi2+qi2_x2+Y2+22

20



Similarly, by (A.1.2),

-11 11
Hxvzs = HXYZ\/g = __3DXYZ§2DI(YZ$2 +§§Hxvzs12

45
)

-5 U=pA)U - pA) - 0 - ad)

1 T, B B, 1 T
~SUUT +2 U4+ AU) = AA == (1 - AAT).
g g ) S
Thus
2
(A.2.5) Hoep§ =——1-SuuT+ P (U4 + A,U)+( _b in/ﬂ.
S g g
Concerning the last term, note
_pIZ_SZ_piZ_RZ_in_ I2_RZ_(x2+Y2+ZZ)__X2+Y2+ZZ_R2
s § ¢ g’ q’ q’ '

From the above, we derive derivative expressiomsluing the errorsf, and g :

1
Uxz fi = Oxz B = UxyzS = 4 +§(U - piAi)
(A.2.6) L 05 1 Cied
==-U |—A| - e /1|
S S S
(A.2.7) Enyz f2=f0,,f = ‘M/E
2 S
For the external portion of the error function, fivel
2(q-R
DXYZgiZ =2(p —d)Uxz b +2(g —R)Uyy,0 = 2(p; —d;))U + (q(,} )
— Z(Qi‘R)U + 2(pi—d)g —2(q -R)py A
g i '
or
1 R R
(A.2.8) EDXYZgiZ = (1_E)U + (Tpl_di)/li

21
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and by (A.1.1),

_11 1 R
XYZgI - vaz g| 2 9 DXYZgl E((l__)u +( qp -d, )AJ
(A.2.9) ! 4 n ' J :
i Rp —dq
(g -RU +(Rp -dq) A0+ '
Q. g ( A1) 4.9 a9 4
Moving to the second derivatives, we find
1, .1 . 1 p?
(A.2.10) Hre = ~Hos = (1 +§uuT —%(UA,.T +AUT) +(§ —%}44 .

Next, we introduce the matrix

Gy fi = vazﬂD;Yzﬂ _S_];(U -(p _5)4)(U - (p _S)Ai)T

1
s

uuyT - PiS‘ZS (UAiT +AiUT)+ (p ;251)2 AiAiT

Also by (A2.10),

_ i f fp f.(p>-5)
fHg fi = =1+ LUUT = 2 UAT + AUT) + 2B 32 4 47
DT s s

By (A.1.2) ,H,, f?=2G,,f +2fH,,f . Thus

1 _f 1. f P-S , fiR | T
“Hy f2 =1+ S+ UUT - | B+ S8 (UAT + AU
2 XYZ i S +(SZ +$3j ( S2 + S3 j( 1 +A| )

(p.-8)° fi(pf-sz)J T
+( 2 + a AAT

Expressingf, = p, —s —d, yields

1 +f‘ _stf :pi_gdi

S

p-s , fip _(p-s)s+fip _ps-s+p’-ps-pd _p(p-d) 1
2 3 3 3 3

S S S S S S

22



(p=s)°, (' -9) _ s -2ps+5+p’-ps’ -sp’+s - p'd +ds’
s 3 s
= (pis_ pizdi)_(pisz_disz)_Zpisz +2§3
§3
- (P’ -s°)(p.—d)-2(p -8)s°

3

S

From these relations, we find the alternate exprass

1HXYZfiZ: Ldi_l) +(pi_3dijUUT

2 5 e
p(p-d)_1
s’ S
(P’ =s)(p ~d) +2(pi—s1)j i
3 A

(A.2.11) - j(u/f +AUT)

which establishes (3.2.4).

We move to the external pagt of the error function. The Hessiakk,,, p.d., H,,,d%, H,,,R®
vanish. Thus

HXYZgi2 = Hxvz((p| _di)2+(qi _R)z): Hxvz(p|2 _2p|di +di2 +qi2 _2qiR+ R’
= HXYZ(p|2+qi2 -2Rq) =nyz(x2 +Y?+2Z% - 2Rq) =21 = 2RH,,q

and by (A.2.4),

2 2 2
(A.2.12) H,.,g2 = (1— gj |+ RuuT- @(u/ﬂ +AUTY + R(XJ’.‘#J/MI.

This establishes (3.2.5).

A.3 Mixed Derivatives of the Directional Error Function

The right-and-sides of the system of linear equati@.2.7) are at issue. They require the
negatives of mixed derivatives of the form

0 0
——HxzEBae = Uxvz ==Euret

o o

23



where L indicates a data variable of the error functidte first consider the data variabde.
Note, in this context,

of. afi2
vazﬁ = Uy, (=1 =0, vaza

=0y, 2f,
i | XYZ( 'od

o J Oy (=21) = 2( Uz B _DXYZS) :

Thus by (A.2.1),

1 of> _

A.3.1 by
( ) 2 X7 3d

=4 - —(u p4)——§u+(p -1)4)

(compare (3.2.6). Similarly,

agf _ 0 2 2\ _ _
vazﬁ - vazﬁ((pi -d)"+(q -R) )_ _Z(DXYZ(pi _di)_ 204 P,

so that (compare (3.2.6))
(A.3.2) ED =L =4 .

As pointed out in Section 3.2, the calculationhe# torresponding derivatives with respecito
and 8 will be based on the matrices generated by tHerdiftial operator (A.1.4)

r.=0,,0;

&Gt

In order to apply this operator to the individualoes f?*, g7 , we first apply it to the auxiliary
guantities (3.1.2). For a first stage, we note:

(A.3.3) 0L, P =05 (XE+Yn +Z¢) =[X Y Z]=UT,
D}i’?ifi FJIZ = 2pi|:|;i/7i<'i FJ| = ZFJIUT

0F,c 0 =05, (X?+Y?+2% - p*) = -0}, pf =-2pU’

Ol gq=00" ¢ 0l q?=- IO. UT
enc %= Hene \/7 Denc G
;11 .

e ==~ —Uep G =-3U
$iMmici q qiz i qis

24



(A.3.4) D}nc S Dfnc ( R* - qiz) = _D}i”ifi qiz = 2p|UT

= - PR
D;r/cs Dj‘nc\/iz \F ;Ef](‘s SUT
1__1 __P
D;Ei'?i('i g_ _gm-‘;r]ifis - ?UT
and consequently,
(A.3.5) E”((p s)= (1_ﬂjUT:_pi_SUT
S S
T (B =9)= 20 - )L, (n -5)= -2 P29 ;1) uT

For the next stage, in view of the above, (A.2.1a2d the Product Rule yield

;
I(p-s)=0 ch,lc(pi -5) = vaz(_ pi;S UTJ

1 | —
(DXYZ(pi _3))UT - (pi _51)(DXY2§JUT _%DXYZUT

1
S
— 1 1 T 1 T P —S
=—=|A-|-=U-pA)|UT-(p-5) =U-pa)uT -2
3[4 ( S1( P )D (p s)(sg( p.4)]
1
S

S
= — (lu +[1_ p|J4]uT [p|_3$U_(p| _i)pi AijuT_ pi_s I
S S S S S
1,,.P-5 ]T ( p-s, .(R-S)P JT p-s
-—U+—" 4 U"+|- U+ U -1,
( s’ s 4 s s 4 S
so that collecting by matrices,
_(_1_p-5s T p-s . (P-9S)p 1_R~S
r(p - >_(____]uu ( . ].U _P-s
S g g g g 4 s
yields
(A.3.6) r(p-s) :(—%}uuw((” +§;§pi _5)]4UT——F";S‘ B
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Next, by (A.3.5),

—c)? —c)2
r(p-s) = vazml;iqici(pi -§)’= vaz(_Z%UTJUT = _ZDXYZ((pI SS) UTJ
1 1 . —
= _Zg(DXYZ(F)I _S)Z)JT - 2(pi _S)Z(vazngT - ZMDXYZUT-
Referring back to (A.2.1-2), we find
1 1 | —
Uxz(P=8) = Oxz P~ UyeS = 4 _(__(U - piAi)j ==U _MAi
S S S
o)\ — _ _ — _ l _k~s
Oz (R =8)" =2(P — )0k (R —5) = 2(p s)SU T A
_ )2
_2Ap-s)y_An-s)
S S

Substituting the latter expression in the above@sgion for I', (p, —s)?, as well as by (A.2.2)
and (A.1.3), we arrive at

1Fi(pi -5)" = _E(Z(p, ~S), _Ap-s) AiJUT
2 R :

2 1 T (pi_S)z
-(p-s)|SU-pa)U" -0
(p, 3)(33( M)j s

:{_ 2Ap-s) , AP —s)ZAJUT

2

S S
(p.-s)%,, . (P—-5)°P ]T (p -s)°
+| - U+ U - I,
( s s 4 S
so that collecting by matrices yields
1 e[ 2AP-8) _(P=8) )"
> TP —s) +( g = uu
2(p, - 5) pi(pi—sfj r_(p-s)
+ + U’ - |
( s s 4 S
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and

1 2 | i2+§2 T (pi_S)z(pi"'ZS)J T_(Q_S)Z
A.3.7 =I.(p =|—="UuU + AU l.
( ) 2 |(p| S) ( S2 J ( S3 S

As fi2 =(p _51)2+2di(pi _§)+di2’ we have%Fi(fiz) :%Fi(pi _51)2 eI (p -s) ,
so that by (A.3.6-7),

%I—wl(fIZ) z(ﬁ_dl(_ﬂj]uuT +((p| _S)z(sn +2$) _di (p, +S)gp| _S)JAIUT

3

S S S
+(_(pi—s)2_di(pi—s)]|_
S S
Now,
- pf+32_d(_ﬁJ= -pi+s'+dp _1_p(p-d)
2 i 3 2 3
S S S S S

(P =8)*(P*+28) _ 4 (P+s)(P=8) _ (P =8)"(P+S)*+ (P =5)°s ~di(p ~S)(P +5)

S S S

- (p _S)(pi +s)(p—s)+(p —8)s —di(p +S)
i S3

— (p_ _S)(pi +3)(pi - S _di)+(pi _3)3
i S3

= (p -s) PSP ~d) = (P +§)s* (P ~5)S
i S3

— (p_ _S)(pi +3)(pi _di)_2§2
i S3

=(p _S)[(pi +s)(p —d) _EJ
| s S

_(P=8) _(P=S) PSS (L _svad)e(p - (1_(p.-di)j
5 e o C(p=s)+d)=(p-s) 5
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Thus
Eri(fiz) = (i_pi(pi—g_di)]UUT

(A.3.8) +((pi_S)((pi+s1;(3pi—di)_§DAiuT

a8

which reproduces the result (3.2.10) for the imteportion of the directional error function. For

the exterior portiond, = (p, — d,)? + (d, — R)?, we express
(A.3.9) %I’i(gf) =%I‘i(pi —d)? +%ri (G - R
We note
Ofpe (P —d)=U",
0%, (P —d)* =2(p —d)T5, . (P —d) =2(p, —d)U".
Thus by the Product Rule,

1 1
Eri(pi _di)2 = DXYZEDI%Q (P _di)2= DXYZ((pi _di)UT)

= (DXYZ(pi _di))UT + (pi _di)DXYZUT

so that by (3.2.1) and (A.1.3),

1 _ 2 _ T _
(A310)  ZIi(p-d)"=4U" +(p -d)I
Similarly, we derive using (A.2.1)

DT

$inliGi

(G -R=-2uT
G

Dl;i/]i(i (6 -R?*=2(q - R)Djﬁ,m (@ -R) =2(q - R)(_%UTJ = Z(B _1] pu".
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We proceed, using the Product Rule as well as1(Bahd (A.1.3):

0@ =R = 0, 207,

R L

R o2 (-
O N

{--salpr (2o

Collecting by matrices,

1 »_ _Rp L R 7[R r,[R
—I'(g-R*=-—*UuU +—-4U —=-1{4U -1ip |
2 (g -R) ¢ ¢ 4 (CI. ]4 (CI. ]P.
= _&;UUT (Rp' +— j/LUT (R _1jpi| ,
o) @ q G

and substituting (A.3.10) and the above into (A).8i9es

2= -Suur+ (1+R'° jAUT [D.—dﬁ(ﬁ—ljp.}--
2 G; qi q| G;

Since

1 R R RE LR R +a) R +Y7+2)

¢ q ¢ q q’ q’

we have finally

2 2 2
(A.3.11) %Fi(gf) = _zp uuT + R(X +qZ +Z )AiUT (Zp dj

This reproduces the result (3.2.11) for the extezroor function.
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A .4 Gradientsand Hessians of the Orthogonal Error Function

We repeat the definitions of Chapter 4. The efuoction for orthogonal fitting of a sphere is
given as

(W - R)? =W - 2Rw, + R’

orth z hz =

n
i=1 i=1

W= (X =x)?+(Y-y) +(Z-2)* = (X*+Y*+Z*) - 2d,p, +d?
with the notations (3.1.1)
x =d,cospcosg =d&, Yy, =d;sing ,cosd =dy;, z=dsing =ds,

and the definition (3.1.2) of the auxiliary quaynttt . The vector

X=X X ¢

W =|Y-y |=|Y|-d|n|=U-d4

Z-1Z Z G

will play the key role. Indeed, all of the follomg gradients are multiples A&V, :

(A4.1) DyaW = 2W,
\/7' - __DXYZW|2 - _W
1 1 1
vaz W = 7vaz WW
Thus
1
(A4.2) Dol = DW= W,

and in view of
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nyzh2 = Uy (W - R)2 = 2(w — R0y, W = ZWI—_VV. )

it follows that

1. ., _(, R
(A.4.3) > 0xeh _[1 W)W .

Te Hessians of the quantities considered belovirsgar combinations of the two matrices
X=X
| =identity, and |y-y [x -x Y-y Z- Zi] =Ww,.
Z-12
In particular,
(A4.4) Hy oW = H,, (X2+Y2+2%) = 2dH,, p + Hy,d? = Hy (X2 +Y?+2%) = 2|

and by (A.1.2),

11 11 11 11
H sz W, =_Z\N|3DXYZW O W +§WiHXYZ W = ZWZ\NW 2+EW2I
1 .1
=-—WW' + 1.
W't w,
As h =w -R and h* =w’ - 2Rw, + R?*, we have
1 1
Hyzh = HyoW = _WWiWiT +Wi| .
and
2R 2R
H,, = - 2RH ,,w = 2I +WwiwiT w =1 .
so that
1 R R
A.45 “H, P ={1-— [ + =WW .
( ) 2 XYZh ( W,j \ng [l
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A.5 Mixed Derivatives of the Orthogonal Error Function

First, we differentiate with respect to the rangeiabled, , starting with the key quantity; :

ow’ _ 9 2 oo _
(A.5.1) H ﬁ(x +Y?+Z%-2d p +d?) 2(p —d)
ow _l1ow’ _11 =Ll
2, 2w od 2W|(2)(|0. d) = Wi(pi d;)
01 __1ow _ 1 . _gy=1o-
6_d,W, = W od = ng( D(p; di)_vvig(pi d;) .
Thus
ﬂ—_(W R)Z_Z(W R)_ _ZWi—_R(ﬂ_di):_z[l_Bj(ﬂ_di)
ad | VVI i
and

1 oh? 1 R
EDXYza = _[_ RDXYZWJ(pi - di) _(1_WJDXYZ P

1 oY _ R, _[4+_R
(A5.2) EDXYZ__ Wg(pi di)Vvi [1 WJAI

We move to differentiation with respect to the legwvariablesg, ,8 . We apply the differential
matrix operator (compare Section (A.3))

I =y, (Dl;.n.c.) ,
to the individual orthogonal error squang = w* —2Rw + R?, so that
(A.5.3) r(h?) = (W) —2RC (W, )

As W = X*+Y?*+Z%-2d,p +d’, we find in view of p. = X& + Y7, + Z¢, (see (A.3.4)),
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07, W2 =-2d0; p =-2d,U"
0, w, =0; =11 g owes li(—2<:|.UT):—iUT.

$illiGi \/7 $illiGi Wi oW i W
Then by (A.4.1) and the Product Rule,

r(w) = (DT

§inii

Ii(w) = DXYZ(D:W/( )= DXYZ(_%UTJ - _dlivz(iUTJ

W)= 0,,(-2dUT)=-2d,0,,UT = -2dI

V\/i
1 d 1 1
=—d|0,, U -—0,,U" =-d|-=W [U"-d —1I
( XYZWJ wo ( w’ J w
1 1
=d—=wWU"-d =1,
W W
so that by (A.5.3)
r) =-2d1 -d 2Pwum +d 2Ry = —2d|1-R |1 —2d BwuT,
I I IVV3 VVI VVI Ivvl3
And finally
1. ., R . R R ., 1
A5.4) =rI(h*)=-d|1 | —d 3wuT = —d|[1-R |+ Rwur |,
O S R (S B

Taking into account again the orthogonality relagi@3.2.10), this matrix can be symmetrized by
substitutingW™ =U" + A" for U™ in the above expression, yielding the matrix

1 2y _ _ R} _ 4 Rt = _R Riuant
(A55) Jr(K)= d{ le| d,W3ww di((l WJI+W3WW j
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