
Indifferentiability Characterization of Hash Functions
and Optimal Bounds of Popular Domain Extensions

Rishiraj Bhattacharyya1, Avradip Mandal2, and Mridul Nandi3

1 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
rishi r@isical.ac.in

2 Université du Luxembourg, Luxembourg
avradip.mandal@uni.lu

3 NIST, USA
mridul.nandi@gmail.com

Abstract. Understanding the principle behind designing a good hash function is
important. Nowadays it is getting more importance due to the current SHA3 com­
petition which intends to make a new standard for cryptogrpahic hash functions.
Indifferentiability, introduced by Maurer et al in TCC’04, is an appropriate no­
tion for modeling (pseudo)random oracles based on ideal primitives. It also gives
a strong security notion for hash-designs. Since then, we know several results
providing indifferentiability upper bounds for many hash-designs. Here, we in­
troduce a unified framework for indifferentiability security analysis by providing
an indifferentiability upper bound for a wide class of hash designs GDE or gener­
alized domain extension. In our framework, we present an unified simulator and
avoid the problem of defining different simulators for different constructions. We
show, the probability of some bad event (based on interaction of the attacker with
the GDE and the underlying ideal primitve) is actually an upper bound for indif­
ferentiable security. As immediate applications of our result, we provide simple
and improved (in fact optimal) indifferentiability upper bounds for HAIFA and
tree (with counter) mode of operations. In particular, we show that n-bit HAIFA
and tree-hashing with counter have optimal indifferentiability bounds Θ(qσ/2n)
and Θ(q 2 log e/2n) respectively, where e is the maximum number of blocks in
a single query and σ is the total number of blocks in all q queries made by the
distinguisher.

Key-words: Indifferentiability, Merkle-Damg ̊ard , HAIFA, Tree mode of operations
with counter.

1 Introduction

Random Oracle method, introduced by Bellare and Rogaway [1], is a very popular
platform for proving security of cryptographic protocol. In this model all the partici­
pating parties, including the adversary, is given access to a truly random function R.
Unfortunately, it is impossible to realize a truly random function in practice. So while
implementing the protocol the most natural choice is to instantiate R by an ideal hash

mailto:mridul.nandi@gmail.com
mailto:avradip.mandal@uni.lu
mailto:r@isical.ac.in

function H . The formal proofs in Random Oracle model indicate that there is no struc­
tural flaw in the designed protocol. But how can we make sure, that replacing the ran­
dom function R with a good hash function H will not make the protocol insecure? In
fact recent results [13, 16] show that theoretically it is possible to construct some patho­
logical protocols that are secure in random oracle model but completely insecure in
standard model. Fortunately those separation results do not imply an immediate serious
threat to any widely used cryptosystem, proven to be secure in random oracle model.
So one can hope that any attack, which fails when a protocol is instantiated with R but
succeeds when the protocol is instantiated with H , will use some structural flaw of H
itself. So the above question boils down to the following. How can we guarantee the
structural robustness of a hash function H?

Indifferentiability of Hash Functions: Motivated by above question, Coron et al. stud­
ied Indifferentiability of some known iterated hash designs[5], based on Maurer’s indif­
ferentiability framework [15]. Informally speaking, to prove indifferentiability of an
iterated hash function C (based on some ideal primitive f), one has to design a sim­
ulator S. The job of S is to simulate the behavior of f while maintaining consistency
with R. Now if no distinguisher D can distinguish the output distribution of the pair
(Cf , f) from that of (R, SR), the construction C is said to be indifferentiable from
an RO. In [5], the authors proved that the well known Merkle-Damg ̊ard Hash func­
tion is indifferentiable from a random oracle under some specific prefix free padding
rule. Subsequently, authors of [2, 4, 9, 12] proved indifferentiability of different iterated
hash function constructions. Today indifferentiability is considered to be an essential
property of any cryptographic hash function.

Related Work: In [14], Maurer introduced a concept of random systems and showed
some techniques of proving indistinguishability of two random systems which can
be useful to prove indistinguishability or even indifferentiability. However, Maurer’s
methodology can only be applied once one can prove the conditional probability distri­
bution of the view (input/output) given non-ocurrance of bad event, remain identical in
the two worlds. So far there is no known generic technique for finding the bad event and
proving the distributions are actually identical. In [11], the authors introduced the con­
cept of preimage awareness to prove the indifferentiability of MD with post-processor
(modeled as an independent random oracle). More precisely, it was shown that if H is
preimage-aware (a weaker notion than random oracle model) and R is a post-processor
modeled as a random oracle then R(H(·)) is indifferentiable. In[10], a particular tree
mode of operation (4-ary tree) with specific counter scheme is shown to be indifferen­
tiable secure.

Our Motivation: Although many known hash function constructions have been shown
to be indifferentiable from an RO, the proof of these results are usually complicated
(many times, due to numerous game hopings and hybrid arguments). Also, they require
different simulators for each individual hash design. There are no known sufficient con­
ditions for hash functions to be indifferentiable from an RO. From a different perspec­
tive, the existing security bounds for different constructions are not always optimal. In
fact, to the best of our knowledge none of the known bounds was proven to be tight.
The results of [11, 14] do not directly imply to improve the indifferentiability bounds for
general iterated hash functions based on a single random oracle. The methods of [10]

does not give us any optimal bound either. So a natural question to ask is: Can we char­
acterize the minimal conditions of a cryptographic hash function to be indifferentiable
from a Random Oracle and achieve optimal bound?

Our Result: In this paper, we present a unified technique of proving indifferentiabile
security for a major class of iterated hash functions, called Generalized Domain Exten­
sions. We extend the technique of [14] to the indifferentiability framework. We identify
a set of events (called BA D events) and show that any distinguisher, even with un­
bounded computational power, has to provoke the BA D events in order to distinguish
the hash function C from a random function R. Moreover we prove that, to argue in-
differentiability of a construction Cf , one has only to show that the probability that
any distinguisher invokes those BA D events, while interacting with the pair (Cf , f), is
negligible. We avoid the cumbersome process of defining simulator for each con­
struction separately by providing a unified simulator for a wide range of construc­
tions. To prove indifferentiability one simply need to compute the probability of
provoking the BA D event when interacting with (Cf , f).
In the second part of this paper, we apply our technique to some popular domain exten­
sion algorithms to provide optimal indifferentiable bounds. In particular, we consider
Merkle-Damgård with HAIFA and tree mode with specific counter scheme.Many of
candidates of SHA3 competition actually use these two modes of operations. So, our
result can also be viewd as an optimal indifferentiability guarantee of these candidates.
We briefly describe our results below:

1.	 MD with counter or HAIFA: Let Cf be MD with counter where the last block
counter is zero (all other counters are non-zero). Many SHA3 candidates such as
BLAKE, LANE, SHAvite-3 etc are in this category. In Theorem 3 and Theorem 5,
we show that the (tight) indifferentiable bound for C is Θ(σq/2n) where q is the
number of queries, n is the size of the hash output and σ is total number of blocks
in all the queries. The so far best known bound for HAIFA mode is σ2/2n [5].

2.	 Tree-mode with counter: Tree mode with counter (e.g. the mode used in MD6) is
known to be indifferentiable secure with upper bound q2f2/2n [10]. In Theorem 4
and Theorem 6, we are provide an optimal indifferentiable bound Θ(q2 log f/2n).

2 Notations and Preliminaries

Let us begin with recalling the notion of indifferentiability, introduced by Maurer in
[15]. Loosely speaking, if an ideal primitive G is indifferentiable from a construction
C based on another ideal primitive F , then G can be safely replaced by CF in any
cryptographic construction. In other terms if a cryptographic construction is secure in
G model then it is secure in F model.

Definition 1. Indifferentiability [15]
A Turing machine C with oracle access to an ideal primitive F is said to be (t, qC , qF , ε)
indifferentiable from an ideal primitive G if there exists a simulator S with an oracle ac­

,Fcess to G and running time at most t, such that for any distinguisher D, | Pr[DCF
=

1] − Pr[DG,SG
= 1]| < ε. The distinguisher makes at most qC queries to C or G and

at most qF queries to F or S. Similarly, CF is said to be (computationally) indiffer­
entiable from G if running time of D is bounded by some polynomial in the security
parameter k and ε is a negligible function of k.

F C S G

D

Fig. 1. The indifferentiability notion

We stress that in the above definition G and F can be two completely different prim­
itives. As shown in Fig 1 the role of the simulator is to not only simulate the behavior
of F but also remain consistent with the behavior of G. Note that, the simulator does
not know the queries made directly to G, although it can query G whenever it needs.

For the rest of the paper C represents the domain extension algorithm of an iterated
hash function. We consider G and F to be the same primitive; a random oracle. The
only difference is F is a fixed length random oracle whereas G is a variable length
random oracle. Intuitively a random function (oracle) is a function f : X → Y chosen
uniformly at random from the set of all functions from X to Y .

Definition 2. f : X → Y is said to be a random oracle if for each x ∈ X the value of
f(x) is chosen uniformly at random from Y . More precisely, for x /∈ {x1, . . . , xq} and
y, y1, · · · , yq ∈ Y we have

1
Pr[f(x) = y | f(x1) = y1, f (x2) = y2, · · · , f (xq) = yq] =

|Y |

Most of the hash functions used in practice are iterated hash functions. The con­
struction of an iterated hash function starts with a length compressing function f :
{0, 1}m' → {0, 1}n. Then we apply a domain extension technique, like the well known
Merkle-Damg ̊ard , to realize a hash function Cf : {0, 1}∗ → {0, 1}n. Intuitively, any
practical domain extension technique applies the underlying compression function f
in a sequence, where inputs of f are determined by previous outputs and the message
M ∈ {0, 1}∗ (for parallel constructions, inputs only depend on the message). Finally
the output Cf (M) is a function of all the previous intermediate outputs and the message
M . The Generalized Domain Extension (GDE) are the domain extension techniques
where uc is the input to final invocation of f and Cf (M) = f(uc). A domain exten­
sion algorithm from the class GDE is completely characterized by the following two
functions:

�	 �

1.	 Length function: f : {0, 1}∗ → N is called length function, which actually mea­
sures the number of invocation of f . More precisely, given a message M ∈ {0, 1}∗ ,
f = f(M) denotes the number of times f is applied while computing Cf (M).

2.	 Input function: For each j ∈ N, Uj : {0, 1}∗ × ({0, 1}n)j → {0, 1}m ' , called
jth input function. It computes the input of jth invocation of f . This is com­
puted from the message M and all (j − 1) previous outputs of f . In other words,
Uj (M, v0, v1, · · · , vj−1) is the input of jth invocation of f while computing Cf (M),
where v1, · · · , vj−1 denote the first (j − 1) outputs of f and v0 is a constant de­
pending on the construction. The input function usually depend on message block,
instead of whole message and hence we may not need to wait to get the complete
message to start invoking f .

The above functions are independent of the underlying function f . Note that the
padding rule of a domain extension is implicitly defined by the input functions defined
above. At first sight, it may seem that GDE does not capture the constructions with
independent post processor. But we argue that, when the underlying primitive is mod­
eled like a random oracle, then queries to the post processor can be viewed as queries
to same oracle (as in the intermediate queries) but with different padding. Namely in
case of NMAC like constructions, we can consider a GDE construction where the in­
puts to the intermediate queries are padded with 1 and the final query is padded with
0. Similarly, one can incorporate domain extensions which use more than one random
oracle.

Definition 3. (GDE: Generalized Domain Extension)
Let S = (f, (Uj)j≥1) be tuple of deterministic functions as stated above. For any

function f : {0, 1}m ' → {0, 1}n and a message M , GDEf (M) is defined to be vc,S
where f = f(M) and for 1 ≤ j ≤ f,

vj = f Uj (M , v0, v1, · · · , vj−1) .

The uj = Uj (M , v0, v1, · · · , vj−1) is called the jth intermediate input for the message
M and the function f , 1 ≤ j ≤ f. Similarly, vj = f(uj) is called jth intermediate
output, 1 ≤ j ≤ f − 1. The last intermediate input uc is also called final (intermediate)
input. The tuple of functions S completely characterizes the domain extension and is
called the structure of the domain extension GDES .

Note that we can safely assign v0 = I V , the Initialization Vector, used in many
domain extensions. In Fig 2 we describe the concept of GDE. Each Gi is an algo­
rithm which computes the ith intermediate input ui, using the input-function Ui defined
above. The wires between Gi and Gi+1 is thick. In fact it contains all the previous in­
put, output and the state information. In this paper we describe sufficient conditions to
make a Generalized Domain Extension technique indifferentiable from a Random Ora­
cle (RO). In the next section we show a hybrid technique to characterize the conditions
and prove its correctness.

G1 G2 G3 GL

f f f

u1 v1 u2 v2 uL
vL Cf (M)

M

Fig. 2. The Generalized Domain Extension Circuit

3 Indifferentiability of GDE

In this section we discuss the sufficient condition for a domain extension algorithm
C of the class GDE to be indifferentiable from a random oracle R. Let C queries a
fixed input length random oracle f . Recall that to prove the indifferentiability, for any
distinguisher D running in time bounded by some polynomial of the security parameter
κ, we need to define a simulator S such that

| Pr[DCf ,f = 1] − Pr[DR,SR

= 1]| < ε(κ).

Here ε(κ) is a negligible function and the probabilities are taken over random coin
tosses of D and randomness of f and R. Let right query denote the queries to R/C f

and left query denote the queries to SR/f . The simulator keeps a list L, initialized to
empty. If ui is the ith query to the simulator and the response of the simulator was vi

then the ith entry of L is the tuple (i, ui, vi).

Definition 4. Let C ∈ GDE. We say that Cf (M) for a message M is computable from
a list L = {(1, u1, v1), · · · , (k, uk, vk)} if there are f = f(M) tuples (i1, ui1 , vi1),· · · ,
(ic, ui£ , vi£) ∈ L such that for all t ∈ {1, 2, · · · , f},

uit = Ut(M, v0, vi1 , · · · , vit−1).

Intuitively for any simulator to work, C must have the following property:

Message Reconstruction: There should an efficient algorithm P4 such that given a
set L = {(1, u1, v1), · · · , (k, uk, vk)}, input-output of k many f queries and an input
u ∈ {0, 1}m ' (in the domain of f); P(L, u) outputs M if Cf (M) is computable from
L ∪ {(k + 1, u, v)} for all v ∈ {0, 1}n where uc = u (as in Definition 4). If no such M
exists P outputs ⊥. If there are more than one such M , we assume P outputs any one
of them.5

We argue that this is a very general property and is satisfied by all known secure
domain extensions. In fact, the Message reconstruction algorithm P defined above is
similar to the extractor of Preimage Awareness (PrA) of [11]. This is very natural as

4 Note that the exact description of P depends on specific implementation.
5 For example, P can choose a message randomly among all such messages. However, it will

actually invoke BAD event.

the notion of PrA is much relaxed notion than that of PRO and every PRO is essentially
PrA [11]. However existence of such an algorithm does not guarantee indifferentiability
from a Random Oracle. For example, the traditional Merkle-Damg ̊ard construction is
PrA but not PRO. In fact, The method of [11] is only applicable to prove indifferentia­
bility when the final query is made to an independent post processor. On the other hand,
Our contribution in this paper is to show a set of sufficient conditions along with the
existence of extractor for a domain extension of the class GDE (where the final query
can be made to that same function) to be a PRO.

Our simulator works as follows. Suppose the kth query to the simulator is u. Then

–	 If (i, u, v) ∈ L for some i < k and some v ∈ {0, 1}n, then L = L ∪ {(k, u, v} and
return v.

–	 If P(L, u) = M
•	 L = L ∪ {(k, u, R(M))}
•	 return R(M)

–	 If P(L, u) =⊥
•	 Sample h ∈R {0, 1}n

•	 L = L ∪ {(k, u, h)}
•	 return h

Without loss of generality, we can assume adversary maintains two lists Lright and
Llef t to keep the query-responses made to R/C f and SR/f respectively.

3.1 Security Games

To prove the indifferentiability of GDE we shall use hybrid technique. We start with
the scenario when the distinguisher D is interacting with Cf , f .

A left query S(u)	 A right query C(M)

1.	 return C OM RO(u). 1. v0 = λ.
2.	 e = e(M).

COM RO(u) 3. for i = 1 to e
(a) ui = Ui(M, v0, v1, · · · , vi−1).1.	 return f(u).
(b) vi = C OM RO(ui).

4. return vL.

Fig. 3. Procedures of Game 0

Game 0: In this game the distinguisher is given access to an oracle S for the left queries.
Additionally, both C and S is given access to another oracle C OM RO which can
make f queries. Note that C or S do not have direct access to f . S on an input (u),
queries C OM RO(u). C OM RO on input u returns f(u). Formally, Game 0 can be

viewed as Fig 3. Since the view of the distinguisher remains unchanged in this game
we have

P r[DCf ,f = 1] = P r[G0 = 1]

where G0 is the event when the distinguisher outputs 1 in Game 0.
Game 1 Now we change the description of the subroutine C OM RO and gives it an
access to random oracle R as well. In this game C OM RO takes a 3-tuple (u, M, tag)
as input where u ∈ {0, 1}m ' , M ∈ {0, 1}m and tag ∈ {0, 1}. C OM RO returns f(u)
when tag = 0 and returns R(M) otherwise. We also change the procedure to handle
left and right query. In this game, the algorithm S maintains a list L containing the
query number, input, output of previous left queries. While processing a right query
M , the algorithm queries C OM RO with tag = 1 when querying with uc and makes
tag = 0 for all other queries. Informally speaking, for a right query M , the algorithm C
behaves almost similarly as game 0, except it returns R(M) as the response. Similarly
when a left query is a trivially derived from L and some message M , the algorithm sets
tag = 1 before querying C OM RO and sets tag = 0 otherwise. Formally Game1 can
be viewed as Figure 4.

A left query S(u) A right query C(M)

1. If (j, u, v) ∈ L for some v, j , return v. 1. v0 = I V .
2. If P(L, u) = M 2.=⊥ e = e(M).

(a) v = C OM RO(u, M, 1). 3. for i = 1 to e − 1
(b) index = index + 1. (a) ui = Ui(M, v0, v1, · · · , vi−1).
(c) ADD (index, u, v) to L (b) vi = C OM RO(ui, λ, 0).
(d) return v 4. uL = Ui(M, v0, v1, · · · , vL−1).

3. else \\P(L, u) =⊥ 5. vL = C OM RO(uL, M, 1).
(a) v = C OM RO(u, λ, 0). 6. return vL.
(b) index = index + 1.

COM RO(u, M, tag)(c) ADD (index, u, v) to L
(d) return v 1. if tag = 0 return f(u).

2. else return R(M)

Fig. 4. Procedures of Game 1. The variable index represents the number of distinct queries made
to S, so far; i. e. index is the size of the list L. Initially index is set to 0. λ represent the empty
string.

Definition 5. Trivial Query
A left query u is said to be a trivially derived query (in short, trivial query) if there exist
a M ∈ Lright and k tuples (i1, ui1 , vi1), · · · , (ik, uik , vik) ∈ Llef t such that

– uit = Ut(M , v0, vi1 , · · · , vit−1) for all t ∈ {1, 2, · · · , k}
– u = Uk+1(M, v0, vi1 , · · · , vik)

Similarly a right query M is said to be a trivial query if M is computable from Llef t .
Any other queries are said to be nontrivial queries.

Definition 6. BA D Events for Game 0 and Game 1
Let D make q queries to a game (either Game 0 or Game 1). Let uj be the jth query
when it is a left query and Mj be the jth query when it is a right query. For ith right

f i iquery Mi, let u be the input to final C OM RO query and uin,1, uin,2, · · · be the i

inputs to the non-final intermediate C OM RO queries. The ith query is said to set the
BA D event if one of the following happens

– for nontrivial right query (Mi, right)
• Collision in final input The final input is same as final input of a previous right

f f query. ui = uj ; i = j and Mi = Mj .
• Collision between final and non-final intermediate input

∗ The final input is same as intermediate input of a previous right query,
f ku = u for some k ≤ i and j < l(Mk).i in,j

∗ One of the intermediate input is same as the final input of a previous right
fiquery. u = u for some j < i and k ≤ l(Mi)in,k j

• Collision between final input and nontrivial left query The final input is same
fas a non-trivial left query uj ; u = uj for some j < i but uj is not a trivial i

query for Mi.

– for left query (ui, lef t)

•	 Collision between nontrivial left query and final input of a right query ui =
f uj for some j < i but ui is not trivially derived.

Let us concentrate on how each of the event defined above can help the distinguisher.
When nontrivial collision between the final input of two right (say Mi and Mj) query
happens, the output of two queries will surely be a collision in Game 0. But in case of
Game 1, the collision probability will be negligible. When final intermediate input of
right query Mi collides with non-final intermediate input of another right query Mj , it
may not be obvious how D can exploit this event. But we note that in that case output
distribution of these two queries may not be independent in Game 0. The well known
length extension attack can also be seen as exploiting this event. Finally if the final input
of some right query Mj collides with input of some nontrivial left query ui, the outputs
of these two queries are same in Game 0. But it is easy to check that, in Game 1, they
will be same with negligible probability. We stress that unless the nontrivial left query
is same as the final input , adversary cannot gain anything. In fact in both of the games
the output distribution remains same, even if the nontrivial left query collides with some
non-final intermediate input of some right query.

Theorem 1. Let C ∈ GDE be a domain extension algorithm. Let BA D event be as
defined in Definition 6. Then for any distinguisher D,

| Pr[DCf ,f = 1] − Pr[DR,SR

= 1]| ≤ Pr[BA DCf ,f]

where BA DCf ,f denotes the BA D event when D is interacting with (Cf , f).

Proof. To prove the theorem we will show the following relations. Let G1 denote the
event that the distinguisher outputs 1 in Game 1,

1. | Pr[G0 = 1] − Pr[G1 = 1]| ≤ Pr[BA D0].

2. Pr[G1 = 1] = Pr[DR,SR
= 1]

,fAs P r[DCf
= 1] = P r[G0 = 1] and Pr[BA D0] = Pr[BA DCf ,f], the theorem

will follow immediately. First we shall prove that if BA D events do not happen, then
the input output distributions of Game 0 and Game 1 are identical. It is easy to check
that ¬BA D is a monotone event as once BA D event happens (flag is set) it remains so
for future queries. Now if the BA D events do not happen, then the final input of a right
query is always “fresh” in both the games. So the output distribution remains same.
On the other hand, if an input to a nontrivial left query is not same as the final input
of a previous right query, then in both the cases the outputs are same and the output
distribution of the left query is consistent with the previous outputs. Similar to [14], we
view each input, output and internal states as random variables. We call the set of input,
output and internal states as the transcript of the game. Let T j denote the transcript of i
Game j after ith query, j = 0, 1. Let BA D0 and BA Di

1 be the random variable of BA D i
event in ith query in Game 0 and Game 1 respectively. The following lemma shows that
the probability of BAD event occuring first in ith query is same in both Game 0 and
Game 1. Moreover if BA D does not happen in first i queries then the transcript after ith

query is identiaclly distributed in both the games.

Lemma 1. 1. Pr[BA D0 ∧ ¬(∪i−1 BA D0)] = Pr[BA Di
1 ∧ ¬(∪i−1 BA D1)]i k=1 k k=1 k

2. Pr[T 0|¬ ∪i BA D1] = Pr[T 1|¬ ∪i BA D1]i k=1 k i k=1 k

For a detail proof of the above Lemma, we refer the reader to Appendix A. As a direct
application of this Lemma, we get the following results.

Corollary 1. Let BA Dj denote the event that, D invokes BA D in Game j. Then we
have,

1. Pr[BA D0] = Pr[BA D1]
2. Pr[DG0 ∧ ¬BA D0] = Pr[DG1 ∧ ¬BA D1]

Using Corollary 1 one can get the following lemma.

Lemma 2. Let G1 denote the event that the distinguisher outputs 1 in Game 1.

| Pr[G0 = 1] − Pr[G1 = 1]| ≤ Pr[BA D0]

For the proof of Lemma 2 we refer the reader to the full version of the paper.

Now we shall prove that Pr[G1 = 1] = Pr[DR,SR

= 1]. We prove it by hybrid

arguments.

Game 2: In this game we change the description of C. Here we remove the lines 1−4 in

the description of C in Game 1 and change the query in line 5 to C OM RO(λ, M, 1)

where λ is an empty string. So C does not anymore query C OM RO with tag = 0.

Note that output of C is still R(M). So the changes does not affect the input output

distribution of the game. Hence

Pr[G2 = 1] = Pr[G1 = 1]

where G2 is the event D outputs 1 in Game 2.

f f R

f C S C

COM RO

S C

COM RO0 COM RO1

D D D

Game (Cf , f) Game 0 Game 1

f R

S C

COM RO0 COM RO1

S C

f R

S R

f

D D D

Game 2 Game 3 Game 4

Fig. 5. Security Games

Game 3: Now we give S and C a direct access to f and R. So we replace the query
C OM RO(u, M, 0) by f(u). Similarly we write R(M) in place of C OM RO(u, M, 1).
As D did not have direct access to C OM RO and C OM RO did not modify any list,
Game 3 is essentially same as Game 2. So

Pr[G3 = 1] = Pr[G2 = 1]

where G3 is the event D outputs 1 in Game 3.
Game 4: In this game we remove the subroutine C. So the distinguisher D has direct
access to R. Now as the simulator S had no access to internal variables of C, the input
output distribution remains same after this change. So

Pr[G4 = 1] = Pr[G3 = 1]

where G4 is the event D outputs 1 in Game 4.
The final observation we make is that S need not query f . Instead it can choose

a uniform random value from {0, 1}n. Note that f is modeled as random function.
So we changed a random variable of the game with another random variable of same
distribution. Hence all the input, output, internal state distribution remains same. This
makes S exactly the same simulator we defined.

Pr[G4 = 1] = Pr[DR,SR

= 1].

�

As the Game 0 is equivalent to the pair (Cf , f) we obtain our main result of the section
(using triangle inequality):

| Pr[DCf ,f = 1] − Pr[DR,SR

= 1]| ≤ Pr[BA D0] = Pr[BA DCf ,f]

D

4 Applications to popular mode of operations

In this section we show the indifferentiability of different popular mode of operations
from a Random Oracle. We note that, according to Theorem 1 to upper bound dis­
tinguisher’s advantage one needs to calculate the probability of BA D event defined in
previous section. Moreover we can only concentrate on the specific mode of operation
rather than the output of the simulator.

4.1 Merkle-Damgård with prefix free padding

It is well known that the usual Merkle-Damg ̊ard domain extension fails to satisfy indif­
ferentiability property because of the length extension attacks. So we need to use some
prefix free padding on the input message. Let g be the padding function. On input of
message M and with oracle access to f : {0, 1}m ' → {0, 1}n, the MD domain exten­
sion computes the hash value using the following algorithm.
Merkle-Damgård (M Df (M))

1. let y0 = 0n (more generally, some fixed IV value can be used)
2. let g(M) = (M1, ..., Ml)
3. for i = 1 to l

– do yi = f(yi−1, Mi)
4. return yl.

In [6], Coron et. al. proved indifferentiability of Merkle-Damg ̊ard Construction for pre­
fix free padding. We reprove the result using Theorem 1 in a simpler way.

Theorem 2. The prefix free Merkle-Damg ̊ard construction is (tS , qC , qF , ε) - indiffer­
entiable from a random oracle, with tS = f · O(q2) and ε = O(σ

2
), where f is the 2n

maximum length of a query made by the distinguisher D, σ is the sum of the lengths of
the queries made by the distinguisher and q = qC + qF .

Note that for prefix free Merkle-Damg ̊ard constructions our simulator defined in Section
3 is similar to that of [12]. As shown in that paper, the simulator’s running time is
f · O(q2). For the proof of the above Theorem, the reader is referred to the full version
of the paper. In this paper we concentrate on MD with a special padding rule, HAIFA.

Fig. 6. Merkle-Damgård with padding rule HAIFA

4.2 Merkle-Damgård with HAIFA

Now we consider Merkle-Damg ̊ard mode of operation another variant of prefix free
padding; HAIFA. In this padding we append a counter (indicating the block number)
with each but last block of the message. The last block is padded with 0 (see Fig 6). It
is easy to check that Merkle-Damg ̊ard with HAIFA belongs to GDE. In this case the
reconstruction algorithm works as follows. Let t denote the length of the padding. On
input of a f query u; check whether the last t bit of u is 0. If not return ⊥. Otherwise
parse u as h0||m0 where h0 is of n bits. Find, whether h0 is in the output column of
a query in the list L. If no return ⊥. If such a query exists select corresponding input
ui. Now last t bit of ui will be f − 1, where f is the number of blocks in possible
message. We call such an ui as uc−1. Now for j = f − 1 to 2; parse uj as hj−1||mj .
find whether hj−1 exist in the output column of L where the corresponding input has
padding j − 1. If no return ⊥. Else select the input and call it uj−1. Repeat the above
three steps until we find a uj with padding 1. If we can find such uis, then construct
the message M = m1||m2|| · · · mc||m0 and return M . Check that for ith query the
algorithm P runs in time O(if) where f is the maximum block length of a query. Hence
the total running time of P and hence of the simulator is O(q2f).

For finding the probability of BA D events, the HAIFA padding rule gives us the
following advantage. While computing Cf (M) for any message M , all the intermediate
inputs are unique. In fact the final input is always different from any intermediate input.
So if no f query with same counter padding has collision in the output, the output of
the penultimate f queries do not have collision in output and no nontrivial left query
input is same as the final input of some right query, BA D event does not happen. If BA D
event does not happen in ith query, the output of ith query is uniformly distributed over
Y = {0, 1}n. Without loss of generality, we assume that D does not make any trivial
query as trivial queries do not raise a BA D event. Moreover we can consider only a
deterministic (albeit adaptive) distinguisher as the general case can easily be reduced to
this case [17]. So input to the ith query is uniquely determined by previous i−1 outputs.
We represent the output of the nontrivial queries as the view (V) of the distinguisher. Let
f : {0, 1}m ' → {0, 1}n be a fixed input length random oracle. If D makes q nontrivial
queries and V is the set of all possible views then |V | = |Y |q . We write V as ∩q Vi,i=1
where Vi is the output corresponding to ith query. Now for any V ∈ V , we define an

Vevent BA Dt which occurs whenever there is a collision between intermediate inputs,
Vfinal inputs and left query inputs. In fact, ¬BA DtV ∩ V ⊆ ¬BA D ∩ V . We split, BA Dt

Vas ∪q BA DtV . BA Dt occurs whenever any intermediate input (final or non-final) of i=1 i i
ith right query collides with any intermediate inputs of any other distinct right query
or with input of any nontrivial left query. Although we are working with an adaptive

i attacker, future query inputs are fixed by V . Note that, if ith query is left query BA DtV

never occurs. Suppose fi is the number of blocks in ith query.

Suppose the ith query made by the distinguisher is a right query. For ¬BA DtV to hap-
i
pen, any intermediate input (final or non-final) has to be different from previous inter-
mediate/final inputs. Because of HAIFA padding, no final input will be same with any
intermediate input. So if ¬BA DtV has to be true, every intermediate input of ith has to i
be different from the intermediate inputs with same counter of previous i − 1 queries.
Also any intermediate input can not be same as future left query inputs or future right
query intermediate inputs fixed by the view. There only q many such candidates. So for
any intermediate(final) input there are at most i − 1 + q < 2q bad values. Hence, ci−1|Y | − 2q 1

Pr[¬BA DtV ∩ Vi| ∩i−1 (¬BA DtV ∩ Vj)] ≥ · .i j=1 j |Y | |Y |

If the ith query is nontrivial left query,

1
Pr[¬BA DtV ∩ Vi| ∩i−1 (¬BA DtV ∩ Vj)] = .i j=1 j |Y |

So one can calculate the probability of ¬BA D as
Pr[¬BA D] = Pr[¬BA D ∩ V] ≥ Pr[¬BA DtV ∩ V]

V ∈V V ∈V
= Pr[∩q

i=1(¬BA DtV
i ∩ Vi)]

V ∈V qI
=

V ∈V

Pr[¬BA DtV
1 ∩ V1]

i=2

Pr[¬BA DtV
i ∩ Vi| ∩i−1

j=1 (¬BA DtV
j ∩ Vj)]

≥

V ∈V

qI

i=1

|Y | − 2q
|Y |

 ci−1

·

≥

V ∈V

1 − O(

σq
|Y |

)

· 1
|Y |q

1
|Y |

= 1 − O(
σq
|Y |

)

Here Y = {0, 1}n and σ =
 q

i=1 fi. So Pr[BA D] ≤ O(σq
2n).

Theorem 3. The Merkle-Damg ̊ard construction with HAIFA padding rule based on a
FIL-RO is (tS , qC , qF , ε) - indifferentiable from a random oracle, with tS = f · O(q2)

O(σq and ε =), where f is the maximum length of a query made by the distinguisher 2n

D, σ is the sum of the lengths of the queries made by the distinguisher and q = qC +qF .

In [5], Coron et al. considered a specific prefix-free padding rule which is similar
to HAIFA. There they proved indifferentiability bound as O(σ

2
). So Theorem 3 can be 2n

seen as improving that bound as well. In Section 5.1 we show that the bound we prove
in Theorem 3 is tight.

4.3 Tree Mode of Operation with counter

Tree mode of operation is another popular mode of operation. MD6, a SHA3 candidate
uses this mode of operation. Let f : {0, 1}m ' → {0, 1}n. The input message is divided
in blocks and can be viewed as the leaf nodes. The edges are the function f . Any
internal node can be viewed as the concatenation of the outputs of f on its child nodes.
The output of the hash function is the output of f applied on the root. Now with each

Cf (M1�M2�M3�M4)

f

(0, 0)�f21�f22

(2, 1)�f11�f12

f f

(2, 2)�f13�f14

f f

f f

(1, 1)�M1 (1, 2)�M2 (1, 3)�M3 (1, 4)�M4

Fig. 7. Tree Mode of Operation with Sequential Padding where m ' = 2
n

node we associate a tag (height, index) where height denotes the height of the node
in the tree and index represents the index of the node in the level it is in (see Figure 7).
Each node is padded with the tag. This padding makes, like HAIFA, each input unique
in the evaluation tree of Cf (M) for any fixed message M . One can easily construct the
computable algorithm P using the same method as in HAIFA. Due to space constraint
we don’t describe the it here. Let Mi and Mj be two distinct right queries (for simplicity,
both of length f) made by distinguisher. Let k be an index such that kth block of Mi

and Mj is different. Consider the path from node (1, k) to the root. It is easy to check
that if no collision happens in this path, the final input of f query does not collide while
computing Cf (Mi) and Cf (Mj). Length of this path is log f (height of the tree). On
the other hand a nontrivial left query input can collide with at most one intermediate
input of a right query. Hence, using a method similar to proof of Theorem 3, one can
prove the following theorem

Theorem 4. Let F be a FIL-RO and C be the tree mode of operation with the counter
padding. CF is (tS , qC , qF , ε) - indifferentiable from a random oracle, with tS =

log cf · O(q2) and ε = O(q 2

), where f is the maximum length of a query made by the 2n

distinguisher D and q = qC + qF .

We refer the reader to the full version of the paper for a proof of the above theorem.

5 Indistinguishability attacks on popular mode of operations

In this section we show a lower bound for the advantage of a distinguishing attacker
against Merkle-Damg ̊ard constructions with HAIFA padding and Tree mode of oper­

 �
� �

�

ations with counter padding scheme. The bound we achieve actually reaches the cor­
responding upper bound shown before. Note, if all the queries are of length f, then
q2f = qσ.

5.1 Distinguishing Attacks on Merkle-Damg ̊ard Constructions

Consider q messages M1, · · · , Mq such that,

PA D(M1) = M1
1||M2|| · · · ||M c

PA D(M2) = M2
1||M2|| · · · ||M c

. . .

PA D(Mq) = M1||M2|| · · · ||M c
q

Let CO L L be the event denoting collision among Cf (M1), · · · , C f (Mq). We shall
2 cprove that, Pr[CO L L] = Ω(q) Let CO L Lij be the event denoting the collision be­2n

tween Cf (Mi) and Cf (Mj). Hence,

Pr[CO L L] = Pr[CO L Lij].

1≤i<j≤q

Using principle of inclusion-exclusion we get,

Pr[CO L Lij] ≥ Pr[CO L Lij] − Pr[CO L Lij ∩ CO L Lj k]

1≤i<j≤q 1≤i<j≤q 1≤i<j <k≤q

+ Pr[CO L Lij ∩ CO L Lik] + Pr[CO L Lik ∩ CO L Lj k]

−	 Pr[CO L Lij ∩ CO L Lkr] + Pr[CO L Lik ∩ CO L Ljr]

1≤i<j<k<r≤q

+ Pr[CO L Lir ∩ CO L Ljk] (1)

In the full version of the paper, we prove the following Lemma.

Lemma 3. Let Y = {0, 1}n and 1 ≤ i < j < k < r ≤ q. If f − 1 ≤ 2n, then
c1.	 Pr[CO L Lij] ≥ 2|Y |

22c2.	 Pr[CO L Lij ∩ CO L Lj k] ≤ |Y |2

2 3 c 6c3. Pr[CO L Lij ∩ CO L Lkr] ≤ |Y |2 + |Y |3

Using Equation 1 and Lemma 3 one can prove,

q f q 2f2 q f2 6f3 α α2 α
Pr[CO L L] ≥ − 3 − 3 (+) ≈ − ≥

2 2|Y | 3 |Y |2 4 |Y |2 |Y |3 4 8 8
2 q cwhere α = 2n < 1. By Birthday Bound, for a random function R, the collision prob­

2

ability for q different messages is Θ(q). Hence for a distinguisher D which queries 2n
2 cmessages M1, · · · , Mq , the advantage of the distinguisher is Ω(q). Also we can eas­2n

ily construct such q messages for any prefix free Merkle-Damgård scheme, specifically
HAIFA.

Theorem 5. Let C be the Merkle-Damg ̊ard domain extension with a prefix free padding.
There exist a distinguisher D, such that

| Pr[DCf ,f = 1] − Pr[DSR,R = 1]| ≥ Ω(
q2f

)
2n

where D makes q queries and length of each query is at most f.

5.2 Distinguishing Attacks on Tree Mode

Similar to previous attack we choose q messages M1, · · · , Mq such that after padding
only first block of these messages are different. Formally

PA D(Mi) = Mi
1||M2|| · · · ||M c .

Now for these massages the tree mode works like a Merkle-Damg ̊ard mode with mes­
sages M1, · · · , M q where

2 h
PA D(Mi) = Mi

1||M || · · · ||M ∀i = 1, 2, · · · , q

h = plog fl is the height of the tree. Hence using the similar method to previous section
we get the following Theorem.

Theorem 6. Let C be the Tree mode domain extension with the sequential counter
padding. There exist a distinguisher D, such that

q2 log f | Pr[DCf ,f = 1] − Pr[DSR,R = 1]| ≥ Ω()
2n

where D makes q queries and length of each query is atmost f.

6 Conclusion and Future work

In this paper we proposed a unified method to prove indifferentiability of a wide class
of iterated hash function, called GDE. Using our method we proved optimal indiffer­
entiability bounds for Merkle-Damg ̊ard construction with counter (e.g. HAIFA) mode
and for Tree Mode constructions with a similar sequential padding. This result shows
tight indifferentiability bound (when the underlying compression functions are realized
as random oracles) for many SHA3 candidates like BLAKE, LANE, SHAvite-3, MD6
etc. We strongly believe that tight indifferentiability bounds for MD constructions with
independent post-processor [11] can also be proved using our method.

References

1. M. Bellare and P. Rogaway.	 Random Oracles Are Practical : A Paradigm for Designing
Efficient Protocols. In 1st Conference on Computing and Communications Security, ACM,
pages 62–73. 1993.

2. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension and the
EMD Transform. In Advances in Cryptology - Asiacrypt 2006, volume 4284 of LNCS, pages
299-314, Springer-Verlag, 2006.

3. R. Barke On the Security of Iterated MACs. Diploma Thesis ’03. ETH Zurich

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the sponge
construction. In Advances in Cryptology- Eurocrypt 2008, volume 4965 of LNCS, pages 181­
197. Springer-Verlag, 2008.

5. J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard Revisited: How to Con­
struct a Hash Function. In Advances in Cryptology- Crypto 2005, volume 3621 of LNCS, pages
430–448. Springer-Verlag, 2005.

6. J. S. Coron, Y.	 Dodis, C. Malinaud and P. Puniya. Merkle-Damgard Revisited: How to
Construct a Hash Function (full version of [5]). http://cs.nyu.edu/˜dodis/ps/
merkle.ps

7. J. S. Coron, J. Patarin and Y Seurin. The Random Oracle Model and the Ideal Cipher Model
Are Equivalent. In Advances in Cryptology- Crypto 2008 volume 5157 of LNCS, Springer-
Verlag, pages 1-20, 2008.

8. I. Damgard˚ A Design Principles for hash functions. In Advances in Cryptology-CRYPTO
1989, volume 435 of LNCS, pages 416-427, Springer-Verlag, 1989.

9. Y. Dodis, K. Pietrzak, and P. Puniya. A new mode of operation for block ciphers and length-
preserving MACs. In Advances in Cryptology-EUROCRYPT 2008, volume 4965 of LNCS,
pages 198-219. Springer-Verlag, 2008.

10. Y. Dodis, L. Reyzin, R. Rivest and E. Shen. Indifferentiability of Permutation-Based Com­
pression Functions and Tree-Based Modes of Operation, with Applications to MD6. In FSE
2009.

11. Y. Dodis, T. Ristenpart and T. Shrimpton.	 Salvaging Merkle-Damg̊ard for Practical Ap­
plications. In Advances in Cryptology, Eurocrypt 2009, volume 5479 of LNCS, pages 371­
388,Springer-Verlag, 2009.

12. D. Chang, S. Lee, M. Nandi, and M. Yung. Indifferentiable security analysis of popular hash
functions with prefix-free padding. In Advances in Cryptology - Asiacrypt 2006, volume 4284
of LNCS, pages 283-298, Springer-Verlag, 2006

13. R. Canetti, O. Goldreich and S. Halevi. The random oracle methodology, revisited. In STOC’
1998, ACM,1998.

14. U. Maurer.	 Indistinguishability of Random Systems. In Advances in Cryptology- EURO­
CRYPT 2002,volume 2332 of LNCS pages 110-132, Springer-Verlag, 2002.

15. U. Maurer, R. Renner and C. Holenstein. Indifferentiability, Impossibility Results on Re­
ductions, and Applications to the Random Oracle Methodology. In TCC’2004, volume 2951 of
LNCS, pages 21–39. Springer-Verlag, 2004.

16. J. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
committing Encryption Case. In Advances in Cryptology-Crypto 2002, volume 2442 of LNCS,
Springer-Verlag, 2002.

17. M. Nandi	 A Simple and Unified Method of Proving Indistinguishability In Progress in
Cryptology - Indocrypt 2006, volume 4329 of LNCS, pages 317-334, Springer-Verlag, 2002.

18. SHA 3 official website	 http://csrc.nist.gov/groups/ST/hash/sha-3/
Round1/submissions_rnd1.html

http://csrc.nist.gov/groups/ST/hash/sha-3
http:merkle.ps
http://cs.nyu.edu/�dodis/ps

Appendix A Proof of Lemma 1
j j j jLet X1 , X 2 , · · · ,Xq

j ∈ X and Y1 , Y 2 , · · · , Y q
j ∈ Y be input random variables and

j j joutput random variables respectively of Game j; j ∈ {0, 1}. Let U , U · · · , U 1,i 2,i, ci ,i

be the internal random variables (output of internal queries) of ith query in Game j. As
previously We call the set of input,output and internal states, the transcript of the game.
Let T j denote the transcript of Game j after ith query. i

In this proof,w.l.g., we assume that Distinguisher does not repeat queries. Let q be
the number queries the adversary make. We shall prove the Lemma 1 by induction on i.

CASE i = 1: We start from the observation that

Pr[X1
0] = Pr[X1

1].
D D

If X1 is a right query (M1, right)

Pr [(U1
0 , · · · , U 0)|X0] = Pr [(U1

1 , · · · , U 1)|X1].c1,1 1 c1,1 1
D,f D,f

Hence

Pr [X1
0, U 1

0
,1, U 2

0
,1, · · · , U c

0
1,1] = Pr [X1

1, U 1
1
,1, U 2

1
,1, · · · , U c

1
1,1].

D,f D,f,R

It is easy to check that for the first query BA D event can only be set by a right query.
Also note that it happens when the final query is same with some non-final intermediate
query. So

Pr [BA D1
0|X1

0, U 1
0
,1, U 2

0
,1, · · · , U c

0
1,1] = Pr [BA D1

1|X1
0, U 1

0
,1, U 2

0
,1, · · · , U c

0
1,1].

D,f D,R,f

Hence
Pr [BA D0] = Pr [BA D1]1 1
D,f D,R,f

fIf ¬BA D1 is true then u / . As f and R are random oracles, we have 1 ∈ IM1

fPr[f(u) = v] = Pr[R(M1) = v]∀v ∈ {0, 1}n
1 .

f R

On the other hand if the first query is (u, lef t) for any u, then Y1 = f(u) in both the
games. So, ∀v ∈ {0, 1}n

Pr [Y 0 = v|X1
0, U 1

0
,1, U 0 · · · , U c

0
1,1 ∧ ¬BA D0]1 2,1, 1

D,f

= Pr [Y 1 = v|X1
1, U 1

1
,1, U 1 · · · , U c

1
1,1 ∧ ¬BA D1].1 2,1, 1

D,R,f

Hence,

Pr [X1
0, U 1

0
,1, U 0 · · · , U c

0
1,1, Y 1

0|¬BA D0]2,1, 1
D,f

= Pr [X1
1, U 1

1
,1, U 1 · · · , U c

1
1,1, Y 1

0|¬BA D1].2,1, 1
D,f,R

�

This Implies that the distribution of transcript after first query is identical in both the

games if ¬BA D1 is true. This finishes the proof of the case i = 1.

Suppose the lemma is true for all i < t.

CA S E i = t:By Induction Hypothesis, we have,

Pr [Tt
0
−1|¬(∪t−1 BA D0)] = Pr [Tt

1
−1|¬(∪t−1 BA D1)].k=1 k k=1 k

D,f D,f,R

As the input/output distribution of two games are same if ¬(∪t−1 BA D1) is true, the k=1 k
distribution of tth query must be same for both the games.

Pr [X0|Tt
0
−1 ∧ ¬(∪t−1 BA D0)] = Pr [X1|Tt

1
−1 ∧ ¬(∪t−1 BA D1)]t k=1 k t k=1 k

D,f D,f,R

When Xt = (ut, lef t) is a non trivial left query then Yt = f(ut) in both the games.
Now if ¬(∪t−1BA Di) is true then, from induction hypothesis, the transcript distribution i=1

fafter t queries is same for both the games. The probability that u collides with some t
final input of any previous query is same for both the games. So for the left query

Pr[BA D0|¬(∪t−1 BA D0)] = Pr[BA D0|¬(∪t−1 BA D1)]t k=1 k t k=1 k

When Xt = (Mt, right) then we have,

Pr [X0|Tt
0
−1 ∧ ¬BA D0] = Pr [X1|Tt

1
−1 ∧ ¬BA D1]t t

D,f D,f,R

Notice that if the distribution of tth query is same for both the games then the
distribution of internal queries is also same for both the games. Hence

Pr [X0, U 0 · · · , U 0 |Tt
0
−1 ∧ ¬(∪t−1 BA D0)]t 1,1, c(Mt),(t) k=1 k

D,f

= Pr [X1, U 1 · · · , U 1 |Tt
1
−1 ∧ ¬(∪t−1 BA D1)].t 1,1, c(Mt),(t) k=1 k

D,f

Hence

Pr [BA D0|¬(∪t−1 BA D0)] = Pr [BA D1|¬(∪t−1 BA D1)]
t k=1 k t k=1 k
D,f R,D,f

For a non-trivial left query (ut, lef t), both the game queries f(ut). if ¬(∪t BA D1)k=1 k
fis true then ut = uj for all j < t. On the other hand , for a right query (Mt, right), if

f f ¬(∪t BA D1) is true then u has never been queried before. Then Prf [f(u) = v] = k=1 k t t
PrR[R(Mt) = v] for all v ∈ {0, 1}n. So

Pr [Y 0, X 0, U 0 · · · ,U0 |Tt
0
−1 ∧ ¬(∪t BA D0)]t t 1,1, c(Mt),(t) k=1 k

D,f

= Pr [Y 1, X 1, U 1 · · · , U 1 |Tt
1
−1 ∧ ¬(∪t BA D1)].t t 1,1, c(Mt),(t) k=1 k

D,R,f

This implies

Pr [T 0|¬(∪i BA D0)] = Pr [Tt
1 , · · · , U 1)|¬(∪i BA D1)]t k=1 k ci,i k=1 k

D,f D,R,f

D

