

Assessing Approaches for Evaluating
Remote Heterogeneous Applications

L. Gebase1 and R. Snelick1

1National Institute of Standards and Technology (NIST), Gaithersburg, MD, State, USA

Abstract - We examine several methods for testing
disparate, heterogeneous systems that intercommunicate
through message exchanges governed by a set of well
defined message exchange rules. Rather than basing our
assessment on a set of abstract applications, we will look at
a specific set of healthcare applications that exhibit these
characteristics. We will then assert that the specific
findings can be generalized and applied to a broader class
of applications.

The Integrating the Healthcare Enterprise (IHE)
organization defines a technical framework for
implementing a broad range of existing healthcare
standards. These standards include HL7, DICOM, CDA
and others. Implementations of a single standard share a
common protocol for the exchange of messages, but direct
message exchanges among different standards
implementations are generally not possible. IHE,
nevertheless, is interested in an environment made up of this
diverse set of applications, and we will investigate various
approaches to evaluate the behavior of implementations that
make up this environment.

Keywords: Automated Testing; Conformance;
Interoperability; Test Agents; Testing Framework.

1 Introduction
 Our focus is primarily on conformance testing. One
aspect of testing, separate but related to conformance
testing, is message validity, and we will begin by addressing
this issue. Following message validation, we will briefly
address interoperability. In our examination of testing tools,
we look at two tools developed at the National Institute of
Standards and Technology (NIST) for evaluating certain
aspects of conformance testing. Integrating the Healthcare
Enterprise (IHE) [1] is an organization interested in
examining multiple healthcare standards that address a
variety of healthcare informatics needs ranging from the
exchange of textual patient administration data to binary
diagnostic imagining data. IHE holds an annual event in
which numerous organizations from around the world
participate. The challenge at this event is to establish
interoperability among the numerous participating vendors
whose applications implement one or more of the standards
IHE includes in its Technical Framework Documents [2].
Beyond interoperability, IHE is also interested in assessing

how effectively participating vendors adhere to the
standards referenced in the IHE technical frameworks. This
presents a challenging problem in conformance testing and
to address this problem a testing architecture has been
formulated that allows the broad range of implementations
encompassed by IHE technical framework to be examined.
We investigate some approaches to testing based on the use
of this architecture. A common element present in each of
the conformance testing methods we examine is the use of
testing applications that support the functionality of one of
the standards that may be tested. Finally, we introduce a
novel approach to testing that makes use of this functionality
present in each of the testing applications.

2 Message Validation
 All standards referenced in the IHE technical
framework define a protocol for message exchanges
between applications. All messages are constrained by a
grammar; in addition, Healthcare Level 7 (HL7) [3]
messages may be further constrained by a message profile
[10, 11]. One component of conformance then is adherence
to the message grammar, or, in the case of HL7, a message
profile. At NIST, we have developed a tool for evaluating
HL7 messages. The tool has been implemented as a web
application and any developer can upload messages for the
tool to evaluate [4]. The message validation utility is also
available as a web service. Message validation provides a
good first step in assessing an implementation's adherence
to the requirements of the standard.

3 Interoperability
 The ultimate goal of conformance testing is achieving
interoperability between applications. Constructing and
sending valid messages increases the likelihood of two
applications interoperating, but does not assure it.
Additional conformance testing can further increase the
likelihood of interoperating, but still does not assure it.
Interoperability testing largely reduces to simply trying to
interconnect two applications and exchange messages
between them. The messages exchanged may be captured
or logged and evaluated to uncover problems when they
occur, but assessing conformance is primarily addressed as
a separate issue and will be investigated further below.

4 Testing Tools
HL7 is one of the standards IHE is interested in testing. At
NIST, we have developed two tools to directly assist in the
testing of HL7 applications. One tool is test driven, i.e., it is
designed to execute specific test cases. The second is user
driven, i.e., the user is given control over the execution of
each test step. Each of these tools is rested on a testing
framework that we have developed at NIST for evaluating
HL7 applications. Both tools, along with our test
framework are openly available, including source code,
from our tools website [5].

IHE refers to an implementation supporting a specific set of
functional requirements as an actor. The NIST testing
framework is made up of a set of HL7 actors, along with the
infrastructure needed to support the actors. The test system
actors are IHE actors that are primarily intended to be used
for testing other IHE actors. For this reason and to
distinguish the test system actors from other actors, we refer
to the test system actors as test agents rather than actors.
Presently the test system includes three test agents. IHE
defines many different types of actors, and the system is
designed so that new test agents modeling other actors can
be readily incorporated into the test system.

Both testing tools are made up of a user friendly Web Client
Graphical User Interface (GUI) supported by the testing
framework. The test case tool provides the user with a
complete description of test cases and is designed to execute
test cases based on the user's application. The user selects
the actor or SUT (Systems Under-test) that is to be tested,
and the test tool automatically selects the test agents that are
needed to test the SUT. The tool automatically engages in
the correct actions once the SUT is selected and
configuration is completed. The applications supported
presently are limited, but it is a very effective evaluation
tool within its scope of applicability. One drawback of the
tool, though, is its lack of flexibility. If an error occurs,
generally the testing must stop. Testing cannot be resumed
from the point where it was left off at, but instead must start
at the beginning each time a test case is run.

The second tool offers more flexibility, but more
intervention on the part of the user is required to conduct a
test. With this tool the user selects each actor and test agent
that will participate in the testing. Each step of the test case
is controlled by the user, each message to be sent must be
constructed by the user, and the user specifies each message
destination. The user must also configure the tool and
provide all addressing and ancillary information. The tool
does, however, save configuration data and also provides
utilities to assist with message construction, thereby,
reducing the effort required to conduct a test.

Both of these tools, while facilitating only a very limited
part of the total testing conducted within the IHE

environment, could be used as models for further
development. If similar tools where developed for other
protocol standards—and if the scope of the current tools
was expanded—a substantial part of the IHE testing effort
could be automated. Nevertheless, the approach is ad hoc
and lacks overall coordination; in an environment as large
as IHE, such an approach risks become unwieldy.

5 The IHE Connectathon
 IHE hosts an annual event [6] for the purpose of
testing interoperability among groups of IHE applications,
i.e., among applications that implement one or more
functional components or IHE actors. Vendors bring their
implementations to this event and attempt to interact with
other vendor implementations. IHE then attempts to
evaluate how successful vendors are in achieving this goal.

For a number of years the evaluation approach has been to
employ a number of monitors who manually evaluate the
execution of each step making up the test cases employed
for evaluating applications. Each step in the test case is
evaluated and the monitor coordinates the execution of each
test step with users who know how to direct their
applications to take specific actions.

Actors can broadly be divided into two categories,
responders or servers and initiators or clients. Thus to
evaluate a test case a monitor must first make sure that
responding actors are started and ready to receive messages.
Once this step is completed, the monitor directs the first
initiating actor to send a message to the appropriate
responder. If the actors were successful in establishing a
connection, there will be a message received by the
responder that must be examined and typically a response
will then be returned, which also has to be evaluated. The
entire test case is typically made up of a sequence of such
steps. For a large number of actors subjected to a large
number of test cases, each made up of multiple transactions;
this is a very labor intensive process.

The monitoring approach is significantly improved by
employing tools such as those described in the previous
section, but a more comprehensive approach to testing IHE
applications is needed to improve testing.

6 The Gazelle Testing Architecture
 There have been essentially two approaches to
automating IHE testing. One has been the development of
ad hoc tools to facilitate isolated parts of testing. The
second has been work on the development of a single,
integrated testing architecture to automate the entire testing
process. The latter is a significant challenge in that such a
test system will require testing a wide array of applications
running at disparate locations without a standardized
method for intercommunications among all applications.

The architecture that is being explored and developed to
address this problem is called The Gazelle Testing
Architecture [7].

The Gazelle project is an effort to formulate a
comprehensive solution to the evaluation of all IHE
applications through the development of a single, fully
integrated testing framework. The project represents a
significant challenge since it must find a way to incorporate
multiple, independently operating applications with no
commonly defined means of communicating into a single,
cohesive environment.

Figure 1: The Gazelle Architecture

The first step taken in the project's development was to
recognize the utility of developing multiple, independent
modules that perform the same functionality as the
applications they will be used to test. While this kind of
modular development would be essential for the project to
succeed, there would also have to be some means of
providing overall coordination among the modules if a
single, unified system were to be developed. The solution
presented to this problem was to incorporate a test engine at
the core of the testing framework that would be responsible
for the overall orchestration of all events carried out in
conducting testing. The proposed Gazelle model is shown
Figure 1.

The primary components of the architecture are the test
engine, one or more systems or SUTs that are to be
evaluated, and a number of test agents that interact with the
SUTs and support testing. The test agents serve primarily
as facilitators and as substitutes for actor implementations
that interact with the SUT. An SUT may require a specific
actor to carry out a message transaction, but the required
actor may not be available. By building a test agent to
interact with the SUT, the transaction can be conducted and
evaluated without the required actor.

The Validation Service is an optional part of the architecture
that can be used for assessing message validity subsequent
to testing. The Test Scenario serves as input to the Test
Engine and is mapped into a set of actions that the Test
Engine carries out by directing the actions taken by the test
agents.

Actors and test agents communicate over a network, but
only those actor and test agents implementing the same
protocol standard are able to communicate in this way. The
test engine must have a means of communicating with all
test agents regardless of the protocol they support. To
satisfy this requirement, a web interface was defined that all
test agents must support. The interface defines a set of
functions common to all test agents that enables the test
engine to direct a transaction with a remote actor or SUT
being tested. For example, testing a responding SUT will
typically include sending the SUT a message and evaluating
its response. For this purpose, the web interface defines a
send method that allows the test engine to pass a message to
the test agent that the test agent, in turn, is to send to an
SUT.

There is no web service that has been defined for supporting
interactions between the test engine and the SUTs.
Particularly for an initiating SUT, some means of
communication is necessary. The Business Processing
Execution Language (BPEL) [8] has been proposed for this
purpose. In effect, this provides a mechanism that allows
the test engine to notify the SUT user that an action must be
performed; e.g., a message is to be sent to a responding
actor or test agent. The web service interface includes a
method for starting a test agent either as an initiator or a
responder, so, in this case, the test engine uses the method
to start a responding test agent.

7 Evaluating Message Transactions
 There are several possible approaches to evaluating
SUT behavior in the Gazelle environment. IHE
requirements do not place any restrictions on how an SUT
implements the services it provides, only that it exhibit the
correct external behavior as manifested in the message
exchanges it participates in. One option then for evaluating
behavior is to use the test agents to assess the messages they
receive from the SUT they interact with. There is a second,
less obvious, method for evaluating behavior using the
Gazelle architecture. An intermediary, know as a proxy, can
be added to the architecture and all message exchanges can
be required to go through the proxy. Following this
approach, a log of all message transactions is saved, and a
post testing analysis of the log is then performed.

Performing a post test analysis of a log of all message
transactions presents obvious challenges. The first being
how is the proper context in which to evaluate the message

transactions reconstructed. The complexity of the problem
can be substantially reduced by introducing multiple
communication channels through the proxy. Figure 2 shows
the architecture with a proxy added.

Figure 2: Gazelle Architecture with Proxy

The proxy is added to the architecture without imposing any
additional communication requirements on either the SUTs
or the test agents. The only changes are in the applications
addressing configuration. For example, for SUT-1 to send a
message to test agent-1 without a proxy being present, it
would send the message to the port the test agent is listening
on at the test agent's IP address. With the proxy present, the
port and IP address are simply changed to the proxy's IP
address at the input port the proxy has assigned for test
agent-1. Similarly, for the test agent to send to the SUT, it
addresses the message to the input port the proxy has
assigned for SUT-1. Now, rather than having a log file with
a list of indistinguishable message transactions, the
transactions can be separated based on the entities that were
involved in the transaction. Since the test engine is in
control of initiating all interactions, it is also possible to
largely control the sequencing of the messages.
Simultaneous transactions are avoided, allowing messages
transmitted to be paired with the message response.

The test agents in this architecture are assumed to behave
correctly; (over time, in fact, testing feedback will result in
correct behavior). Thus when the test engine directs a test
agent to send a message, the correct message is sent, and
therefore it is possible to evaluate the response returned by
the SUT against predetermined criteria. The approach isn't
without difficulties, however, since it will still require the
construction of predetermined conditions that must be
applied to the correct messages. While constructing
preconditions will allow correct evaluation under ideal
conditions, unexpected events may result in incorrect
evaluation. This can be seen by looking at an example of
using this approach.

An approach that is typically applied when a proxy is used
is to make use of the validation service to evaluate the
preconditions that messages sent by an SUT must satisfy.
The validation service can be used to ensure messages
satisfy the general criteria; this service can be augmented to
allow for the construction of predetermined evaluation
criteria. This approach generally works well, but it will not
work in all cases. Specifically, the receiving application
may be allowed to reject messages under a variety of
conditions that cannot be determined in advance. This can
result in an SUT returning a valid message rejection, but the
rejection failing to satisfy the predefined criteria. When this
happens, an SUT may fail a test case while exhibiting valid
behavior. This is one example of the more general problem
that can arise when an application may respond with
multiple valid responses.

If the test agents are used instead to evaluate SUT behavior,
some problems encountered with the proxy approach can be
overcome. For example, a test agent must be able to
correctly handle all possible responses from a remote IHE
actor. Thus they can incorporate all the logic necessary to
evaluate SUT responses. Another advantage of this
approach is that the context for message evaluation does not
need to be recreated after testing is completed. But the
problem of evaluating the behavior of an initiating SUT
must also be addressed. The technique of using
predetermined conditions can be employed more effectively
in this case. The SUT has only one option; it must send
exactly the message dictated by the test case being executed.
The message could be evaluated by the external evaluation
service, or it could be evaluated by a test agent. The
advantage of using the test agent is that it will directly
receive the message that is to be evaluated from the SUT,
rather than requiring the message to be captured and then
sent to the external evaluation service.

Both of these approaches offer significant improvements in
automating test evaluation, but still may require substantial
effort in constructing evaluation criteria and applying the
criteria to the correct messages, and, in the case of the proxy
approach, applying the criteria in the right context.

One additional approach which addresses some of these
problems will be examined in the following section.

8 Evaluating Behavior
 Ideally, conformance testing in general and IHE testing
specifically, would be fully automated, not requiring manual
intervention or the creation of predefined message criteria.
A somewhat novel approach that exploits the capabilities
built into the test agent implementations will be examined
with this end in mind. Only the essential idea behind the
approach will be described; it will be more fully elaborated
in a future paper. For the case of HL7, an initial

implementation of the approach has been included as part of
the NIST testing framework.

The approach is relatively straightforward, but,
nevertheless, may not be apparent even after examining the
testing architecture. The proxy approach described above
captures all message exchanges and thus makes a
comprehensive evaluation of the SUT's behavior possible.
But, in addition to the drawbacks identified above, the
approach does not scale well. A more modularized
approach is needed. One way of achieving this
modularization is to employ multiple proxies rather than
using the single, monolithic proxy described above. It may
not be initially apparent, but the test agents that are already
part of the architecture lend themselves well to this task.

Test agents already engage in message exchanges with the
applications being tested. The test agents, therefore, include
nearly all the functionality that is necessary to act as a
proxy. As it turns out, there is little more than a switch that
is necessary to add the capability. When the switch is
turned on, the test agent, rather than processing the
messages it receives, saves a copy, and sends the message to
its intended destination. This requires deploying test agents
at the right location, specifically along side of the actors that
they are used to test so that all messages to the actor first
pass through the test agent.

The essential architectural component for this model of
testing is shown in Figure 3.

Figure 3: Evaluation Agent Model

The figure highlights the interactions between two SUTs
that are being tested. For each SUT, there is a test agent
added that is acting as a proxy; all messages exchanged with
the SUT go through the test agent.

It may be apparent that calling the entity deployed along
side of the SUTs a test agent is no longer appropriate. A
test agent is just an actor deployed for a particular purpose,
but the entities in this diagram are no longer behaving as
actors; they are now simply serving as proxies. Not only
are these entities behaving as proxies, as we will see below,
they are also behaving as entities for evaluating the behavior
of the SUTs. For these reasons rather than call the entities
test agents, they are called evaluation agents.

It's clear that this approach to including a proxy for
capturing message exchanges provides much better
modularization, but it can also be exploited to provide better

automation to the entire testing process as well. The key to
exploiting this capability is recognizing that an inherent
characteristic of a test agent is that it implements correct
actor behavior. A test agent thus includes all the knowledge
needed to assess the behavior of the actor or SUT that is
being tested. The task then is to make use of this
knowledge. By placing test agents in a position to capture
all message exchanges as shown in Figure 3, it is a
relatively straightforward task to augment a test agent with
this capability and turn it into what is more appropriately
called an evaluation agent. When this is done, evaluation
can be fully automated, not requiring the construction of
any predefined criteria, but simply exploiting the inherit
characteristics present in all test agents.

Although our discussion has focused on testing one
particular group of healthcare applications, this group of
applications comprises a set of disparate, heterogeneous
applications and the methodologies employed in testing
them should be applicable to any set of applications having
similar characteristics.

9 Conclusion
 We have presented a number of approaches for evaluating
the behavior of a specific set of applications. While our
focus has been on IHE applications, the approaches
examined should be equally applicable when applied to
similar applications. The approaches we have examined
have ranged from a very labor intensive, manual approach to
evaluation to a fully automated approach requiring no
manual intervention. The latter approach has thus far only
undergone limited implementation and testing; we plan to
more fully investigate the approach in our future work.

10 References

[1] Integrating the Healthcare Enterprise (IHE);
http://www.ihe.net.

[2] IHE IT Infrastructure (ITI) Technical Framework
Integration Profile, December 12, 2008.

[3] Health Level 7 (HL7) Standard Version 2.5,
ANSI/HL7 V2.5-2003, June 26, 2003, http://www.hl7.org.

[4] NIST HL7 Message Validation Web Services.
http://xreg2.nist.gov:8080/HL7Web/index.html.

[5] NIST HL7 V2 Testing Tools;
http://hl7v2tools.nist.gov

[6] IHE Connectathon; http://www.ihe.net/Connectathon/

[7] Gazelle Testing Framework Project. Gazelle is a work-
in-progress system targeted for the IHE connectathon

testing. The project is managed by Steve Moore
(Washington University of St. Louis-MIR) and Eric Poiseau
(INRIA). MIR, INRIA, NIST and others are developing the
system in a joint effort.

[8] BPEL http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

[9] DICOM, http://medical.nema.org/

[10] Towards Interoperable Healthcare Information
Systems: The HL7 Conformance Profile Approach. R.
Snelick, P. Rontey, L. Gebase, L. Carnahan. Enterprise
Interoperability II: New Challenges and Approaches.
Springer-Verlag, London Limited 2007 pp. 659-670.

[11] “Conformance Testing and Interoperability: A Case
Study in Healthcare Data Exchange” Len Gebase, Robert
Snelick, Mark Skall. 2008 Software Engineering Research
and Practice (SERP08) conference proceedings,
WORLDCOMP’08 July, 2008, Las Vegas, Nevada.

