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Abstract. Understanding the principle behind designing a good hash function is 
important. Nowadays it is getting more importance due to the current SHA3 com­
petition which intends to make a new standard for cryptogrpahic hash functions. 
Indifferentiability, introduced by Maurer et al in TCC’04, is an appropriate no­
tion for modeling (pseudo)random oracles based on ideal primitives. It also gives 
a strong security notion for hash-designs. Since then, we know several results 
providing indifferentiability upper bounds for many hash-designs. Here, we in­
troduce a unified framework for indifferentiability security analysis by providing 
an indifferentiability upper bound for a wide class of hash designs GDE or gener­
alized domain extension. In our framework, we present an unified simulator and 
avoid the problem of defining different simulators for different constructions. We 
show, the probability of some bad event (based on interaction of the attacker with 
the GDE and the underlying ideal primitve) is actually an upper bound for indif­
ferentiable security. As immediate applications of our result, we provide simple 
and improved (in fact optimal) indifferentiability upper bounds for HAIFA and 
tree (with counter) mode of operations. In particular, we show that n-bit HAIFA 
and tree-hashing with counter have optimal indifferentiability bounds Θ(qσ/2n) 
and Θ(q 2 log e/2n) respectively, where e is the maximum number of blocks in 
a single query and σ is the total number of blocks in all q queries made by the 
distinguisher. 

Key-words: Indifferentiability, Merkle-Damg ̊ard , HAIFA, Tree mode of operations 
with counter. 

1 Introduction 

Random Oracle method, introduced by Bellare and Rogaway [1], is a very popular 
platform for proving security of cryptographic protocol. In this model all the partici­
pating parties, including the adversary, is given access to a truly random function R. 
Unfortunately, it is impossible to realize a truly random function in practice. So while 
implementing the protocol the most natural choice is to instantiate R by an ideal hash 
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function H . The formal proofs in Random Oracle model indicate that there is no struc­
tural flaw in the designed protocol. But how can we make sure, that replacing the ran­
dom function R with a good hash function H will not make the protocol insecure? In 
fact recent results [13, 16] show that theoretically it is possible to construct some patho­
logical protocols that are secure in random oracle model but completely insecure in 
standard model. Fortunately those separation results do not imply an immediate serious 
threat to any widely used cryptosystem, proven to be secure in random oracle model. 
So one can hope that any attack, which fails when a protocol is instantiated with R but 
succeeds when the protocol is instantiated with H , will use some structural flaw of H 
itself. So the above question boils down to the following. How can we guarantee the 
structural robustness of a hash function H? 

Indifferentiability of Hash Functions: Motivated by above question, Coron et al. stud­
ied Indifferentiability of some known iterated hash designs[5], based on Maurer’s indif­
ferentiability framework [15]. Informally speaking, to prove indifferentiability of an 
iterated hash function C (based on some ideal primitive f ), one has to design a sim­
ulator S. The job of S is to simulate the behavior of f while maintaining consistency 
with R. Now if no distinguisher D can distinguish the output distribution of the pair 
(Cf , f ) from that of (R, SR), the construction C is said to be indifferentiable from 
an RO. In [5], the authors proved that the well known Merkle-Damg ̊ard Hash func­
tion is indifferentiable from a random oracle under some specific prefix free padding 
rule. Subsequently, authors of [2, 4, 9, 12] proved indifferentiability of different iterated 
hash function constructions. Today indifferentiability is considered to be an essential 
property of any cryptographic hash function. 

Related Work: In [14], Maurer introduced a concept of random systems and showed 
some techniques of proving indistinguishability of two random systems which can 
be useful to prove indistinguishability or even indifferentiability. However, Maurer’s 
methodology can only be applied once one can prove the conditional probability distri­
bution of the view (input/output) given non-ocurrance of bad event, remain identical in 
the two worlds. So far there is no known generic technique for finding the bad event and 
proving the distributions are actually identical. In [11], the authors introduced the con­
cept of preimage awareness to prove the indifferentiability of MD with post-processor 
(modeled as an independent random oracle). More precisely, it was shown that if H is 
preimage-aware (a weaker notion than random oracle model) and R is a post-processor 
modeled as a random oracle then R(H(·)) is indifferentiable. In[10], a particular tree 
mode of operation (4-ary tree) with specific counter scheme is shown to be indifferen­
tiable secure. 

Our Motivation: Although many known hash function constructions have been shown 
to be indifferentiable from an RO, the proof of these results are usually complicated 
(many times, due to numerous game hopings and hybrid arguments). Also, they require 
different simulators for each individual hash design. There are no known sufficient con­
ditions for hash functions to be indifferentiable from an RO. From a different perspec­
tive, the existing security bounds for different constructions are not always optimal. In 
fact, to the best of our knowledge none of the known bounds was proven to be tight. 
The results of [11, 14] do not directly imply to improve the indifferentiability bounds for 
general iterated hash functions based on a single random oracle. The methods of [10] 



does not give us any optimal bound either. So a natural question to ask is: Can we char­
acterize the minimal conditions of a cryptographic hash function to be indifferentiable 
from a Random Oracle and achieve optimal bound? 

Our Result: In this paper, we present a unified technique of proving indifferentiabile 
security for a major class of iterated hash functions, called Generalized Domain Exten­
sions. We extend the technique of [14] to the indifferentiability framework. We identify 
a set of events (called BA D events) and show that any distinguisher, even with un­
bounded computational power, has to provoke the BA D events in order to distinguish 
the hash function C from a random function R. Moreover we prove that, to argue in-
differentiability of a construction Cf , one has only to show that the probability that 
any distinguisher invokes those BA D events, while interacting with the pair (Cf , f ), is 
negligible. We avoid the cumbersome process of defining simulator for each con­
struction separately by providing a unified simulator for a wide range of construc­
tions. To prove indifferentiability one simply need to compute the probability of 
provoking the BA D event when interacting with (Cf , f ). 
In the second part of this paper, we apply our technique to some popular domain exten­
sion algorithms to provide optimal indifferentiable bounds. In particular, we consider 
Merkle-Damgård with HAIFA and tree mode with specific counter scheme.Many of 
candidates of SHA3 competition actually use these two modes of operations. So, our 
result can also be viewd as an optimal indifferentiability guarantee of these candidates. 
We briefly describe our results below: 

1.	 MD with counter or HAIFA: Let Cf be MD with counter where the last block 
counter is zero (all other counters are non-zero). Many SHA3 candidates such as 
BLAKE, LANE, SHAvite-3 etc are in this category. In Theorem 3 and Theorem 5, 
we show that the (tight) indifferentiable bound for C is Θ(σq/2n) where q is the 
number of queries, n is the size of the hash output and σ is total number of blocks 
in all the queries. The so far best known bound for HAIFA mode is σ2/2n [5]. 

2.	 Tree-mode with counter: Tree mode with counter (e.g. the mode used in MD6) is 
known to be indifferentiable secure with upper bound q2f2/2n [10]. In Theorem 4 
and Theorem 6, we are provide an optimal indifferentiable bound Θ(q2 log f/2n). 

2 Notations and Preliminaries 

Let us begin with recalling the notion of indifferentiability, introduced by Maurer in 
[15]. Loosely speaking, if an ideal primitive G is indifferentiable from a construction 
C based on another ideal primitive F , then G can be safely replaced by CF in any 
cryptographic construction. In other terms if a cryptographic construction is secure in 
G model then it is secure in F model. 

Definition 1. Indifferentiability [15] 
A Turing machine C with oracle access to an ideal primitive F is said to be (t, qC , qF , ε) 
indifferentiable from an ideal primitive G if there exists a simulator S with an oracle ac­

,Fcess to G and running time at most t, such that for any distinguisher D, | Pr[DCF 
= 

1] − Pr[DG,SG 
= 1]| < ε. The distinguisher makes at most qC queries to C or G and 



at most qF queries to F or S. Similarly, CF is said to be (computationally) indiffer­
entiable from G if running time of D is bounded by some polynomial in the security 
parameter k and ε is a negligible function of k. 

F C S G 

D 

Fig. 1. The indifferentiability notion 

We stress that in the above definition G and F can be two completely different prim­
itives. As shown in Fig 1 the role of the simulator is to not only simulate the behavior 
of F but also remain consistent with the behavior of G. Note that, the simulator does 
not know the queries made directly to G, although it can query G whenever it needs. 

For the rest of the paper C represents the domain extension algorithm of an iterated 
hash function. We consider G and F to be the same primitive; a random oracle. The 
only difference is F is a fixed length random oracle whereas G is a variable length 
random oracle. Intuitively a random function (oracle) is a function f : X → Y chosen 
uniformly at random from the set of all functions from X to Y . 

Definition 2. f : X → Y is said to be a random oracle if for each x ∈ X the value of 
f(x) is chosen uniformly at random from Y . More precisely, for x /∈ {x1, . . . , xq} and 
y, y1, · · · , yq ∈ Y we have 

1
Pr[f(x) = y | f(x1) = y1, f (x2) = y2, · · · , f (xq) = yq] = 

|Y | 

Most of the hash functions used in practice are iterated hash functions. The con­
struction of an iterated hash function starts with a length compressing function f : 
{0, 1}m' → {0, 1}n. Then we apply a domain extension technique, like the well known 
Merkle-Damg ̊ard , to realize a hash function Cf : {0, 1}∗ → {0, 1}n. Intuitively, any 
practical domain extension technique applies the underlying compression function f 
in a sequence, where inputs of f are determined by previous outputs and the message 
M ∈ {0, 1}∗ (for parallel constructions, inputs only depend on the message). Finally 
the output Cf (M) is a function of all the previous intermediate outputs and the message 
M . The Generalized Domain Extension (GDE) are the domain extension techniques 
where uc is the input to final invocation of f and Cf (M) = f(uc). A domain exten­
sion algorithm from the class GDE is completely characterized by the following two 
functions: 
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1.	 Length function: f : {0, 1}∗ → N is called length function, which actually mea­
sures the number of invocation of f . More precisely, given a message M ∈ {0, 1}∗ , 
f = f(M) denotes the number of times f is applied while computing Cf (M ). 

2.	 Input function: For each j ∈ N, Uj : {0, 1}∗ × ({0, 1}n)j → {0, 1}m ' , called 
jth input function. It computes the input of jth invocation of f . This is com­
puted from the message M and all (j − 1) previous outputs of f . In other words, 
Uj (M, v0, v1, · · · , vj−1) is the input of jth invocation of f while computing Cf (M), 
where v1, · · · , vj−1 denote the first (j − 1) outputs of f and v0 is a constant de­
pending on the construction. The input function usually depend on message block, 
instead of whole message and hence we may not need to wait to get the complete 
message to start invoking f . 

The above functions are independent of the underlying function f . Note that the 
padding rule of a domain extension is implicitly defined by the input functions defined 
above. At first sight, it may seem that GDE does not capture the constructions with 
independent post processor. But we argue that, when the underlying primitive is mod­
eled like a random oracle, then queries to the post processor can be viewed as queries 
to same oracle (as in the intermediate queries) but with different padding. Namely in 
case of NMAC like constructions, we can consider a GDE construction where the in­
puts to the intermediate queries are padded with 1 and the final query is padded with 
0. Similarly, one can incorporate domain extensions which use more than one random 
oracle. 

Definition 3. (GDE: Generalized Domain Extension) 
Let S = (f, (Uj )j≥1) be tuple of deterministic functions as stated above. For any 

function f : {0, 1}m ' → {0, 1}n and a message M , GDEf (M) is defined to be vc,S 
where f = f(M) and for 1 ≤ j ≤ f, 

vj = f Uj (M , v0, v1, · · · , vj−1) . 

The uj = Uj (M , v0, v1, · · · , vj−1) is called the jth intermediate input for the message 
M and the function f , 1 ≤ j ≤ f. Similarly, vj = f(uj ) is called jth intermediate 
output, 1 ≤ j ≤ f − 1. The last intermediate input uc is also called final (intermediate) 
input. The tuple of functions S completely characterizes the domain extension and is 
called the structure of the domain extension GDES . 

Note that we can safely assign v0 = I V , the Initialization Vector, used in many 
domain extensions. In Fig 2 we describe the concept of GDE. Each Gi is an algo­
rithm which computes the ith intermediate input ui, using the input-function Ui defined 
above. The wires between Gi and Gi+1 is thick. In fact it contains all the previous in­
put, output and the state information. In this paper we describe sufficient conditions to 
make a Generalized Domain Extension technique indifferentiable from a Random Ora­
cle (RO). In the next section we show a hybrid technique to characterize the conditions 
and prove its correctness. 
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Fig. 2. The Generalized Domain Extension Circuit 

3 Indifferentiability of GDE 

In this section we discuss the sufficient condition for a domain extension algorithm 
C of the class GDE to be indifferentiable from a random oracle R. Let C queries a 
fixed input length random oracle f . Recall that to prove the indifferentiability, for any 
distinguisher D running in time bounded by some polynomial of the security parameter 
κ, we need to define a simulator S such that 

| Pr[DCf ,f = 1] − Pr[DR,SR 

= 1]| < ε(κ). 

Here ε(κ) is a negligible function and the probabilities are taken over random coin 
tosses of D and randomness of f and R. Let right query denote the queries to R/C f 

and left query denote the queries to SR/f . The simulator keeps a list L, initialized to 
empty. If ui is the ith query to the simulator and the response of the simulator was vi 

then the ith entry of L is the tuple (i, ui, vi). 

Definition 4. Let C ∈ GDE. We say that Cf (M ) for a message M is computable from 
a list L = {(1, u1, v1), · · · , (k, uk, vk)} if there are f = f(M) tuples (i1, ui1 , vi1 ),· · · , 
(ic, ui£ , vi£ ) ∈ L such that for all t ∈ {1, 2, · · · , f}, 

uit = Ut(M, v0, vi1 , · · · , vit−1 ). 

Intuitively for any simulator to work, C must have the following property: 

Message Reconstruction: There should an efficient algorithm P4 such that given a 
set L = {(1, u1, v1), · · · , (k, uk, vk)}, input-output of k many f queries and an input 
u ∈ {0, 1}m ' (in the domain of f ); P(L, u) outputs M if Cf (M) is computable from 
L ∪ {(k + 1, u, v)} for all v ∈ {0, 1}n where uc = u (as in Definition 4). If no such M 
exists P outputs ⊥. If there are more than one such M , we assume P outputs any one 
of them.5 

We argue that this is a very general property and is satisfied by all known secure 
domain extensions. In fact, the Message reconstruction algorithm P defined above is 
similar to the extractor of Preimage Awareness (PrA) of [11]. This is very natural as 

4 Note that the exact description of P depends on specific implementation. 
5 For example, P can choose a message randomly among all such messages. However, it will 

actually invoke BAD event. 



the notion of PrA is much relaxed notion than that of PRO and every PRO is essentially 
PrA [11]. However existence of such an algorithm does not guarantee indifferentiability 
from a Random Oracle. For example, the traditional Merkle-Damg ̊ard construction is 
PrA but not PRO. In fact, The method of [11] is only applicable to prove indifferentia­
bility when the final query is made to an independent post processor. On the other hand, 
Our contribution in this paper is to show a set of sufficient conditions along with the 
existence of extractor for a domain extension of the class GDE (where the final query 
can be made to that same function) to be a PRO. 

Our simulator works as follows. Suppose the kth query to the simulator is u. Then 

–	 If (i, u, v) ∈ L for some i < k and some v ∈ {0, 1}n, then L = L ∪ {(k, u, v} and 
return v. 

–	 If P(L, u) = M 
•	 L = L ∪ {(k, u, R(M))}
•	 return R(M) 

–	 If P(L, u) =⊥ 
•	 Sample h ∈R {0, 1}n 

•	 L = L ∪ {(k, u, h)}
•	 return h 

Without loss of generality, we can assume adversary maintains two lists Lright and 
Llef t to keep the query-responses made to R/C f and SR/f respectively. 

3.1 Security Games 

To prove the indifferentiability of GDE we shall use hybrid technique. We start with 
the scenario when the distinguisher D is interacting with Cf , f . 

A left query S(u)	 A right query C(M) 

1.	 return C OM RO(u). 1. v0 = λ. 
2.	 e = e(M). 

COM RO(u) 3. for i = 1 to e 
(a) ui = Ui(M, v0, v1, · · · , vi−1).1.	 return f(u). 
(b) vi = C OM RO(ui). 

4. return vL. 

Fig. 3. Procedures of Game 0 

Game 0: In this game the distinguisher is given access to an oracle S for the left queries. 
Additionally, both C and S is given access to another oracle C OM RO which can 
make f queries. Note that C or S do not have direct access to f . S on an input (u), 
queries C OM RO(u). C OM RO on input u returns f(u). Formally, Game 0 can be 



viewed as Fig 3. Since the view of the distinguisher remains unchanged in this game 
we have 

P r[DCf ,f = 1] = P r[G0 = 1] 

where G0 is the event when the distinguisher outputs 1 in Game 0. 
Game 1 Now we change the description of the subroutine C OM RO and gives it an 
access to random oracle R as well. In this game C OM RO takes a 3-tuple (u, M, tag) 
as input where u ∈ {0, 1}m ' , M ∈ {0, 1}m and tag ∈ {0, 1}. C OM RO returns f(u) 
when tag = 0 and returns R(M) otherwise. We also change the procedure to handle 
left and right query. In this game, the algorithm S maintains a list L containing the 
query number, input, output of previous left queries. While processing a right query 
M , the algorithm queries C OM RO with tag = 1 when querying with uc and makes 
tag = 0 for all other queries. Informally speaking, for a right query M , the algorithm C 
behaves almost similarly as game 0, except it returns R(M) as the response. Similarly 
when a left query is a trivially derived from L and some message M , the algorithm sets 
tag = 1 before querying C OM RO and sets tag = 0 otherwise. Formally Game1 can 
be viewed as Figure 4. 

A left query S(u) A right query C(M ) 

1. If (j, u, v) ∈ L for some v, j , return v. 1. v0 = I V . 
2. If P(L, u) = M  2.=⊥ e = e(M). 

(a) v = C OM RO(u, M, 1). 3. for i = 1 to e − 1 
(b) index = index + 1. (a) ui = Ui(M, v0, v1, · · · , vi−1). 
(c) ADD (index, u, v) to L (b) vi = C OM RO(ui, λ, 0). 
(d) return v 4. uL = Ui(M, v0, v1, · · · , vL−1). 

3. else \\P(L, u) =⊥ 5. vL = C OM RO(uL, M, 1). 
(a) v = C OM RO(u, λ, 0). 6. return vL. 
(b) index = index + 1. 

COM RO(u, M, tag)(c) ADD (index, u, v) to L 
(d) return v 1. if tag = 0 return f(u). 

2. else return R(M) 

Fig. 4. Procedures of Game 1. The variable index represents the number of distinct queries made 
to S, so far; i. e. index is the size of the list L. Initially index is set to 0. λ represent the empty 
string. 

Definition 5. Trivial Query 
A left query u is said to be a trivially derived query (in short, trivial query) if there exist 
a M ∈ Lright and k tuples (i1, ui1 , vi1 ), · · · , (ik, uik , vik ) ∈ Llef t such that 

– uit = Ut(M , v0, vi1 , · · · , vit−1 ) for all t ∈ {1, 2, · · · , k}
– u = Uk+1(M, v0, vi1 , · · · , vik ) 

Similarly a right query M is said to be a trivial query if M is computable from Llef t . 
Any other queries are said to be nontrivial queries. 



Definition 6. BA D Events for Game 0 and Game 1 
Let D make q queries to a game (either Game 0 or Game 1). Let uj be the jth query 
when it is a left query and Mj be the jth query when it is a right query. For ith right 

f i iquery Mi, let u be the input to final C OM RO query and uin,1, uin,2, · · · be the i 

inputs to the non-final intermediate C OM RO queries. The ith query is said to set the 
BA D event if one of the following happens 

– for nontrivial right query (Mi, right) 
• Collision in final input The final input is same as final input of a previous right 

f f query. ui = uj ; i   = j and Mi = Mj . 
• Collision between final and non-final intermediate input 

∗ The final input is same as intermediate input of a previous right query, 
f ku = u for some k ≤ i and j < l(Mk).i in,j 

∗ One of the intermediate input is same as the final input of a previous right 
fiquery. u = u for some j < i and k ≤ l(Mi)in,k j 

• Collision between final input and nontrivial left query The final input is same 
fas a non-trivial left query uj ; u = uj for some j < i but uj is not a trivial i
 

query for Mi.
 
– for left query (ui, lef t) 

•	 Collision between nontrivial left query and final input of a right query ui = 
f uj for some j < i but ui is not trivially derived. 

Let us concentrate on how each of the event defined above can help the distinguisher. 
When nontrivial collision between the final input of two right (say Mi and Mj ) query 
happens, the output of two queries will surely be a collision in Game 0. But in case of 
Game 1, the collision probability will be negligible. When final intermediate input of 
right query Mi collides with non-final intermediate input of another right query Mj , it 
may not be obvious how D can exploit this event. But we note that in that case output 
distribution of these two queries may not be independent in Game 0. The well known 
length extension attack can also be seen as exploiting this event. Finally if the final input 
of some right query Mj collides with input of some nontrivial left query ui, the outputs 
of these two queries are same in Game 0. But it is easy to check that, in Game 1, they 
will be same with negligible probability. We stress that unless the nontrivial left query 
is same as the final input , adversary cannot gain anything. In fact in both of the games 
the output distribution remains same, even if the nontrivial left query collides with some 
non-final intermediate input of some right query. 

Theorem 1. Let C ∈ GDE be a domain extension algorithm. Let BA D event be as 
defined in Definition 6. Then for any distinguisher D, 

| Pr[DCf ,f = 1] − Pr[DR,SR 

= 1]| ≤ Pr[BA DCf ,f ] 

where BA DCf ,f denotes the BA D event when D is interacting with (Cf , f ). 

Proof. To prove the theorem we will show the following relations. Let G1 denote the 
event that the distinguisher outputs 1 in Game 1, 

1. | Pr[G0 = 1] − Pr[G1 = 1]| ≤ Pr[BA D0]. 



2. Pr[G1 = 1] = Pr[DR,SR 
= 1] 

,fAs P r[DCf 
= 1] = P r[G0 = 1] and Pr[BA D0] = Pr[BA DCf ,f ], the theorem 

will follow immediately. First we shall prove that if BA D events do not happen, then 
the input output distributions of Game 0 and Game 1 are identical. It is easy to check 
that ¬BA D is a monotone event as once BA D event happens (flag is set) it remains so 
for future queries. Now if the BA D events do not happen, then the final input of a right 
query is always “fresh” in both the games. So the output distribution remains same. 
On the other hand, if an input to a nontrivial left query is not same as the final input 
of a previous right query, then in both the cases the outputs are same and the output 
distribution of the left query is consistent with the previous outputs. Similar to [14], we 
view each input, output and internal states as random variables. We call the set of input, 
output and internal states as the transcript of the game. Let T j denote the transcript of i 
Game j after ith query, j = 0, 1. Let BA D0 and BA Di 

1 be the random variable of BA D i 
event in ith query in Game 0 and Game 1 respectively. The following lemma shows that 
the probability of BAD event occuring first in ith query is same in both Game 0 and 
Game 1. Moreover if BA D does not happen in first i queries then the transcript after ith 

query is identiaclly distributed in both the games. 

Lemma 1. 1. Pr[BA D0 ∧ ¬(∪i−1 BA D0 )] = Pr[BA Di 
1 ∧ ¬(∪i−1 BA D1 )]i k=1 k k=1 k 

2. Pr[T 0|¬ ∪i BA D1 ] = Pr[T 1|¬ ∪i BA D1 ]i k=1 k i k=1 k 

For a detail proof of the above Lemma, we refer the reader to Appendix A. As a direct 
application of this Lemma, we get the following results. 

Corollary 1. Let BA Dj denote the event that, D invokes BA D in Game j. Then we 
have, 

1. Pr[BA D0] = Pr[BA D1] 
2. Pr[DG0 ∧ ¬BA D0] = Pr[DG1 ∧ ¬BA D1] 

Using Corollary 1 one can get the following lemma. 

Lemma 2. Let G1 denote the event that the distinguisher outputs 1 in Game 1. 

| Pr[G0 = 1] − Pr[G1 = 1]| ≤ Pr[BA D0] 

For the proof of Lemma 2 we refer the reader to the full version of the paper.
 
Now we shall prove that Pr[G1 = 1] = Pr[DR,SR 

= 1]. We prove it by hybrid
 
arguments.
 
Game 2: In this game we change the description of C. Here we remove the lines 1−4 in
 
the description of C in Game 1 and change the query in line 5 to C OM RO(λ, M, 1)
 
where λ is an empty string. So C does not anymore query C OM RO with tag = 0.
 
Note that output of C is still R(M). So the changes does not affect the input output
 
distribution of the game. Hence
 

Pr[G2 = 1] = Pr[G1 = 1] 

where G2 is the event D outputs 1 in Game 2. 
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Fig. 5. Security Games 

Game 3: Now we give S and C a direct access to f and R. So we replace the query 
C OM RO(u, M, 0) by f(u). Similarly we write R(M) in place of C OM RO(u, M, 1). 
As D did not have direct access to C OM RO and C OM RO did not modify any list, 
Game 3 is essentially same as Game 2. So 

Pr[G3 = 1] = Pr[G2 = 1] 

where G3 is the event D outputs 1 in Game 3. 
Game 4: In this game we remove the subroutine C. So the distinguisher D has direct 
access to R. Now as the simulator S had no access to internal variables of C, the input 
output distribution remains same after this change. So 

Pr[G4 = 1] = Pr[G3 = 1] 

where G4 is the event D outputs 1 in Game 4. 
The final observation we make is that S need not query f . Instead it can choose 

a uniform random value from {0, 1}n. Note that f is modeled as random function. 
So we changed a random variable of the game with another random variable of same 
distribution. Hence all the input, output, internal state distribution remains same. This 
makes S exactly the same simulator we defined. 

Pr[G4 = 1] = Pr[DR,SR 

= 1]. 



� 

As the Game 0 is equivalent to the pair (Cf , f ) we obtain our main result of the section 
(using triangle inequality): 

| Pr[DCf ,f = 1] − Pr[DR,SR 

= 1]| ≤ Pr[BA D0] = Pr[BA DCf ,f ] 

D

4 Applications to popular mode of operations 

In this section we show the indifferentiability of different popular mode of operations 
from a Random Oracle. We note that, according to Theorem 1 to upper bound dis­
tinguisher’s advantage one needs to calculate the probability of BA D event defined in 
previous section. Moreover we can only concentrate on the specific mode of operation 
rather than the output of the simulator. 

4.1 Merkle-Damgård with prefix free padding 

It is well known that the usual Merkle-Damg ̊ard domain extension fails to satisfy indif­
ferentiability property because of the length extension attacks. So we need to use some 
prefix free padding on the input message. Let g be the padding function. On input of 
message M and with oracle access to f : {0, 1}m ' → {0, 1}n, the MD domain exten­
sion computes the hash value using the following algorithm. 
Merkle-Damgård (M Df (M)) 

1. let y0 = 0n (more generally, some fixed IV value can be used) 
2. let g(M) = (M1, ..., Ml) 
3. for i = 1 to l 

– do yi = f(yi−1, Mi) 
4. return yl. 

In [6], Coron et. al. proved indifferentiability of Merkle-Damg ̊ard Construction for pre­
fix free padding. We reprove the result using Theorem 1 in a simpler way. 

Theorem 2. The prefix free Merkle-Damg ̊ard construction is (tS , qC , qF , ε) - indiffer­
entiable from a random oracle, with tS = f · O(q2) and ε = O( σ

2 
), where f is the 2n 

maximum length of a query made by the distinguisher D, σ is the sum of the lengths of 
the queries made by the distinguisher and q = qC + qF . 

Note that for prefix free Merkle-Damg ̊ard constructions our simulator defined in Section 
3 is similar to that of [12]. As shown in that paper, the simulator’s running time is 
f · O(q2). For the proof of the above Theorem, the reader is referred to the full version 
of the paper. In this paper we concentrate on MD with a special padding rule, HAIFA. 



Fig. 6. Merkle-Damgård with padding rule HAIFA 

4.2 Merkle-Damgård with HAIFA 

Now we consider Merkle-Damg ̊ard mode of operation another variant of prefix free 
padding; HAIFA. In this padding we append a counter (indicating the block number) 
with each but last block of the message. The last block is padded with 0 (see Fig 6). It 
is easy to check that Merkle-Damg ̊ard with HAIFA belongs to GDE. In this case the 
reconstruction algorithm works as follows. Let t denote the length of the padding. On 
input of a f query u; check whether the last t bit of u is 0. If not return ⊥. Otherwise 
parse u as h0||m0 where h0 is of n bits. Find, whether h0 is in the output column of 
a query in the list L. If no return ⊥. If such a query exists select corresponding input 
ui. Now last t bit of ui will be f − 1, where f is the number of blocks in possible 
message. We call such an ui as uc−1. Now for j = f − 1 to 2; parse uj as hj−1||mj . 
find whether hj−1 exist in the output column of L where the corresponding input has 
padding j − 1. If no return ⊥. Else select the input and call it uj−1. Repeat the above 
three steps until we find a uj with padding 1. If we can find such uis, then construct 
the message M = m1||m2|| · · · mc||m0 and return M . Check that for ith query the 
algorithm P runs in time O(if) where f is the maximum block length of a query. Hence 
the total running time of P and hence of the simulator is O(q2f). 

For finding the probability of BA D events, the HAIFA padding rule gives us the 
following advantage. While computing Cf (M) for any message M , all the intermediate 
inputs are unique. In fact the final input is always different from any intermediate input. 
So if no f query with same counter padding has collision in the output, the output of 
the penultimate f queries do not have collision in output and no nontrivial left query 
input is same as the final input of some right query, BA D event does not happen. If BA D 
event does not happen in ith query, the output of ith query is uniformly distributed over 
Y = {0, 1}n. Without loss of generality, we assume that D does not make any trivial 
query as trivial queries do not raise a BA D event. Moreover we can consider only a 
deterministic (albeit adaptive) distinguisher as the general case can easily be reduced to 
this case [17]. So input to the ith query is uniquely determined by previous i−1 outputs. 
We represent the output of the nontrivial queries as the view (V ) of the distinguisher. Let 
f : {0, 1}m ' → {0, 1}n be a fixed input length random oracle. If D makes q nontrivial 
queries and V is the set of all possible views then |V | = |Y |q . We write V as ∩q Vi,i=1 
where Vi is the output corresponding to ith query. Now for any V ∈ V , we define an 

Vevent BA Dt which occurs whenever there is a collision between intermediate inputs, 
Vfinal inputs and left query inputs. In fact, ¬BA DtV ∩ V ⊆ ¬BA D ∩ V . We split, BA Dt

Vas ∪q BA DtV . BA Dt occurs whenever any intermediate input (final or non-final) of i=1 i i 
ith right query collides with any intermediate inputs of any other distinct right query 
or with input of any nontrivial left query. Although we are working with an adaptive 



i attacker, future query inputs are fixed by V . Note that, if ith query is left query BA DtV 

never occurs. Suppose fi is the number of blocks in ith query.
 

Suppose the ith query made by the distinguisher is a right query. For ¬BA DtV to hap-
i 
pen, any intermediate input (final or non-final) has to be different from previous inter-
mediate/final inputs. Because of HAIFA padding, no final input will be same with any 
intermediate input. So if ¬BA DtV has to be true, every intermediate input of ith has to i 
be different from the intermediate inputs with same counter of previous i − 1 queries. 
Also any intermediate input can not be same as future left query inputs or future right 
query intermediate inputs fixed by the view. There only q many such candidates. So for 
any intermediate(final) input there are at most i − 1 + q < 2q bad values. Hence,   ci−1|Y | − 2q 1

Pr[¬BA DtV ∩ Vi| ∩i−1 (¬BA DtV ∩ Vj )] ≥ · .i j=1 j |Y | |Y | 

If the ith query is nontrivial left query, 

1
Pr[¬BA DtV ∩ Vi| ∩i−1 (¬BA DtV ∩ Vj )] = .i j=1 j |Y | 

So one can calculate the probability of ¬BA D as   
Pr[¬BA D] = Pr[¬BA D ∩ V ] ≥ Pr[¬BA DtV ∩ V ] 

V ∈V V ∈V  
= Pr[∩q 

i=1(¬BA DtV 
i ∩ Vi)] 

V ∈V  qI 
=

V ∈V 

Pr[¬BA DtV 
1 ∩ V1] 

i=2 

Pr[¬BA DtV 
i ∩ Vi| ∩i−1 

j=1 (¬BA DtV 
j ∩ Vj )] 

≥
 
V ∈V 

qI 

i=1

 
|Y | − 2q 
|Y |

 ci−1 

· 

≥
 
V ∈V

 
1 − O( 

σq 
|Y | 

)
 
· 1 
|Y |q 

1 
|Y | 

= 1 − O( 
σq 
|Y | 

) 

Here Y = {0, 1}n and σ =
 q 

i=1 fi. So Pr[BA D] ≤ O( σq 
2n ). 

Theorem 3. The Merkle-Damg ̊ard construction with HAIFA padding rule based on a 
FIL-RO is (tS , qC , qF , ε) - indifferentiable from a random oracle, with tS = f · O(q2) 

O( σq and ε = ), where f is the maximum length of a query made by the distinguisher 2n 

D, σ is the sum of the lengths of the queries made by the distinguisher and q = qC +qF . 

In [5], Coron et al. considered a specific prefix-free padding rule which is similar 
to HAIFA. There they proved indifferentiability bound as O( σ

2 
). So Theorem 3 can be 2n 

seen as improving that bound as well. In Section 5.1 we show that the bound we prove 
in Theorem 3 is tight. 



4.3 Tree Mode of Operation with counter 

Tree mode of operation is another popular mode of operation. MD6, a SHA3 candidate 
uses this mode of operation. Let f : {0, 1}m ' → {0, 1}n. The input message is divided 
in blocks and can be viewed as the leaf nodes. The edges are the function f . Any 
internal node can be viewed as the concatenation of the outputs of f on its child nodes. 
The output of the hash function is the output of f applied on the root. Now with each 

Cf (M1�M2�M3�M4) 

f 

(0, 0)�f21�f22 

(2, 1)�f11�f12 

f f 

(2, 2)�f13�f14 

f f 

f f 

(1, 1)�M1 (1, 2)�M2 (1, 3)�M3 (1, 4)�M4 

Fig. 7. Tree Mode of Operation with Sequential Padding where m ' = 2 
n 

node we associate a tag (height, index) where height denotes the height of the node 
in the tree and index represents the index of the node in the level it is in (see Figure 7). 
Each node is padded with the tag. This padding makes, like HAIFA, each input unique 
in the evaluation tree of Cf (M) for any fixed message M . One can easily construct the 
computable algorithm P using the same method as in HAIFA. Due to space constraint 
we don’t describe the it here. Let Mi and Mj be two distinct right queries (for simplicity, 
both of length f) made by distinguisher. Let k be an index such that kth block of Mi 

and Mj is different. Consider the path from node (1, k) to the root. It is easy to check 
that if no collision happens in this path, the final input of f query does not collide while 
computing Cf (Mi) and Cf (Mj ). Length of this path is log f (height of the tree). On 
the other hand a nontrivial left query input can collide with at most one intermediate 
input of a right query. Hence, using a method similar to proof of Theorem 3, one can 
prove the following theorem 

Theorem 4. Let F be a FIL-RO and C be the tree mode of operation with the counter 
padding. CF is (tS , qC , qF , ε) - indifferentiable from a random oracle, with tS = 

log cf · O(q2) and ε = O( q 2 

), where f is the maximum length of a query made by the 2n 

distinguisher D and q = qC + qF . 

We refer the reader to the full version of the paper for a proof of the above theorem. 

5 Indistinguishability attacks on popular mode of operations 

In this section we show a lower bound for the advantage of a distinguishing attacker 
against Merkle-Damg ̊ard constructions with HAIFA padding and Tree mode of oper­
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ations with counter padding scheme. The bound we achieve actually reaches the cor­
responding upper bound shown before. Note, if all the queries are of length f, then 
q2f = qσ. 

5.1 Distinguishing Attacks on Merkle-Damg ̊ard Constructions 

Consider q messages M1, · · · , Mq such that, 

PA D(M1) = M1 
1||M2|| · · · ||M c 

PA D(M2) = M2 
1||M2|| · · · ||M c 

. . . 

PA D(Mq) = M1||M2|| · · · ||M c 
q 

Let CO L L be the event denoting collision among Cf (M1), · · · , C f (Mq). We shall 
2 cprove that, Pr[CO L L] = Ω( q ) Let CO L Lij be the event denoting the collision be­2n 

tween Cf (Mi) and Cf (Mj ). Hence, 

 
Pr[CO L L] = Pr[ CO L Lij ]. 

1≤i<j≤q 

Using principle of inclusion-exclusion we get, 

 
Pr[ CO L Lij ] ≥ Pr[CO L Lij ] − Pr[CO L Lij ∩ CO L Lj k ] 

1≤i<j≤q 1≤i<j≤q 1≤i<j <k≤q 

+ Pr[CO L Lij ∩ CO L Lik] + Pr[CO L Lik ∩ CO L Lj k ] 

−	 Pr[CO L Lij ∩ CO L Lkr ] + Pr[CO L Lik ∩ CO L Ljr ]
 
1≤i<j<k<r≤q
 

+ Pr[CO L Lir ∩ CO L Ljk ] (1) 

In the full version of the paper, we prove the following Lemma. 

Lemma 3. Let Y = {0, 1}n and 1 ≤ i < j < k < r ≤ q. If f − 1 ≤ 2n, then 
c1.	 Pr[CO L Lij ] ≥ 2|Y | 

22c2.	 Pr[CO L Lij ∩ CO L Lj k ] ≤ |Y |2 

2 3 c 6c3. Pr[CO L Lij ∩ CO L Lkr ] ≤ |Y |2 + |Y |3 

Using Equation 1 and Lemma 3 one can prove, 

q f q 2f2 q f2 6f3 α α2 α
Pr[CO L L] ≥ − 3 − 3 ( + ) ≈ − ≥

2 2|Y | 3 |Y |2 4 |Y |2 |Y |3 4 8 8 
2 q cwhere α = 2n < 1. By Birthday Bound, for a random function R, the collision prob­

2 

ability for q different messages is Θ( q ). Hence for a distinguisher D which queries 2n 
2 cmessages M1, · · · , Mq , the advantage of the distinguisher is Ω( q ). Also we can eas­2n 

ily construct such q messages for any prefix free Merkle-Damgård scheme, specifically 
HAIFA. 



Theorem 5. Let C be the Merkle-Damg ̊ard domain extension with a prefix free padding. 
There exist a distinguisher D, such that 

| Pr[DCf ,f = 1] − Pr[DSR,R = 1]| ≥ Ω( 
q2f 

)
2n 

where D makes q queries and length of each query is at most f. 

5.2 Distinguishing Attacks on Tree Mode 

Similar to previous attack we choose q messages M1, · · · , Mq such that after padding 
only first block of these messages are different. Formally 

PA D(Mi) = Mi 
1||M2|| · · · ||M c . 

Now for these massages the tree mode works like a Merkle-Damg ̊ard mode with mes­
sages M1, · · · , M q where 

2 h
PA D(Mi) = Mi 

1||M || · · · ||M ∀i = 1, 2, · · · , q 

h = plog fl is the height of the tree. Hence using the similar method to previous section 
we get the following Theorem. 

Theorem 6. Let C be the Tree mode domain extension with the sequential counter 
padding. There exist a distinguisher D, such that 

q2 log f | Pr[DCf ,f = 1] − Pr[DSR,R = 1]| ≥ Ω( )
2n 

where D makes q queries and length of each query is atmost f. 

6 Conclusion and Future work 

In this paper we proposed a unified method to prove indifferentiability of a wide class 
of iterated hash function, called GDE. Using our method we proved optimal indiffer­
entiability bounds for Merkle-Damg ̊ard construction with counter (e.g. HAIFA) mode 
and for Tree Mode constructions with a similar sequential padding. This result shows 
tight indifferentiability bound (when the underlying compression functions are realized 
as random oracles) for many SHA3 candidates like BLAKE, LANE, SHAvite-3, MD6 
etc. We strongly believe that tight indifferentiability bounds for MD constructions with 
independent post-processor [11] can also be proved using our method. 
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Appendix A Proof of Lemma 1 
j j j jLet X1 , X 2 , · · · ,Xq 

j ∈ X and Y1 , Y 2 , · · · , Y q 
j ∈ Y be input random variables and 

j j joutput random variables respectively of Game j; j ∈ {0, 1}. Let U , U · · · , U 1,i 2,i, ci ,i 

be the internal random variables (output of internal queries) of ith query in Game j. As 
previously We call the set of input,output and internal states, the transcript of the game. 
Let T j denote the transcript of Game j after ith query. i 

In this proof,w.l.g., we assume that Distinguisher does not repeat queries. Let q be 
the number queries the adversary make. We shall prove the Lemma 1 by induction on i. 

CASE i = 1: We start from the observation that 

Pr[X1 
0] = Pr[X1 

1]. 
D D 

If X1 is a right query (M1, right) 

Pr [(U1 
0 , · · · , U 0 )|X0] = Pr [(U1 

1 , · · · , U 1 )|X1].c1,1 1 c1,1 1
D,f D,f 

Hence 

Pr [X1 
0, U 1

0 
,1, U 2

0 
,1, · · · , U c

0 
1,1] = Pr [X1 

1, U 1
1 
,1, U 2

1 
,1, · · · , U c

1 
1,1]. 

D,f D,f,R 

It is easy to check that for the first query BA D event can only be set by a right query. 
Also note that it happens when the final query is same with some non-final intermediate 
query. So 

Pr [BA D1 
0|X1 

0, U 1
0 
,1, U 2

0 
,1, · · · , U c

0 
1,1] = Pr [BA D1 

1|X1 
0, U 1

0 
,1, U 2

0 
,1, · · · , U c

0 
1,1]. 

D,f D,R,f 

Hence 
Pr [BA D0] = Pr [BA D1]1 1 
D,f D,R,f 

fIf ¬BA D1 is true then u / . As f and R are random oracles, we have 1 ∈ IM1 

fPr[f(u ) = v] = Pr[R(M1) = v]∀v ∈ {0, 1}n 
1 . 

f R 

On the other hand if the first query is (u, lef t) for any u, then Y1 = f(u) in both the 
games. So, ∀v ∈ {0, 1}n 

Pr [Y 0 = v|X1 
0, U 1

0 
,1, U 0 · · · , U c

0 
1,1 ∧ ¬BA D0]1 2,1, 1 

D,f 

= Pr [Y 1 = v|X1 
1, U 1

1 
,1, U 1 · · · , U c

1 
1,1 ∧ ¬BA D1].1 2,1, 1 

D,R,f 

Hence, 

Pr [X1 
0, U 1

0 
,1, U 0 · · · , U c

0 
1,1, Y 1 

0|¬BA D0]2,1, 1 
D,f 

= Pr [X1 
1, U 1

1 
,1, U 1 · · · , U c

1 
1,1, Y 1 

0|¬BA D1].2,1, 1 
D,f,R 



 

�

This Implies that the distribution of transcript after first query is identical in both the
 
games if ¬BA D1 is true. This finishes the proof of the case i = 1.
 
Suppose the lemma is true for all i < t.
 
CA S E i = t:By Induction Hypothesis, we have,
 

Pr [Tt
0 
−1|¬(∪t−1 BA D0 )] = Pr [Tt

1 
−1|¬(∪t−1 BA D1 )].k=1 k k=1 k

D,f D,f,R 

As the input/output distribution of two games are same if ¬(∪t−1 BA D1 ) is true, the k=1 k 
distribution of tth query must be same for both the games. 

Pr [X0|Tt
0 
−1 ∧ ¬(∪t−1 BA D0 )] = Pr [X1|Tt

1 
−1 ∧ ¬(∪t−1 BA D1 )]t k=1 k t k=1 k 

D,f D,f,R 

When Xt = (ut, lef t) is a non trivial left query then Yt = f(ut) in both the games. 
Now if ¬(∪t−1BA Di) is true then, from induction hypothesis, the transcript distribution i=1 

fafter t queries is same for both the games. The probability that u collides with some t 
final input of any previous query is same for both the games. So for the left query 

Pr[BA D0|¬(∪t−1 BA D0 )] = Pr[BA D0|¬(∪t−1 BA D1 )]t k=1 k t k=1 k 

When Xt = (Mt, right) then we have, 

Pr [X0|Tt
0 
−1 ∧ ¬BA D0] = Pr [X1|Tt

1 
−1 ∧ ¬BA D1]t t 

D,f D,f,R 

Notice that if the distribution of tth query is same for both the games then the 
distribution of internal queries is also same for both the games. Hence 

Pr [X0, U 0 · · · , U 0 |Tt
0 
−1 ∧ ¬(∪t−1 BA D0 )]t 1,1, c(Mt),(t) k=1 k 

D,f 

= Pr [X1, U 1 · · · , U 1 |Tt
1 
−1 ∧ ¬(∪t−1 BA D1 )].t 1,1, c(Mt),(t) k=1 k 

D,f 

Hence
 

Pr [BA D0|¬(∪t−1 BA D0 )] = Pr [BA D1|¬(∪t−1 BA D1 )]
t k=1 k t k=1 k 
D,f R,D,f 

For a non-trivial left query (ut, lef t), both the game queries f(ut). if ¬(∪t BA D1 )k=1 k 
fis true then ut = uj for all j < t. On the other hand , for a right query (Mt, right), if 

f f ¬(∪t BA D1 ) is true then u has never been queried before. Then Prf [f(u ) = v] = k=1 k t t 
PrR[R(Mt) = v] for all v ∈ {0, 1}n. So 

Pr [Y 0, X 0, U 0 · · · ,U0 |Tt
0 
−1 ∧ ¬(∪t BA D0 )]t t 1,1, c(Mt),(t) k=1 k

D,f 

= Pr [Y 1, X 1, U 1 · · · , U 1 |Tt
1 
−1 ∧ ¬(∪t BA D1 )].t t 1,1, c(Mt ),(t) k=1 k 

D,R,f 

This implies 

Pr [T 0|¬(∪i BA D0 )] = Pr [Tt 
1 , · · · , U 1 )|¬(∪i BA D1 )]t k=1 k ci,i k=1 k

D,f D,R,f 

D 


