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INTRODUCTION

The “holy grail” in durable goods manufacturing
is elimination of the need for off-line part
inspection. Fringe projection [1-4] is an attractive
process for on-machine metrology because the
flexibility of the setup and the relative long
working distances of the system’s components
help address several of the challenges
associated with  on-machine  metrology.
Specifically, the system components can remain
on the machine throughout the machining
process and can measure the entire part without
machine movement. These help de-couple the
uncertainty in the machine tool from the
uncertainty in the measurement process.

Literature review on fringe projection indicates a
thorough uncertainty analysis is absent. The
current work addresses this need, discussing
the challenges encountered in the analysis. The
results provide much more than just a standard
uncertainty value for the current on-machine
setup at the National Institute of Standards and
Technology (NIST). Rather, the uncertainty
analysis serves as a tool to improve several
aspects of the process, most notably the
calibration process.

MATHEMATICAL FOUNDATION

Fringe projection belongs to the field of
stereophotogrammetry, which uses two-
dimensional data from multiple coordinate
systems to obtain results with an added
dimension in a target coordinate system. Two or
more two-dimensional camera images from
different perspectives of the same real-world
scene have correspondence poinis allowing
determination, through solution of the stereo
correspondence problem, of three-dimensional
coordinates of the surface in the captured scene
[5]. Fringe projection ailows auiomated
determination of correspondence poinis by
replacing one of the cameras with a projector
that projects a known pattern onio the scene.

Thus, in a typical fringe projection system, two-
dimensional data from the camera and projector
coordinate frames provide three-dimensional
data in the realworld coordinate frame.
However, to ease analysis and understanding,
the current study examines a simpler system
with one-dimensional camera and projector data
and two-dimensional real-world data.

Points in one coordinate frame can be
expressed in another coordinate frame through
homogeneous transformation matrices:
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where xz and zz are coordinates in the real-world
coordinate frame, x. and x, are the x-coordinates
in the camera and projector coordinate frames,
respectively, and # and w are scale factors. Cj
and P; are transformation matrix components
expressing real-world coordinates in the camera
and projector coordinate frames. Expanding and
rearranging Eqs. (1), we obtain:
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Notice that if x., x,, C;, and P; are known, there
are two equations to solve for the two unknowns
xz and zz. The equations can be rearranged into
matrix form to reflect this:
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Thus, the output quantities of xz and zz depend
on the input quantities x, x, C; and Py
Uncertainties in the output quantities are
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functions of the uncertainties in the input
quantities [6]. C; and P; are determined through
a prior calibration.

CALIBRATION

When the fringe projection system is first setup,
the camera and projector transformation matrix
components are unknown. These components
can be estimated using a calibration artifact with
known real-world coordinates. The discussion
below concentrates on the camera calibration,
but can also be applied to the projector.

Examining Eq. 2a, one can see that there are 6
unknown C;. Because the [Cy] matrix is a
homogenous transformation matrix, C,; is set
equal to 1 for a unique solution. Thus, at least
five real-world coordinates and  the
corresponding camera coordinates must be
known to estimate the unknown Cj.

If there are N > 5 known non-collinear real-world
coordinates, then C; can be estimated by a
least-squares method. N known real-world
coordinates yield N equations similar to Eq. (2a):
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where x, and z, are known calibration artifact

coordinates. Notice that Eq. (4) takes the form
AC = y. This means least squares estimates for
C can be found by solving the normal equations:

c=(aTa)"aTy (5)
Note that equations similar to Egs. (4) and (5)
exist for the projector and its P; values.

DIFFICULTIES WITH UNCERTAINTY

Though estimates for the transformation matrix
components follow the above well-known
approach, determination of the uncertainties in
those components is not so straightforward.
Ordinarily the standard uncertainties in fit values
are determined by calculating the components’
covariance matrix. However, this approach to
uncertainty determination assumes all the
uncertainty comes from the y vector and the A
matrix is known exactly.

in this case, there is also uncertainty in the
components of the A matrix. Specifically, the
standard uncertainties in the known real-world

coordinates on the artifact come from a
calibration certificate for the artifact (type B
uncertainty). The standard uncertainty in the
camera coordinates come from a statistical
analysis of the edge detection process (type A
uncertainty). Additionally, when determining the
combined standard uncertainty u(xz), there will
be significant correlation between 1(Cy) and u{x,)
that may be difficult to determine.

To avoid these issues, C; are left in equation
form, so that xz and z are explicit functions of all
calibration values and part measurements.
However, due to the complexity of the
equations, the only way to express them is with
mathematical software capable of symbolic
manipulation.

ANALYSIS

After substituting the equations for C;; and P; into
Eq. (3), the output quantities xg and zzx depend
only on camera coordinates x., projector
coordinates x, and calibration artifact
coordinates x, and z, as input quantities. Of note
is that these input quantities are all independent.
Thus, as defined by reference [6], the combined
standard uncertainty in the x-coordinate is:
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where dxx/dx; is the sensitivity coefficient for
each input quantity, and u(x) are standard
uncertainty values for the input quantities.

Mathematical software is capable of determining
all sensitivity coefficients symbolically:
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FIGURE 4. Plots of how sensitivities vary with
workpiece position. a) V; and b) W,
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FIGURE 5, Variation of combined standard

uncertainty in real-world coordinates with
position on the workpiece.

uncertainty {um)

than 30 known coordinates, and a higher density
of known coordinates near the edges of the part
might be ideal.

When the current analysis is expanded to three
output dimensions, y-coordinates will be added
to the camera, projector, and real-world. Also, in
addition to the rotation about the y-axis already
accounted for (& in Fig. 1), rotations about the
modified x- and z-axes will be included. The
main concern with expansion is the added
computational costs. Changes may be needed
in the programming approach made to alleviate
excessively long computation times.

CONCLUSION

We have conducted an uncertainty analysis of a
simpie fringe projection setup. This unceriainty
analysis presented an interesting challenge in
determining uncertainty due to the calibration
process. To address this problem and to ensure
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FIGURE 6. Variation of sensitivities with position
on the workpiece resulting from re-distribution of
the 30 calibration coordinates (blue dots).
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all  input quantites were independent,
transformation matrix components were left in
equation form and substituted into the
measurement equation. In the end, the sensitiv-
ity coefficients, and therefore the combined
standard uncertainties, were found to vary with
position on the workpiece. The combined
standard uncertainties in the output quantities
u(xg) and u(zg) range from 10 pmto 18 um.
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where u(x) and u(x,) are the standard
uncertainties in camera and  projector
coordinates, and u(x,) and u(z,) are the standard
uncertainties in the known points on the
calibration  artifact. The non-dimensional
sensitivity coefficients (V; and W;) are
complicated functions of camera, projector, and
calibration artifact coordinates. Additionally, the
sensitivity coefficients have been separated into
those depending on the calibration artifact
(superscript  “cal’) and those with no
dependence on calibration (no superscript). This
was done to ease calculations but also to aid
understanding of the importance of the
calibration to the combined standard uncertainty.
L. 1, L, and I, are distances relative to the focal
" points of the camera and projector (see Fig. 1).

RESULTS

To evaluate the sensitivities, values specific to
the geometry of the NIST system (see Fig. 2)
were substituted into the equations for the
sensitivity coefficients. The calibration artifact
had uniform spacing of the known coordinates at
two distinct heights (see Fig. 3). The results
showed that the sensitivities vary with position
on the workpiece, meaning different values of xz
and zz have different sensitivities. However,
because the workpiece height is very small
compared to the camera and projector working
distances, zz = 0. Different values of xz, however,
remain significant. Figure 4 shows sensitivities
across the workpiece. All sensitivities are rather
uniform toward the center of the workpiece, but
the sensitivities dependent on the calibration
increase near the edges of the workpiece.

With the sensitivity coefficients evaluated,
standard uncertainty values were substituted
into Egs. (7), yielding the combined standard
uncertainties in the output quantities. The type B
standard uncertainty in calibration artifact
coordinates (u(x,) and u(z,)) was assumed to
equal 15 pm. The type A standard uncertainty in
camera coordinates (u(x)) was 2 pm. The
uncertainty in projector coordinates (u(x,))
comes from the projector resolution. Therefore,
it is a type B uncertainty dependant on the size
of one projector pixel. For the current projector,
this standard uncertainty was 6 um. The
resuiting combined standard uncertainties are
u(xg) = 10 um and u(zg) = 16 pm near the center
of the workpiece. Since the sensitivity
coefficients increase toward the edges of the
part, standard uncertainties aiso increase toward
the edges (see Fig. 5).
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FIGURE 1. Schematic of fringe projection
system analyzed in this study. Pinhole models
describe both the camera and projector.

projection setup at NIST. For this setup, L, = 350
mm, . = 66 mm, L, =425 mm, [, = 215 mm, &, =
0.53rad, and 6, = 0.60 rad.
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FIGURE 3. Model of a calibration artifact with 30
known coordinates.

LOCKING FORWARD

The uncertainty analysis can provide a useful
tool to help improve the current fringe projection
system. Because the uncertainty analysis
reveals the importance of calibration to the
combined standard uncertainty, the calibration
artifact can be redesigned and evaluated. For
example, redistributing the 30 known calibration
points toward the workpiece edges, as shown in
Fig. 6, slightly reduces sensitiviies near ine
edges compared to those in Fig. 4(a), but at the
expense of larger sensitivities near the center of
the part. As such, a calibration artifact with more
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