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a b s t r a c t

A framework for development of estimation methods is demonstrated using prediction of critical con-
stants for pure compounds as an example. The dataset of critical temperature Tc and critical pressure
pc for over 850 compounds used in the present work was extracted from the TRC SOURCE data archival
system and is based exclusively on experimental values taken from the literature. Experimental Tc and
pc values were critically evaluated using the methods of robust regression and their uncertainties were
assigned in a rigorous manner. The correlations for critical constants were developed based on Quantita-
eywords:
orrelation
ritical properties
mpirical modeling
roperty estimation
uantitative Structure–Property

tive Structure–Property Relationships (QSPR) methodology combined with the Support Vector Machines
(SVM) regression. The propagation of the experimental uncertainties into the predictions produced by
the correlations was also assessed using a procedure based on stochastic sampling. The new method is
shown to perform significantly better than a number of commonly used estimation methods.

Published by Elsevier B.V.

elationships
upport Vector Machines

. Introduction

In the modern information-driven world, large comprehensive
xperimental data collections have not only become more read-
ly available, but are also more accessible to systematic studies
ue to rapid advances in database technologies. These electronic
ata collections are also becoming increasingly dynamic; i.e., they
espond much more promptly to changes as new data become
vailable or some old data are corrected. This is especially true
or well established, high-demand fields such as thermophysical
roperty data for which computer-based databases were adopted
arly on. Due to their practical importance, thermophysical data
ave been collected intensively throughout the history of thermo-
ynamics, leading to massive amounts of available information, and
his trend becomes even more apparent at present [1]. Unfortu-

ately, even such a high rate of experimental data accumulation

s not likely to ever match the growing demand in various engi-
eering applications. Therefore, in most practical situations, it is
ecessary to complement existing experimental data with prop-

� Contribution of the U.S. National Institute of Standards and Technology and not
ubject to copyright in the United States. Trade names are provided only to specify
rocedures adequately and do not imply endorsement by the National Institute of
tandards and Technology. Similar products by other manufacturers may be found
o work as well or better.
∗ Corresponding author.

E-mail address: andrei.kazakov@nist.gov (A. Kazakov).

378-3812/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.fluid.2010.07.014
erty estimation methods [2]. While methods based on theoretical
considerations are generally preferable, in many cases, an under-
lying theoretical foundation is too complex to be used in practical
estimation methods. Consequently, empirical correlations derived
from existing experimental data have always played an important
role in thermophysical property estimation. These empirical corre-
lations were traditionally developed on the basis of some reliable
but often limited data compilations. At the present time, under
conditions of a rapidly changing “data landscape”, the next log-
ical step is to allow empirical correlations to evolve with the data
that they are based on. Furthermore, the availability of large elec-
tronic data collections opens possibilities for the development of
new, more general empirical correlations that are based on much
larger datasets than those used historically and that take advan-
tage of modern data mining technologies [3]. The principles of the
methodology for correlation development formulated here are as
follows:

1. Input property values used for correlation development must be
evaluated based exclusively on original experimental data;

2. Input property values must include estimated uncertainties that
should be accounted for in the process of the correlation devel-

opment;

3. Provisions for interpolation and/or limited extrapolation of the
experimental data must be implemented to obtain input prop-
erty value estimates that are either not available or are poorly
defined from direct measurements;

dx.doi.org/10.1016/j.fluid.2010.07.014
http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
mailto:andrei.kazakov@nist.gov
dx.doi.org/10.1016/j.fluid.2010.07.014
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. There should be a mechanism for estimating uncertainties of pre-
dictions generated by the correlation [4]; these uncertainties can
also serve as a criterion for the applicability of a correlation to a
system under consideration;

. The overall procedure should be extendable to different proper-
ties with no or minor modifications;

. The overall procedure should have robust algorithmic imple-
mentation, thus allowing rapid modification of a correlation
following changes in stored data.

nly partial implementation of the above rules can be found in the
xisting approaches and some of the items are commonly ignored.
he present work describes a systematic practical implementation
f the above principles using correlation of critical constants for
ure compounds as an example. First, we discuss the key points
hat necessitate the formulated principles and present the practi-
al implementation that meets them. New correlations for critical
onstants are produced as a result of this effort. A detailed analysis
f the produced correlations (including comparison of their perfor-
ance with that of a number of existing estimation methods) is

lso presented.
Individual procedures and numerical algorithms used in this

ork were chosen based on a careful screening of the literature for
he most suitable approach as well as extensive testing. An imple-

entation framework based on Quantitative Structure–Property
elationships (QSPR) was selected. QSPR (also referred to as Quan-
itative Structure-Activity Relationships, QSAR, when applied to
iological activities) is well established, and is one of the most
idely used methodologies for data mining and correlation devel-

pment in pharmaceutical and agricultural applications [5]; it is
lso gaining use in empirical modeling of a wide variety of physi-
al properties [6–8]. The basic idea of QSPR is to relate a property
f interest to molecular numerical features derived theoretically
rom chemical structures. These numerical features are referred to
s descriptors. The relationship is established through regression
nalysis using large (i.e., statistically significant) collections of data,
hich makes this approach particularly attractive for data mining.

As noted earlier, the present work is focused on prediction of
ritical constants for pure compounds: the critical temperature
nd the critical pressure. Critical constants represent one of the
ost practically important thermodynamic properties, and devel-

pment of methods for their estimation has a long history [2]. Most
resently accepted approaches are based on Group-Contribution
GC) methodologies (e.g., [9–13]); however, QSPR-based methods
re gaining recognition from the early work of Grigoras [14] to
xtensive recent developments [15–22]. The latest edition of the
opular reference book, “The Properties of Gases and Liquids” [2],

ncludes coverage of QSPR-based approaches.
The following sections will describe in detail the individual steps

nvolved in the proposed implementation: processing of original
xperimental information, generation of molecular structures and
escriptors, and regression analysis.

. Experimental data

A principal goal of this work was to develop correlations based
xclusively on experimental data. In most literature studies, “exper-
mental” values are normally taken from some reputable reference
ompilation without detailed analysis of their origins. In many
ases, however, the compiled values are not experimental but

ather obtained either directly from, or with the aid of, other cor-
elations. For example, in a recent study [22], the authors used,
eemingly, the largest dataset (over 1230 compounds) ever con-
idered in QSPR modeling of critical constants. All property values
ere taken from the 1999 version of the DIPPR compilation. How-
ilibria 298 (2010) 131–142

ever, at the time of this writing, even the most recent version of
the DIPPR database [23] contains only 575 compounds with criti-
cal temperatures labeled as “experimental”, and even fewer (430)
compounds with critical pressures. As a result, the majority of prop-
erty values in the dataset used to develop correlations were in
fact estimated from other correlations. Furthermore, the problem
goes even deeper: compilations may erroneously list some values
as “experimental” due to misinterpretation of the original sources.
These errors tend to go unnoticed and are commonly propagated
to other data collections.

While it is certainly tempting to use the largest dataset possible
by including “good” recommended values regardless of their origin,
this action has deleterious effects on any empirical correlation pro-
duced via statistical treatment of the data. Inclusion of estimated
values introduces artificial bias, which, in extreme cases, may even
dominate the result, yielding what appears to be a good, low-noise,
accurate correlation, but factually is a meaningless reproduction of
one empirical relationship with another [24].

The direct use of experimental data from the original sources, as
advocated here, bypasses contamination of datasets with estimated
values. However, it does pose challenges of its own. Specifically, it
requires a robust and rigorous protocol for pre-processing of the
primary data, as described next.

All original experimental data used in the present study were
taken from the NIST/TRC SOURCE data archival system [25–27].
SOURCE is one of the largest collections of experimental thermo-
physical property data in the world and, at the time of this writing,
contains nearly 4 million data points. SOURCE is also actively
maintained to be concurrent with newly published information;
the number of data points is currently increasing at the rate of
about 0.5 million per year. The data collection procedures devel-
oped over many years facilitate enforcement of data quality. Every
experimental value is stored along with its estimated combined
uncertainty [4] obtained based on the information from the origi-
nal source as well as using custom in-house software [28] and data
expert analysis. Among other properties, SOURCE contains one of
the world’s most comprehensive collections of critical constants.

The present study is focused on two critical constants: the crit-
ical temperature Tc and the critical pressure pc. In cases when only
one datum was available for a given compound, the value and its
uncertainty were taken directly from SOURCE. When multiple data
points were present, they were evaluated to produce a single rec-
ommended value and its uncertainty, as described next. One of
the major problems of any large data collection is the presence
of outliers caused primarily by either erroneous or erroneously
entered data. Treatment of data contaminated with outliers has
been a subject of extensive studies, and numerous approaches have
been proposed. Here, the methods of robust estimation [29] were
chosen. Evaluation of the critical temperature was performed with
the maximum likelihood M-estimate based on the Cauchy distri-
bution [29]. In cases when only multiple pc points were available
without or with only limited other vapor pressure data, the criti-
cal pressure was evaluated with the same M-estimate approach as
was used for Tc evaluation. If sufficient vapor pressure data are
available, a more general procedure, similar to the one used by
NIST/TRC ThermoData Engine (TDE) [30], was adopted. All rele-
vant vapor pressure measurements (inclusive of triple and boiling
points) for a given compound were retrieved from the database and
fitted with the Wagner equation [31,32]. The critical pressure pc is
obtained as one of the fitted parameters. Use of the entire vapor
pressure curve not only improves the accuracy of the evaluated pc,

but also allows estimation of critical pressures via limited extrap-
olation when experimental pc data are not available [33]. Fitting of
data was carried out with MM-estimate methodology [34] based
on the FAST-LTS formulation [35] of Least-Trimmed-Squares (LTS)
method and M-estimate step using the Tukey’s bisquare objective
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Table 1
Statistical distribution of compounds with available experimental data.

Composition Count Percentage

H/C/O 337 40.0
H/C 193 22.5
H/C/halogen 90 10.4
H/C/N 59 6.8
H/C/O/halogen 45 5.2
C/halogen 40 4.6
H/C/O/Si 23 2.7
H/C/S 15 1.7
H/C/O/N 10 1.2
C/O/halogen 9 1.0
Si/halogen 8 0.9
H/C/Si/halogen 5 0.6
N/halogen 4 0.5
Contains P 3 0.4
H/C/O/S 2 0.2
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H/C/Si 2 0.2
Othera 20 2.3

a Mostly small inorganic compounds such as SF6, H2S, etc.

unction [29]. To improve stability of the fitting procedure, several
umerical constraints derived from the Waring criterion [32,33,36]
ere applied.

Upon completion of the evaluation procedures, the final number
f compounds with at least one evaluated critical constant was 920.
subset of compounds was removed from further consideration

ased on the following criteria:

complexes (salts, organometallic complexes, etc.);
compounds containing elements not supported by the quantum-
chemical methods used;
compounds containing isotopes that are different from the natu-
rally occurring compositions;
open-shell compounds;
compounds associated with references containing known erro-
neous data.

Most of the elimination criteria were dictated by the basic
onsideration of maintaining molecular structural integrity and
imilarity in the gas and liquid phases. The final compound count
as 865 (i.e., cases for which at least Tc was available); among

hem, 677 compounds had both Tc and pc evaluated. To the best
f our knowledge, this dataset represents the largest collection of
ritical constants for pure compounds derived exclusively from
xperimental data of traceable origins. Evaluated critical tem-
eratures for this set range from 126.19 K (molecular nitrogen)
o 913 K (p-terphenyl); critical pressures vary from 472 kPa (n-
exatriacontane) to 22064 kPa (water). A statistical summary for
he resulting set with respect to atomic composition of included
ompounds is given in Table 1. While this collection appears rea-
onably diverse, it is also strongly biased toward hydrocarbons and
xygenated hydrocarbons that represent the majority (62.5%) of
he population. This is expected and is unavoidable from a prac-
ical point of view, as hydrocarbons and their oxygen derivatives
re generally the most well studied classes of compounds. Com-
ound distributions according to the chemical families are provided

n Supplementary material.

. Generation of molecular structures and descriptors

As a starting point, a database of two-dimensional (2D) structure

epresentations (inclusive of stereo assignments where applicable)
as compiled for all compounds from the final set described in

he previous section. Subsequent generation of three-dimensional
3D) representations followed a two-step procedure. First, initial
D structures were produced from 2D representations using a
ilibria 298 (2010) 131–142 133

range of software tools [37–41]. These tools produce 3D molec-
ular geometries by use of stored template information and/or
distance geometry treatment [42] and further refine it with molec-
ular mechanics-based optimization. Some of the tools used (i.e.,
BALLOON [39] and Open Babel [40]) also provide low-energy con-
former search capabilities. Final 3D geometries were generated by
optimization of the initial 3D representations at the semiempirical
PM3 level [43] using MOPAC [44]. Semiempirical methods offer a
compromise between computational speed and chemical accuracy
because the sizes of the molecules of interest can be quite large
making the usage of higher-level quantum-chemical methods too
computationally expensive.

Special attention was paid to large flexible molecules (defined
here as compounds with 15 or more rotatable bonds). It is generally
recommended to consistently use the lowest energy conformers in
QSPR studies [45]; the search for low-energy conformations was
conducted with simulated annealing using the TINKER package [46]
and its implementation of the MM3 forcefield. In a limited num-
ber of cases, when molecules contained atoms poorly supported
by molecular mechanics, annealing cycles were performed with
the much more computationally expensive PM3 potential using an
in-house computer code based on the DYNAMO library [47].

Molecular descriptors were computed with CODESSA [48],
a package designed to process MOPAC outputs produced after
3D structure generation directly. CODESSA generates over 450
constitutional, topological, geometrical, electrostatic, quantum-
chemical, and thermodynamic descriptors. A number of descriptors
were manually removed from further consideration. Rejection of
certain descriptors was driven by the intention to produce a more
general model that depends on fundamental molecular properties
and, as such, might have a wider applicability. It is a common prac-
tice to reject descriptors based solely on statistical considerations;
however, when dealing with statistically-unbalanced (biased) data,
such as the dataset used here, manual removal guided by physical
considerations was chosen. The rejected descriptors included those

• associated with specific atoms (e.g., “relative number of Br
atoms”);

• that involve ambiguous definitions and/or are strongly discrete
(e.g., “number of rings”);

• with duplicated physical meanings.

The latter primarily concerns the descriptors that represent
similar or identical properties computed using either empirical par-
tial charges [49–51] or the partial charges derived directly from
quantum-chemical (PM3) analysis. From the empirical modeling
point of view, mixing empirical and quantum-chemical charges
may be considered beneficial and is performed routinely (e.g., [22]).
The rationale behind using these duplicated descriptors is that
it diversifies the descriptor pool. Additionally, one may hope for
possible “cancellation of errors” as different approaches may have
different deficiencies. The disadvantage of this approach is that it
may obfuscate the analysis of the final results, i.e., problems related
to these descriptors are harder to trace to their origin (the method).
Here, by rejecting the descriptors with duplicated physical mean-
ings, descriptor consistency was chosen over a possible gain in their
diversity. The final set of descriptors used in this study included 175
entries; a complete list is given in Supplementary material.

4. Regression analysis
To obtain a correlation that relates computed descriptors to the
property values, one needs to analyze the data using regression
analysis. This step is the most critical part of QSPR, and various
approaches have been tested and used in recent years [52]. The
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hoices normally include multiple linear regression (MLR), partial
east squares (PLS), various implementations of neural networks
NN), k nearest neighbors (kNN), and support vector machines
SVM). SVM methodology [53] is a relatively recent addition to
he nonlinear regression methods used in QSPR, however, it has
een reported [20,54,55] to yield similar, and often superior, per-
ormance as compared with other approaches. In addition to the
mpirical evidence of its good performance for QSPR (and many
ther real-world problems), SVM also exhibits several numerical
dvantages. Numerical solution of SVM regression is reduced to
olving a constrained quadratic programming problem that has a
nique global minimum, and a number of efficient standard solu-
ion algorithms are available. Finally, SVM is extremely robust in
ealing with high-dimensional data, a feature of particular practi-
al importance for QSPR problems when compounds are associated
ith many descriptors. The SVM approach was, therefore, chosen

or regression analysis in the present study.
The problem of nonlinear SVM regression (ε-SVR formulation)

s stated as follows [56]: for a given set of N data points, {(x1, y1),
. ., (xN, yN)}, where xi is a vector of variables and yi is the value of
he observable for the ith point, minimize

1
2

‖w‖ + C

N∑

i=1

(�i + �∗
i ), (1)

ubject to

yi − w · �(xi) − d ≤ ε + �i,
w · �(xi) + d − yi ≤ ε + �∗

i
,

�i, �∗
i

≥ 0, i ∈ [1, N].

inimization is performed over the vector of coefficients w, vectors
f slack variables � and �*, and d. The basic idea of SVM regression
s to define a “tube” of radius ε that best fits the data y and has
he centerline defined as a function of x that is as flat as possi-
le. A preset parameter ε defines the nominal accuracy of the SVM
pproximation, i.e., the deviations below ε are considered unim-
ortant and do not penalize the objective function (1). The first
erm in (1) enforces the “flatness” of the tube’s centerline, and the
econd term controls the deviations from the data; preset parame-
er C defines the tradeoff between the flatness of the function and
he accuracy of the approximation. The function �(x) provides a
onlinear mapping of the original variable vector x, thus making
n overall SVM approximation (i.e., the tube’s centerline),

(x) = w · �(x) + d,

more general, nonlinear function of x. Transformation of the min-
mization problem (1) into a dual formulation by introducing the
agrangian multipliers shows that explicit knowledge of the non-
inear mapping function �(x) is not required for the actual solution;
nstead, the kernel,

(xi, xj) ≡ �(xi) · �(xj), (2)

eeds to be defined. The nonlinear choices of kernel function nor-
ally include polynomial,

(xi, xj) = (xi · xj + 1)ω, (3)

nd Gaussian, more commonly referred to as radial basis function
RBF),

(xi, xj) = exp(−�‖xi − xj‖2), (4)
ernels, where ω and � are the kernel parameters. The RBF kernel
4) appears to be the most popular choice for the vast majority of
ractical SVM regression applications, and for QSPR problems in
articular [54,55]. As was pointed out earlier, the actual numerical
ilibria 298 (2010) 131–142

solution of the SVM regression problem is obtained in terms of the
kernel:

f (x) =
N∑

i=1

(˛i − ˛∗
i )K(xi, x) + d, (5)

where ˛i and ˛∗
i

are the Lagrangian multipliers produced from the
solution of the optimization problem. The SVM expansion (5) is
known to be sparse, i.e., the coefficients (˛i − ˛∗

i
) take nonzero val-

ues only for a subset of i ∈ [1, N]. The data points associated with
nonzero terms in Eq. (5) are called the support vectors.

For the purposes of the present work, the optimization problem
(1) was formulated in a slightly modified form [57]:

1
2

‖w‖ + C

N∑

i=1

ci(�i + �∗
i ), (6)

i.e., the extra weights ci were introduced for each point to account
for individual experimental uncertainties.

In applications of SVM regression to QSPR problems, all descrip-
tors and the property values are scaled to [0,1] intervals, and the
values computed with Eq. (5) are subsequently mapped back to the
physical space yielding the predicted property value. To complete
the definition of the problem, one needs to set the SVM parameter
C and, if applicable, the kernel parameters. The optimal settings for
these parameters are not known a priori and depend on a particular
dataset. Therefore, the practical implementation of the SVM regres-
sion is carried out in several steps [57]. First, the dataset is split into
three parts: the training set, the validation set, and the testing set.
The SVM parameters are then optimized to achieve the best accu-
racy in predicting the data from the validation set with the model
generated (or trained) using only the training set. Once the opti-
mal SVM parameters are established, training and validation sets
are combined, and the final model is produced with the optimized
SVM parameters using this combined set. Finally, the fidelity of the
model is confirmed by comparing its predictions with the data from
the remaining (unused) testing set.

Special consideration was given to selection of the testing and
validation sets. In most applications, this selection is performed
randomly. However, considering the bias toward certain classes of
compounds that is present in the dataset under consideration (and
this situation is likely to be the case for any dataset of experimental
data from the literature), random selection is not the best strategy.
Golbraikh et al. [58] recognized this problem and suggested several
stratified selection strategies based on sphere exclusion algorithms
shown to be superior to the approaches based on random selection
or property value rankings. Leonard and Roy [59] used a concep-
tually similar approach based on k-means clustering and reached
similar conclusions. Here, the method referred to as “3M” by Gol-
braikh et al. [58] was adopted.

All SVM regression analysis in the present work was performed
with a customized version of the LIBSVM package [57].

5. Uncertainty analysis

For practical use of any model, one must recognize its accuracy
and limitations, and there should be a mechanism for quantita-
tive estimation of uncertainties along with the predicted values.
Uncertainty analysis of QSPR models is rarely conducted beyond
computing a global error metric, such as the mean absolute devi-
ation or root-mean-squared error. Use of the global error measure

is certainly helpful, as it does provide a sense of the model per-
formance. However, the fact that the experimental values have
uncertainties of their own [4] is generally overlooked (i.e., the
experimental measurements are considered error-free) in this
global analysis. Furthermore, one should expect that the model



se Equilibria 298 (2010) 131–142 135

a
c
i
u
i

1

2

3

4

5

6

I
a
u
b
a
t
i
u
b

a
d
p
p
fi
e
t
o
o
m
t
T
p
a
I
p
i
E
s
d
u
i
c
f
d
f
g
F
o
s
w
s
c

W

A. Kazakov et al. / Fluid Pha

ccuracy would not be uniform across the dataset, and there is a
lear benefit of more fine-grained uncertainty estimation depend-
ng on a specific case (compound). To perform a more detailed
ncertainty analysis, sources of potential model errors need to be

dentified first, as listed below:

. uncertainties of the experimental data used to produce the
model;

. extrapolation errors, i.e., the case when the compound of interest
is outside the model training domain;

. nominal accuracy of the model ε (i.e., the “width” of the SVM
regression “tube”);

. missing physics: descriptor(s) that should account for the rele-
vant physical behavior is(are) not included;

. change in the physical mechanism that controls the property of
interest as compared to the cases used to generate the model
(e.g., compound association);

. deficiency of the theoretical molecular structure: “wrong” con-
former, errors of the quantum-chemical method used, etc.

tems 4, 5, and 6 are, generally, very difficult to address a priori. They
re normally encountered and identified during the practical model
se. However, these errors are mostly correctable, i.e., the model can
e adjusted by including missing descriptors, using more appropri-
te theory to produce molecular structures, etc. Items 1 and 2, on
he other hand, will always be present in any empirical model, and
tem 3 is inherent to the SVM regression approach. Fortunately, the
ncertainties associated with items 1–3 can also, to some extent,
e accessed numerically as part of the model development process.

The nominal accuracy of the SVM regression ε (item 3) is avail-
ble by definition. The methodology for evaluation of uncertainties
ue to experimental errors is developed and implemented in the
resent study. From the mathematical point of view, the model
redictions depend on the experimental measurements via coef-
cients (˛i − ˛∗

i
) in Eq. (5). In general, this relationship cannot be

xpressed analytically. Furthermore, as was mentioned previously,
he coefficients (˛i − ˛∗

i
) take nonzero values only for a subset

f experimental points (support vectors); however, the makeup
f this subset will also vary with the experimental values y. This
akes the conventional use of numerical differentiation as a means

o access the accuracy via differential analysis highly impractical.
herefore, the situation calls for the use of Monte Carlo sampling
rocedures, an approach commonly adopted to evaluate the prop-
gation of uncertainty through systems of such complexity [60].
mplementation of this technique as applied to the SVM model (5)
ut forward in this study is as follows. Given the vector of the exper-

mental values y, a sample of size M, (y1, . . ., yM), is generated.
ach ith component yj

i
of the vector yj, where j ∈ [1, M], repre-

ents a random variable distributed according to the probability
ensity function (assumed normal) defined by the experimental
ncertainty of the original experimental value yi. Each vector yj

s then used to generate a separate SVM model, fj. As a result, a
ollection of SVM models, (f1, . . ., fM), is produced and stored for
urther use. From this point, the generation of the final model pre-
iction becomes more involved. Instead of producing a single value
rom a single model for a given vector of scaled descriptors x, one
enerates a sample of predictions of size M, one for each model fj.
rom this sample, both the final predicted value (i.e., the median
f the sample) and its confidence interval are derived. Monte Carlo
ampling was performed using the latin hypercube strategy [61],

hich allows achievement of high efficiency for a limited sample

ize. Sample size M = 3000 was found to be more than sufficient for
onvergence of both the median and the confidence interval.

Finally, the issue of extrapolation (item 2) should be mentioned.
hile the methodologies for defining the applicability domain for
Fig. 1. Experimental ratio of critical temperature and critical pressure as a function
of computed molecular volume for 677 compounds.

QSPR/QSAR models are emerging [62], they still lack general-
ization. However, the extrapolation errors, to some extent, are
also accounted for by the propagation of uncertainty procedure
described above. Experimental uncertainties, when propagated to
unconstrained regions outside of the training domain, are expected
to cause numerical instabilities, resulting in increased uncertainties
of the model predictions.

6. Development of QSPR-SVM correlations

Prior to the development of QSPR correlations using the eval-
uated experimental data and the SVM apparatus described in the
previous sections, one needs to consider the specific properties to
be correlated. While the end goal is to obtain estimates for Tc and
pc, all previous efforts [15–22] indicate that both of these proper-
ties are complex and nontrivial functions of molecular parameters.
Therefore, property transformations that can potentially simplify
the resulting correlations were considered first. The property trans-
formations are generally deemed unnecessary when nonlinear
regression is used. However, in practical situations, when one deals
with unbalanced data, it is beneficial to supplement experimen-
tal data with an additional information coming from the physical
insights to the problem, such as the property transformation sug-
gested below.

One of the obvious choices is to use the ratios Tc/pc and T2
c /pc.

This proposal is motivated by the fact that, from the van der Waals
equation of state, Tc/pc ∝ b and T2

c /pc ∝ a, where a and b are the van
der Waals constants. Constants a and b are closely related to molec-
ular parameters, i.e., a is the measure of intermolecular attractions,
and b is related to molecular volume. The fact that the ratio Tc/pc can
be correlated better (i.e., with fewer and easily computed molecular
parameters) than either property individually was reported previ-
ously [63–66]. In particular, Kontogeorgis and co-workers [64–66]
advocated a simple expression that related Tc/pc to a single param-
eter, the compound’s van der Waals surface area computed from
tabulated group contributions. To further illustrate the advantage
of using Tc/pc, this ratio is plotted against the van der Waals vol-
ume (consistent with its expected relationship to b) in Fig. 1 for all
677 compounds with evaluated Tc and pc. The molecular van der
Waals volume is one of the descriptors computed by CODESSA as
a volume of overlapping spheres [67] defined by the atomic van
der Waals radii and the optimized molecular geometry. As can be

seen, the data indeed exhibit a strong correlation with this single
independently-computed parameter in confirmation of these very
simple theoretical considerations. While the correlation shown in
Fig. 1 is not quantitative (i.e., it cannot be represented with a single
curve of the desired accuracy), introduction of additional variables
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Table 2
SVM regression data.

Training Validation Testing

Set statistics
Tc 574 191 100
Tc/pc 450 150 77

Kernel

Polynomial RBF

ε C C �

(
T
e
a
q
u
f
m
l
i
(

e
ε
1
t
m
v
T
a

c

w
t
s
f

c
t
c
t
T
t
u
c

u
n
r
e
t
o
1
t

m

F

Fig. 2. Comparison of experimental and predicted critical temperatures. Model pre-

that denotes “the perfect fit”. Furthermore, the testing set (shown
in insert), an independent measure of the model’s predictive capa-
bility, is also well described. Shown in Fig. 3 are the distributions of
absolute deviations between the model and the experimental val-
SVM parameters
Tc 4 × 10−3 0.40 7088 4.16 × 10−3

Tc/pc 1 × 10−3 3.21 17.86 2.28 × 10−1

descriptors) is expected to improve the quantitative agreement.
herefore, Tc/pc was chosen as one of the properties for the gen-
ration of correlations. Relative experimental uncertainties for pc

re typically an order of magnitude greater than those for Tc. Conse-
uently, the uncertainty of the ratio Tc/pc (or T2

c /pc) is controlled by
ncertainties in pc. If one is to derive critical temperature estimates
rom correlations for Tc/pc and T2

c /pc, it will be contaminated with
uch greater uncertainties than those of the original experiments

eading to an unacceptable loss of accuracy. Therefore, in spite of
ts potential complexity, it is more beneficial to correlate Tc directly
and pc indirectly through calculation of Tc/pc).

Details of the numerical implementation as applied to the prop-
rties Tc and Tc/pc are given below. The nominal accuracy parameter
(i.e., the “width” of the SVM “tube”) was set to 4 × 10−3 and
× 10−3 for Tc and Tc/pc correlations, respectively. In the case of

he critical temperature, the chosen value corresponds to approxi-
ately 3 K in physical space, i.e., before scaling. For Tc/pc, the preset

alue of ε translates to a deviation of about 5% for the lowest value of
c/pc in the dataset. The weighting factors ci in Eq. (6) were defined
s

i = ımin

ıi
, (7)

here ıi is the experimental uncertainty for the ith point, and ımin
he smallest uncertainty observed in the dataset. Linear weight
caling (7) is consistent with the loss function used in the SVM
ormulation (1).

It is often recommended to reduce the number of descriptors
onsidered, leaving only the ones that have the strongest effect on
he property of interest. The criteria for descriptor elimination are
ommonly based on statistical analysis of the dataset; however,
heir application to unbalanced (i.e., biased) data is problematic.
herefore, it was decided not to reduce the descriptor set beyond
hat discussed in Section 3, and the full set of 175 descriptors was
sed in all correlation development work presented. Detailed dis-
ussion of this issue is presented in Section 8.1.

The SVM regression analysis in this study was primarily tested
sing second-order polynomial (Eq. (3) with ω = 2) and RBF (4) ker-
els. Limited initial tests were also conducted with linear and the
ecently suggested Pearson VII function [68] kernels; the former
xhibited worse performance compared to all nonlinear kernels
ested, while the latter produced results nearly identical to those
f the RBF kernel. For both Tc and Tc/pc correlations, about 25% and
2% of the total compound count were used for the validation and
esting sets, respectively. The exact numbers are given in Table 2.

SVM parameters, as explained in Section 4, were optimized by

inimizing the objective function

=
∑

i

∣∣∣∣
yi − yp

i

ıi

∣∣∣∣ , (8)
dictions shown were obtained using the second-order polynomial kernel and SVM
parameters listed in Table 2. The main figure shows data from the combined training
and validation set. The insert displays independent testing set data with the same
axis scales as those of the main figure.

where the summation is performed over all property values from
the validation set, yp

i
is the value predicted with the model obtained

using the training dataset and a trial set of the SVM parameters, yi
the experimental value, and ıi the experimental uncertainty. For
the second-order polynomial kernel, a single parameter C was opti-
mized using the grid search. For the RBF kernel (4), two parameters
C and � were optimized simultaneously using the differential evo-
lution algorithm [69]. The resulting values of parameters for all
cases are also given in Table 2.

7. Results

The comparison of experimental and predicted critical tempera-
tures is shown in Fig. 2 for the polynomial kernel-based SVM model
(the results obtained with the RBF kernel are visually similar and
not shown for brevity).

The error bars represent the evaluated uncertainty for the exper-
imental data; the error bars for predictions combine the SVM’s ε and
uncertainties estimated via Monte Carlo sampling as described in
Section 5. As can be seen, the experimental data are described very
well, and the majority of the points cluster around the centerline
Fig. 3. Statistical distribution of absolute deviations between SVM models based on
different kernels and the experimental data for critical temperature.
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ritical pressures. Model predictions shown were obtained using the second-order
olynomial kernel and SVM parameters listed in Table 2. The main figure shows
ata from the combined training and validation set. The insert displays independent
esting set data with the same axis scales as those of the main figure.

es computed independently for combined training/validation and
esting sets. As an acceptable level of performance, the first “bin”
f this discretized distribution is defined as deviations below 5 K or
ithin the evaluated experimental uncertainty. About 80% of values

rom the combined training/validation sets belong to this category
or either functional form of the SVM kernel; about 70% of points
or the independent testing set occupy this first “bin”. For all cases
hown, the deviations between the model and the experimental
ata are less than 10 K or within the experimental uncertainty for
bout 90% of the Tc values. The error distributions for the combined
raining/validation and testing sets are very similar, giving further
upport to the model’s fidelity. The results also show that the two
orms of the SVM kernel function perform approximately the same.

A similar analysis was performed for the second property, Tc/pc,
s shown in Figs. 4 and 5. The experimental uncertainties are much
igher for this property, due to higher propagated uncertainties of
c. This is especially pronounced for the large-sized molecules (high
alues of Tc/pc). Taking into account these larger uncertainty levels,
he model again displays good performance, and, as previously, the

esting set is described well. The error analysis is done here in terms
f the relative deviation (Fig. 5), a more appropriate error metric
or this property. An acceptable accuracy is defined as “less than
% or within the evaluated experimental uncertainty”. This value is

ig. 5. Statistical distribution of relative deviations between SVM models based on
ifferent kernels and the experimental data for the ratio of critical temperature and
ritical pressure.
ilibria 298 (2010) 131–142 137

consistent with a typical experimental uncertainty for pc measure-
ments that normally controls Tc/pc uncertainty. Approximately 90%
of compounds belong to this category for the model based on the
polynomial kernel. The RBF-based model performs slightly worse
with more than 80% of cases displaying acceptable accuracy. For all
cases presented, between 92% and 100% of the points are predicted
to better than 10% or within the experimental uncertainty.

The RBF kernel is generally a preferred choice in most practical
SVM regression applications. Based on the results presented so far,
a conclusive recommendation regarding the preferred functional
form of kernel cannot be made: the polynomial form seems to yield
slightly better results, but the differences are not sufficient for gen-
eralization. However, the polynomial kernel has another advantage
over the RBF function. Specifically, RBF, being a Gaussian-based
function, is local in nature. As such, RBF generally works very well
for data interpolation, but its ability to extrapolate deteriorates
rapidly once the point of interest moves away from its center.
Furthermore, the numerical instabilities will also decay with the
function itself, which may lead to erroneous conclusions during
uncertainty analysis. The polynomial kernel, on the other hand,
typically works better in situations when limited extrapolation is
needed and was therefore adopted here.

As seen in Figs. 2 and 4, a small number of points appear as
outliers, i.e., the deviations between the experimental data and
the model predictions significantly exceed the uncertainties. Com-
prehensive analysis of these cases was also performed and, due to
the lack of space, is given in Supplementary material. The results
revealed anomalous cases, typically where significant compound
association is expected to take place. Multiple experimental errors
were also detected.

8. Discussion

8.1. Number of descriptors in QSPR-SVM correlations

As mentioned earlier, the reduction of the number of variables
in QSPR-SVM models was not considered beyond that discussed in
Section 3, and the full set of 175 descriptors was used in correla-
tion development. This deliberate decision, generally, goes against
traditional QSPR methodology and requires some additional dis-
cussion.

In empirical modeling, one can distinguish two extreme cases.
The first case can be described as smoothing interpolation, i.e., an
interpolating surface is drawn through a number of nodes in mul-
tidimensional space, usually keeping all variables. This approach
can provide high accuracy in the close vicinity of the nodes, but
interpolation between the nodes or extrapolation outside of the
domain may be of poor quality and may exhibit numerical instabil-
ities depending on the positioning of the nodes and the functional
form of the interpolating surface. Traditional GC-based estimation
methods are close to this extreme situation in that they may involve
hundreds of variables (groups), and group contribution values are
often derived on the basis of a single point (node).

The second case can be represented by traditional QSAR/QSPR
modeling. Here, only few variables are selected from a large pool,
and a linear or nonlinear approximation of the data is developed
on their basis. Variable selection is governed by statistical consid-
erations, and it is expected to keep the number of variables as low
as possible. The accuracy of these models varies, but is generally
not very high as seen in practical use (e.g., see the 3-variable model

for Tc from Ref. [17]). In addition, these models are expected to
describe trends (interpolation or extrapolation) without the prob-
lems typical of the smoothing interpolation approach. It must be
noted that QSPR descriptors do not represent true state variables,
and one cannot claim that a finite set would contain all infor-
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ation required for accurate description of the property under
onsideration. In fact, it is entirely possible that this information
ould be distributed over a very large set of descriptors, and con-

equently, keeping the number of variables low would not result in
n acceptably accurate model. The traditional tendency to limit the
umber of variables to just a few probably originates from the fact
hat the training datasets used historically in QSAR/QSPR modeling
ere also very limited. Provided that a sufficiently large dataset

s available, a larger number of variables can be selected follow-
ng the same statistical considerations. In doing so, however, one
aces another challenge: available experimental datasets are almost
lways extremely unbalanced, and, as discussed previously, the
ataset for critical constants is no exception. Experimental mea-
urements are not performed in a remotely systematic manner
ith regard to compound family or molecular size; and in fact, this

s not physically possible. When dealing with unbalanced (biased)
atasets, the statistical approaches used in QSPR tend to lose valu-
ble information from poorly represented data in the process of
escriptor selection. This situation may be remedied in the future
ith the emerging data balancing technologies [70]. At present,
owever, there is no established solution.

The SVM regression approach adopted in this work is very robust
nd efficient in dealing with high-dimensional data and variable
edundancy. Although the resulting models are expected to have
ome interpolative features and may have problems outlined at
he beginning of this section, the empirical evidence suggests no
oticeable numerical instabilities, i.e., the testing sets for both
roperties are well-predicted. Further analysis was performed by
enerating predictions and their estimated uncertainties for about
000 additional compounds from SOURCE with no experimental
ritical constants available (these estimates are now accessible in
DE [71]). If the predictions are affected by numerical instabilities,
ne should expect that the corresponding uncertainties computed
ia the stochastic sampling procedure would have wide distri-
utions. This was not observed. For 95% of the compounds, the
ncertainties for Tc and Tc/pc were less than 15 K and 16%, respec-
ively.

.2. Extrapolative ability of QSPR-SVM correlations

QSPR-based property prediction methods are often criticized for
oor established extrapolative abilities as compared with GC-based
pproaches (e.g., [13]). Generally, one cannot expect good extrap-
lative accuracy from an empirical correlation unless the property
n question exhibits a well-defined asymptotic behavior that is
nforced by the mathematical form of the correlation. None of the
xisting empirical methods for prediction of critical constants pos-
ess this feature. Some GC-based methods that correlate Tc/Tb may
e considered to have reasonable asymptotic behavior, but only if a
eliable Tb value is available; otherwise, no extrapolative ability can
e claimed with certainty. Furthermore, even the concept of extrap-
lation cannot be defined in conventional terms, as the problem is
ntrinsically multidimensional regardless of the types of variables
sed (i.e., descriptors in QSPR or group counts in GC). The common
ractice to demonstrate the method’s extrapolative abilities is to
se the longest homologous series with available experimental data
i.e., straight-chain alkanes) as an example; however, it must be
ealized that this is a special case amongst numerous possibilities.

What is arguably more important than the reasonable functional
ehavior outside of the domain with available data is the ability to
ssess the model’s applicability domain. In other words, one should

e able to recognize when the model predictions become unreli-
ble due to extrapolation error rather than to have the comfort of
seemingly “reasonable”, yet baseless, estimate.

As discussed previously, the SVM regression with the polyno-
ial kernel used in the present QSPR-SVM approach provides some
Fig. 6. Critical temperatures of normal alkanes. The points labeled “Monte Carlo”
are obtained from Monte Carlo simulations [72].

degree of extrapolation by design. Furthermore, combined with the
stochastic uncertainty analysis, this approach leads to increased
estimated uncertainties outside of the domain constrained by
the training data. This feature allows a more informed judge-
ment regarding the reliability of the estimates produced by the
model. To illustrate this, the conventional example of the normal
alkane homologous series is considered (Fig. 6). As can be seen,
the critical temperatures estimated with QSPR-SVM agree well, as
expected, with the experimental data that are available up to C36,
and the estimated uncertainty generally follows the uncertainty
of the experimental data. As predictions are extrapolated beyond
the available data, the estimated uncertainty gradually increases,
reaching about 85 K at 55 carbon atoms. One can immediately con-
clude that the estimates produced for larger alkanes are of low
fidelity. Also shown in Fig. 6 are the results of Monte Carlo sim-
ulations from Nath et al. [72]. Their last value was computed for
n-octatetracontane (C48H98), and agrees with the QSPR-SVM esti-
mate.

8.3. Interpretation of QSPR-SVM correlations

The complexity of the SVM expansion, Eq. (5), makes its direct
interpretation difficult; however, it is possible to gain a qualitative
understanding of the dominant factors controlling the predicted
critical constants. As noted earlier, prior to their use in the SVM
regression, all descriptors are scaled to [0,1] intervals. Therefore,
the linear terms in the expansion of Eq. (5) with respect to the
scaled descriptor values xk,

f (x) = d +
∑

k

akxk + · · ·, (9)

are expected to have the most influence on the predicted value.
Ranking of the descriptors by absolute values of coefficients ak in
Eq. (9) can be used as a qualitative measure of their importance.
Table 3 lists the descriptors with highest rankings for both correla-
tions. Only descriptors with absolute values of ak that are greater
than half of the highest absolute value observed for the entire set
are shown. For Tc, there are 12 descriptors that have |ak| above the
chosen cutoff. As expected, most of them characterize polar inter-
actions and size of compound. This list is generally consistent with
descriptor sets identified as important for modeling Tc in previous

QSPR studies [15–17,21,22]. Particular overlap is observed with the
set reported by Katritzky et al. [16] who also used CODESSA for
generation of descriptors. Inclusion of descriptors associated with
the number of occupied electronic levels is a new feature that was
not reported previously. It appears to reflect and quantify the pres-
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Table 3
Descriptors associated with dominant linear terms in QSPR-SVM expansions.

|ak|/|ak|max Descriptora

Tc

1.00 ˛ polarizability
0.96 Number of occupied electronic levels/number of atoms
0.84 Relative molecular weight
0.82 Kier and Hall index (order 3)
0.81 Total molecular electrostatic interaction
0.81 Total molecular one-center electron-electron

repulsion/number of atoms
0.79 XY shadow
0.77 Molecular weight
0.67 Average information content (order 0)
0.60 Number of occupied electronic levels
0.56 Gravitation index (all bonds)
0.56 Zero point vibrational energy/number of atoms
0.54 Average complementary information content (order 1)

Tc/pc

1.00 Wiener index
0.57 Molecular volume
0.50 Total charge-weighted partial positive surface area
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0.50 Difference between total charge-weighted partial positive
and negative surface areas

a Rigorous definitions of all descriptors are given in Ref. [48].

nce of heteroatoms that are known to have a significant effect on
c. It is likely that, in previous studies, compounds with heavy het-
roatoms were either underrepresented in the training sets or their
nfluence was accounted for by the use of less general, atom-specific
escriptors that were excluded in the present work.

The list for Tc/pc contains only 4 descriptors that satisfy the
utoff criterion. Based on the discussion in Section 6, molecular vol-
me, expectedly, has a very high ranking (number two in the list).
he highest ranking descriptor for this property is the Wiener index.
he Wiener index [73] is one the oldest topological descriptors and
as successfully used in numerous correlations. It has been shown

o exhibit a strong nonlinear correlation with the van der Waals
urface area [74] for a compound, which is a likely reason of its
igh ranking for Tc/pc correlation.

.4. Comparison of QSPR-SVM with other estimation methods

To demonstrate the performance of the QSPR-SVM approach,
systematic comparison with other methods commonly used

or critical constant estimation was performed. The methods of
oback [9], Constantinou–Gani (CG) [10], Wilson–Jasperson (WJ)
11], and Marrero–Pardillo (MP) [12], all of which are based on
roup-Contribution (GC) methodology, were considered. In all
alculations, the implementation of these methods in the TDE soft-
are [30] was used. A number of issues were addressed to conduct

he comparisons in a consistent manner. First, during the devel-
pment of QSPR-SVM correlations, the experimental data were
plit into two sets: a large training/validation set and a smaller,
esting set. Because the QSPR-SVM correlations were developed
sing the information from the training/validation set, they have
n advantage over other methods, when compounds from this set
re considered. Therefore, when comparisons are made, the infor-
ation for the training/validation and testing sets was processed

nd presented separately. Second, GC-based methods have a nar-
ower coverage than QSPR-SVM, as they depend on data availability
or each functional group. The scope of the considered methods, as

ompared to the present approach, is illustrated in Fig. 7. As can
e seen, Joback, CG, and WJ methods cover 83–92% of the com-
ounds from the training/validation set and nearly all compounds
rom the testing set. The MP method has a substantially narrower
cope, covering only 60% for critical temperature and 48% for both
Fig. 7. Scope of Joback [9], Constantinou–Gani (CG) [10], Wilson–Jasperson (WJ)
[11], and Marrero–Pardillo (MP) [12] estimation methods. The bars indicate the
percentage of compounds from QSPR-SVM sets supported by the respective method.

critical temperature and critical pressure for the training/validation
set, and 67% and 60% for Tc and for both Tc and pc, respectively, for
the testing set. It follows that, when performing the comparisons,
only compounds supported by a specific GC method were consid-
ered. Third, with the exception of the CG method, the GC methods
require knowledge of normal boiling points Tb. The common prac-
tice that leads to more accurate predictions is to use experimentally
measured Tb; for example, Nannoolal et al. [13] report a two-fold
increase in average absolute error in Tc predictions when experi-
mentally measured Tb values were replaced with predicted ones.
Here, however, the objective was to compare a priori estimates
without any addition of experimental information, so the needed
normal boiling points for the GC methods were also estimated. The
TDE capabilities were used for these estimates, as well. In doing
so, whenever possible, the method from the same family was used
to estimate Tb (i.e, the Joback or MP method was used to estimate
both Tb and Tc). If the method for normal boiling point was unavail-
able, as in the case of WJ, or was recognized by TDE as inaccurate
for a particular compound, the best alternative estimation method
implemented in TDE was used. Finally, for consistency with the
present work, the ratio Tc/pc, rather than pc itself, was used for com-
parisons. In addition to the evaluation of QSPR-SVM performance as
compared to the other approaches, the following analysis also pro-
vides a new validation of the GC-based methods against the large
dataset of experimental values developed in this work. The statisti-
cal distributions of deviations from the experimental data obtained
with the different estimation methods are shown in Figs. 8 and 9 for
Tc and Tc/pc, respectively. As seen in Fig. 8, the QSPR-SVM approach
performs substantially better in prediction of critical temperature
than any of the GC-based methods (within their respective scopes)
not only for the compounds from the training/validation set, as one
may have expected, but, more importantly, for the compounds from
the testing set as well. Among the GC-based methods, the method
of Joback exhibits the worst performance; the distribution of abso-
lute deviations from the experimental data appears rather flat and
peaks between 10 and 50 K (Fig. 8). The CG and WJ methods show
somewhat better performance, and MP displays the best accuracy
among the GC methods, with results similar to those of QSPR-SVM
for the testing set; however, as noted previously, the scope of MP
is substantially narrower.

The advantage of QSPR-SVM is yet more apparent for prediction
of T /p (Fig. 9), where about twice as many compounds are pre-
c c

dicted within an accuracy of 3% (or experimental uncertainty) as
for any of the other methods. As for Tc, MP shows the best perfor-
mance (within its limited coverage) among the GC-based methods,
followed by the WJ, CG, and Joback methods.
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Fig. 8. Comparison of the present QSPR-SVM and GC-based methods for prediction
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f critical temperature, Tc. For each group of bars defined by the error range, the order
f bars is as follows: QSPR-SVM (training/validation set), QSPR-SVM (testing set),
C method (training/validation set), and GC method (testing set). The GC method
onsidered is shown in each figure.

It can be concluded from the above analysis that the present
SPR-SVM approach exhibits substantially better performance in
redicting critical constants for pure compounds as compared to
everal commonly used GC-based methods applied in an a pri-
ri manner (i.e., without the use of the experimentally measured
ormal boiling temperatures).

. Summary

A framework for the development of predictive correlations
or thermophysical properties was formulated and successfully
emonstrated using critical constants for pure compounds as an
xample. The procedures implemented in this work include rigor-
us evaluation of the original experimental data from the literature
nd development of empirical models based on the QSPR method-
logy combined with the SVM regression analysis. Evaluation of
xperimentally measured critical constants was performed with
he methods of robust regression, and generated a dataset that
ncluded 865 compounds with evaluated critical temperatures;
mong them, 677 compounds had both critical temperature and
ritical pressure. Experimental uncertainties were also evaluated

nd explicitly taken into account during correlation development.
procedure based on stochastic sampling that allows uncertainty

ssessment for predicted values was also presented. The result-
ng correlations exhibited good performance, as evidenced by the
omparison of predicted and experimental values for subsets of
Fig. 9. Comparison of the QSPR-SVM and GC-based methods for prediction of the
ratio of critical temperature to critical pressure Tc/pc. The bar markings are the same
as in Fig. 8.

compounds that were not used in the correlation development. The
findings of this work also indicate that the QSPR-SVM approach
generally performs better both in terms of accuracy and scope
than several popular Group-Contribution-based estimation meth-
ods when applied in an a priori manner (without experimental Tb
information). Additional predictions of critical constants were gen-
erated for about 8000 compounds with no experimental data and
were made available in NIST/TRC ThermoData Engine software.
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