
 A Combinatorial Approach to Building Navigation Graphs for
Dynamic Web Applications

Wenhua Wang, Yu Lei Sreedevi Sampath
Dept. of Computer Science and Engineering

University of Texas at Arlington,
Arlington, Texas

{wenhuawang, ylei}@uta.edu

Dept. of Information Systems
University of Maryland, Baltimore County,

Baltimore, MD
sampath@umbc.edu

Raghu Kacker, Rick Kuhn James Lawrence

Abstract

Modeling the navigation structure of a dynamic

web application is a challenging task because of the
presence of dynamic pages. In particular, there are
two problems to be dealt with: (1) the page explosion
problem, i.e., the number of dynamic pages may be
huge or even infinite; and (2) the request generation
problem, i.e., many dynamic pages may not be reached
unless appropriate user requests are supplied. As a
user request typically consists of multiple parameter
values, the request generation problem can be further
divided into two problems: (1) How to select
appropriate values for individual parameters? (2) How
to effectively combine individual parameter values to
generate requests?

This paper presents a combinatorial approach to
building a navigation graph. The novelty of our
approach is two-fold. First, we use an abstraction
scheme to control the page explosion problem. In this
scheme, pages that are likely to have the same
navigation behavior are grouped together, and are
represented as a single node in a navigation graph.
Grouping pages reduces and bounds the size of a
navigation graph for practical applications. Second,
assuming that values of individual parameters are
supplied by using other techniques or generated
manually by the user, we combine parameter values in
a way that achieves a well-defined combinatorial
coverage called pairwise coverage. Using pairwise
coverage can significantly reduce the number of
requests that have to be submitted while still achieving

effective coverage of the navigation structure. We
report a prototype tool called Tansuo, and apply the
tool to five open source web applications. Our
empirical results indicate that Tansuo can efficiently
generate web navigation graphs for these applications.

1. Introduction

A web navigation graph, or simply a navigation

graph, is a representation of the navigation structure of
a web application, with nodes representing web pages
and edges representing direct transitions between web
pages. Navigation graphs can be used as an aid in
tasks such as understanding, maintaining, and testing
web applications. For example, they can be used as a
model to generate test sequences during testing and/or
regression testing [1]. As another example, navigation
graphs can be used to facilitate impact analysis, i.e.,
how to identify pages that could be potentially affected
by a modified page.

The main challenge of building a navigation graph
is dealing with dynamic pages. (If an application only
consists of static pages, its navigation graph can be
built using a classical graph traversal algorithm, e.g., a
depth-first search algorithm.) Unlike a static page,
whose content is prescribed and stored on a web
server, a dynamic page does not physically exist until a
request for this page is submitted, typically through an
HTML form. The existence of dynamic pages creates
two problems for building a navigation graph:

• A potentially infinite number of dynamic pages
may be generated in a web application. If a

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD
{raghu.kacker, kuhn}@nist.gov

Department of Mathematics
George Mason University

Fairfax, VA
lawrence@gmu.edu

978-1-4244-4828-9/09/$25.00 2009 IEEE Proc. ICSM 2009, Edmonton, Canada

211

dynamic page is directly modeled as a node, the
size of a navigation graph may be infinite. For
example, after a user logs in, an application may
dynamically generate a personalized page to
greet the user. Since the number of users can be
infinite, the number of personalized pages
generated by the application can be infinite.

• Some dynamic pages may not be reached unless
appropriate requests are supplied. In other
words, in order to ensure coverage, user requests
must be generated carefully during the
construction of a navigation graph. For example,
consider an application where a user can log in
as a regular user or an administrator. Pages that
can only be visited by an administrator would be
missed if we do not request to log in as an
administrator.

We will refer to the first problem as the page
explosion problem, and the second problem as the
request generation problem. Considering that a request
often consists of multiple parameter values, the request
generation problem can be further divided into two
smaller problems: (1) How to select appropriate values
for individual parameters? (2) How to effectively
combine individual parameter values to generate
requests? In this paper, we focus on the second aspect
of the request generation problem, i.e., how to combine
parameter values, assuming that these values are
supplied by using techniques such as boundary value
analysis and/or generated manually by the user.

To the best of our knowledge, little work has been
reported on effective construction of navigation graphs.
However, the above two problems have been
encountered and addressed in a similar context, i.e.,
web crawling. Web crawling refers to discovering
useful information by navigating through web
applications. Many web applications store information
in a database, and provide the user with an HTML
form through which a query can be submitted to
retrieve information of interest. Therefore, like
navigation graph construction, web crawling also has
to deal with the challenge of how to interact with
forms. However, unlike navigation graph construction,
which is interested in “structure discovery”, i.e., how
different pages interconnect with each other, web
crawling is interested in “content discovery”, i.e., how
to discover useful information that is contained in
those pages. This difference has a profound impact on
techniques that are developed in the two different
contexts. This will be discussed in detail in Section 2.

In this paper, we propose a combinatorial approach
to building navigation graphs. To address the page
explosion problem, we use the notion of an abstract
URL. Conceptually, a (concrete) URL [2] can be
broken into two components, base and query, as shown

in Fig. 1. The query component is optional, and
typically consists of a set of parameter-value pairs.
Given a (concrete) URL u, the abstract URL for u is
obtained by removing the values, but retaining the
parameter names, in the query component. For
example, given a URL u =
“http://test.com/foo.jsp?x=1&y=2”, the abstract URL
is “http://test.com/foo.jsp?x&y”. In our approach,
pages that have the same abstract URL are represented
as a single node in a navigation graph. The rationale
behind this abstraction is that these pages are likely to
be generated from the same template, and are thus
similar in their structures and associated navigation
behaviors (i.e., they have the same set of
predecessor/successor pages). For practical
applications, this abstraction allows us to bound the
number of nodes, and in turn the size of the navigation
graph, while largely preserving the navigation
structure.

To address the request generation problem, we
assume that individual parameter values are given, and
use a combinatorial strategy to combine the values.
Assume that a form has k parameters, each with d
possible values. To reach every possible page that
could be generated by submissions of this form, we
could try to submit the form with every possible
combination of values of those parameters. Doing so,
however, can be prohibitively expensive, due to a
potentially large number of combinations. In our
approach, we submit the form with a subset of
parameter value combinations that achieves a well-
defined combinatorial coverage, namely pairwise
coverage [3][4]. That is, given any two out of the k
parameters, we ensure that every combination of the
two parameters is covered in at least one submission.
(In the remainder of the paper, we will refer to a
combination of values of all k parameters as a
submission test, and a combination of values of any
two parameters as a combination, unless otherwise
specified.) Pairwise coverage has been shown to be
very effective for general software testing, while
dramatically reducing the number of tests that need to
be executed [3][4][5]. In particular, empirical studies
indicate that pairwise coverage often leads to more
than 80% branch coverage in general software testing
[6]. Since the pages that could be generated by
submitting a form are often determined by the branches
that exist in the server code processing the form,
achieving pairwise coverage can lead to a high
coverage of those pages while significantly reducing
the number of submission tests.

212

Figure 1: An example of a URL

We have developed a prototype tool, called Tansuo,

that implements our approach, and have applied this
tool to five open source web applications. These
applications include Bookstore, Bug Tracking System
(BugTrack), Classifieds, Links and Portal [7]. The
results show that Tansuo can effectively build
navigation graphs that achieve a high degree of
coverage of the navigation structure for those
applications. In addition, we have compared Tansuo
with two existing tools, namely WebSphinx [8] and
Link Checker Pro [9]. The two existing tools do not
interact with forms, and thus do not deal with dynamic
pages. (We were unable to obtain access to tools that
deal with dynamic pages, like VeriWeb [10]). The
comparison shows that Tansuo can build navigation
graphs that are dramatically more complete than the
two existing tools. This suggests that the ability to
handle forms is vital to achieve high-coverage
navigation graphs.

The remainder of the paper is organized as follows:
Section 2 discusses related work. Section 3 describes
our approach. In particular, we present an algorithm
that implements our approach. Section 4 introduces the
architecture of Tansuo. Section 5 presents the
empirical results of applying Tansuo to five web
applications. Section 6 concludes this paper and
discusses future work.

2. Related work

Web crawling has been an active research area in

recent years [8][9][11][12][13][14]. Web crawling is
related to our work because it navigates through a
collection of web pages, and needs to deal with
dynamic pages. (There are two types of web crawling:
surface or regular web crawling, which does not
interact with forms, and deep web crawling, which
interacts with forms. We focus our attention on deep
web crawling.) However, web crawling is about
“content discovery”, i.e., it aims to discover as much
information as possible from different pages, while our
work is about “structure discovery”, i.e., it aims to
capture the navigation relationship among different
pages. Consequently, web crawling employs
techniques that are very different from ours.
Specifically, web crawlers often deal with the page
explosion problem by picking pages that are
information-rich and by discarding the others [11][12].

This is different from our work, where pages are
abstracted based on their URLs, instead of their
contents. To address the request generation problem,
most web crawlers have focused on the problem of
how to select values for individual parameters. One
common approach used by those crawlers is to build a
pre-defined list of values for the parameters that are
frequently encountered. This approach is also useful in
our work. The problem of how to effectively combine
those parameter values has been largely left open. The
very recent work by Madhavan et al. [11] is an
exception. Their approach uses a bottom-up search
strategy to identify parameter combinations that could
lead to the largest number of distinct response pages.
This differs from our work, where we generate
combinations to achieve a well-defined coverage
criterion.

Our work is also related to web application testing
techniques in which test sequences are generated on
the fly and by navigating through an application
[10][15]. In particular, our work is closely related to
VeriWeb [10]. VeriWeb applies a general software
model checking technique called VeriSoft [16] to web
applications. To test a web application, VeriWeb tries
to explore all possible navigation paths in a systematic
manner. VeriWeb uses an exploration algorithm that is
very similar to ours. That is, both VeriWeb and our
approach explore in a depth-first manner, and restore
states by re-visiting the sequence of pages on the stack.
However, the two approaches significantly differ in the
way they handle the page explosion and request
generation problem. Specifically, VeriWeb controls the
page explosion problem by allowing a limit to be set
on the length of navigation paths it explores. This is
different from our use of abstract URLs. VeriWeb
addresses the request generation problem by allowing
the user to supply and reuse pre-defined parameter
values. It is unclear which strategy is used to combine
parameter values during exploration.

Several models have been developed and used in
model-based web application testing [17][18][19]. In
particular, the UML model proposed by Ricca and
Tonella [19] is close to our navigation graph. A
fundamental difference between their model and ours
is that they do not abstract dynamic pages. That is,
each dynamic page is represented as a separate node in
their model. In addition, their models are designed to
support a wide range of analysis such as reaching
frame analysis and traditional data-flow analysis.
Hence, their model contains other types of relations,
e.g., the include relation between a frame and a web
page.

213

3. The approach

In this section, we present a combinatorial approach

to building navigation graphs. Section 3.1 gives a
formal definition of a navigation graph, and uses an
example to further illustrate the notion of pairwise
coverage. Section 3.2 presents an algorithm that
implements our approach. Section 3.3 provides
additional discussion.

3.1. Basic concepts

First we define a navigation graph. Intuitively, a

node in a navigation graph represents a group of web
pages that have the same abstract URL. Recall from
Section 1 that we abstract a URL by removing the
parameter values, while retaining the parameter names,
in the query component, if this component exists. (If a
URL does not have a query component, its abstraction
is the same as the URL itself.) Abstracting URLs helps
to control the page explosion problem while preserving
the navigation structure of a web application. There
exists an edge from one node n to another node n’ if
there is a direct transition from a page p represented by
node n to a page p’ represented by node n’, i.e., page p’
can be immediately visited after page p.

In the following, we formalize the definition of a
navigation graph. Let abs(p) denote the abstract URL
of a web page p. Let pages(n) denote the group of
pages represented by a node n. Let p → p’ denote a
direct transition from a page p to a page p’. Then, a
navigation graph G can be formally defined as follows:
G = (V, E), where (1) V is a set of nodes such that for
each node n ∈ V, ∀p, p’ ∈ pages(n), abs(p) = abs(p’);
and (2) E ⊆ V × V is a set of edges such that for each
edge (n, n’), there exists at least one direct transition p
→ p’, where p ∈ pages(n), p’ ∈ pages(n’).

In Section 1, we introduced the notion of pairwise
coverage, which reduces the number of submission
tests needed for each form but still achieves good
coverage of dynamic pages. To illustrate pairwise
coverage, consider a form that has three parameters p1,
p2, and p3, each parameter having two values 0 and 1.
Fig. 2 shows a pairwise set of submission tests for this
form. Each row represents a submission test, and each
column represents a form parameter (in the sense that
each entry in a column is a value of the parameter
represented by the column). An important property of
this submission test set is that each of the three
possible pairs of columns, i.e. columns p1 and p2,
columns p1 and p3, and columns p2 and p3, contains
all four possible pairs of values of any two (out of
three) parameters, i.e., {00, 01, 10, 11}. Thus, this
submission test set achieves pairwise coverage for this

form. Note that an exhaustive submission test set
would consist of 23 = 8 submission tests.

Figure 2: A pairwise submission test set

Many algorithms have been proposed for

combinatorial test generation [20]. In particular, Tai
and Lei [21] proposed a pairwise testing strategy called
In-Parameter-Order (IPO). The IPO strategy generates
a pairwise test set to cover the first two parameters and
then extends the test set to cover the first three
parameters. This process is repeated until the test set
covers all the parameters. Our approach uses the IPO
algorithm to generate pairwise submission test sets.

3.2. Algorithm BuildNavGraph

Fig. 3 shows algorithm BuildNavGraph, which

implements our approach. This algorithm takes as
input the URL of the home page of a web application,
and produces as output the navigation graph of the
application. Algorithm BuildNavGraph explores a web
application in a depth-first manner, so it has a
framework that is similar to that of a classic depth-first
search algorithm. Therefore, we will not explain the
algorithm line by line. Instead, we will focus on how
algorithm BuildNavGraph differs from a classic depth-
first search algorithm.

First, algorithm BuildNavGraph uses a different
approach to decide whether to explore a newly
encountered URL (lines 10 and 30). Specifically, a
newly encountered URL is explored only if its
abstraction does not yet exist in the navigation graph.
In other words, we will not explore a newly
encountered URL u if some other URL u’, with abs(u’)
= abs(u), has been explored before. This is necessary
to ensure that the exploration process comes to an end.
However, it also introduces a risk of missing some
pages that may be reached only if u is actually
explored. More discussions on this risk, as well as an
optimization that can reduce this risk, is provided in
Section 3.3.

Second, a classic depth-first search algorithm is
designed to traverse all the nodes in a graph. As a
result, it usually does not keep track of all the edges
that are visited during the search process. In other
words, a classic depth-first search is usually used to
build a spanning tree of the original graph. This is
different from our algorithm, which tries to capture the
entire navigation graph structure. Therefore, it is

p1 p2 p3
0 0 0
0 1 1
1 0 1
1 1 0

214

important to add the corresponding edges into the
resulting graph (lines 9 and 29) even if a newly
encountered URL will not be explored (because its
abstraction already exists in the graph).

Third, the second for loop (lines 12 to 33) deals with
forms, which represents the key contribution of our
approach. A web page may contain multiple forms,
each of which is dealt with by one iteration of the for
loop. Suppose that we are dealing with form f in the
current iteration. We first obtain the values of
individual parameters in form f (line 13). This can be
done either interactively, i.e., asking the user to
provide the values as each form is encountered, or up
front, i.e., asking the user to provide the values for
each possible parameter that may appear in a form.
Note that the latter can be extremely useful for test
automation, but requires a priori knowledge about what
parameters may appear in a web application, as well as
what values those parameters can take.

The first inner loop (lines 15 to 32) deals with each
action in the form. An action may or may not require
parameter values to be submitted to the server side. If
an action does require parameter values to be
submitted, we will generate a pairwise submission test
set for those parameters. Each submission test is then
used once to perform the action. If an action does not
require any parameters to be submitted, then it can
simply be performed, after which the URL of the
succeeding page is added to list l. Note that list l is
used to hold all the URLs of the succeeding pages that
can be reached from the current page either through a
static or dynamic link.

Finally, after we finish exploring a node, we need to
back up to its parent node p. Before we explore another
child node of node p, it is important to restore the state
of the application, e.g., the session and database state,
back to the state when p was encountered but none of
its branches had been explored (line 34). This
restoration ensures the exploration process to be
semantically correct, as the exploration of different
branches of a particular node should be independent
from each other. One approach to restoring a state is to
save the state when it was first encountered, and then
reset the application to the saved state at the time the
state is needed. However, explicit state representation
can be difficult for practical applications. In our
algorithm, we restore the state by re-executing all the
transitions that were executed to reach this state. Note
that even though algorithm BuildNavGraph is
presented as a recursive process, it is implemented as
an iterative process. Therefore, in order to restore a
particular state, we only need to re-execute all the
transitions that are currently on the stack.

Algorithm BuildNavGraph
Input: The URL of the home page of a web application
Output: The navigation graph G = (V, E) of the application

1. BuildNavGraph (URL home) {
2. let G = <V, E> be an empty graph
3. traverse (home, G)
4. return G
5. }

6. function traverse (URL u, Graph G) {
7. for each static link u’ in u {
8. add a node labeled with abs(u’) into V, if it does not exist
9. add an edge labeled with (abs(u), abs(u’)) into E,
 if it does not exist in E
10. traverse (u’, G) if abs(u’) is encountered for the first time
11. }
12. for each form f in u {
13. obtain the values of individual parameters in f
14. let l be an empty list
15. for each action a in f {
16. if (action a requires submission of param values) {
17. generate a pairwise submission test set s for action a
18. for each submission test t in s {
19. perform action a with test t
20. add the URL of the succeeding page to list l
21. }
22. }
23. else {
24. perform action a
25. add the URL of the succeeding page to list l
26. }
27. for each URL u’ in list l {
28. add a node labeled with abs(u’) into V,
 if it does not exist in V
29. add an edge labeled with (abs(u), abs(u’)) into
 E, if it does not exist in E
30. traverse (u’, G) if abs(u’) is encountered
 for the first time
31. }
32. }
33. }
34. restore the application to the state reached right after u is
 encountered (but not traversed yet)
35.}

Figure 3: BuildNavGraph algorithm

Now we consider the time and space complexity of

algorithm BuildNavGraph. The time complexity is
similar to that of a classic depth-first search, except
that we need to take into account the time for
generating pairwise submission test sets and for
performing those tests. Assume that a form has at most
k parameters, each of which takes at most d values.
The size of a pairwise submission test set is
O(d2 logk) . The time for generating those tests is
O(d3k 2 logk) , if the IPO algorithm [21] is used. The
time for performing all those tests is O(td2 log k) ,

215

where t is the longest time required to perform a
submission test. Therefore, the total time complexity of
algorithm BuildNavGraph is
O(| G | +d3k 2 log k + td2 log k) . The space
complexity of algorithm BuildNavGraph is the same as
that of a classic depth-first search algorithm, i.e.,
O(| G |) .

3.3. Discussion

There are several cases in which our approach may

not fully capture the navigation structure of an
application. First, in our approach, pages having the
same abstract URL are represented as a single node in
a navigation graph. As an abstract URL drops all the
parameter values in the query component of a
(concrete) URL, we assume that the navigation
behaviour of a web page, in terms of the set of pages
that could be reached from this page, does not depend
on specific parameter values. This may not be true for
some applications. In addition, an abstract URL does
not contain information about system state, e.g., the
values of session variables. The same page may have
different navigation behaviours depending on different
system states and such navigation behaviours may not
be captured by our approach.

Adding more information to the abstract URL, i.e.,
making the abstraction finer-grained, would help
capture more navigation behaviours. However, doing
so may prolong the exploration process, and may
unnecessarily increase the size of a navigation graph.
This is because many nodes can have the same
navigation behaviour even if they have different
parameter values and/or are visited at different system
states.

There is an optimization that can be done to make a
navigation graph more complete without adding more
information to an abstract URL. In algorithm
BuildNavGraph, a newly encountered URL is explored
only if its abstract URL does not yet exist. We can
change this decision so that a newly encountered URL
is explored only if the abstract edge leading to the URL
does not yet exist. The rationale for this change is that
a page that is reached by a different edge may likely be
a different page, even if another page with the same
abstract URL has been visited before. The reason has
been discussed in the first paragraph in this sub
section. This optimization has been used in the
experiments in the Section 5, and has been shown to be
very effective.

There is a second case in which the navigation
structure of an application may not be fully captured.
In order to explore all the pages that could be
generated by a form, we perform a set of submission

tests that achieve pairwise coverage. Obviously,
pairwise coverage does not cover all the combinations.
A page would not be explored if it could only be
generated by submitting one or more of the
combinations that do not appear in the pairwise set.
Achieving a higher degree of combinatorial coverage
such as 3-way, or 4-way coverage will help to make
the resulting navigation graph more complete.
However, doing so will be more computationally
expensive, as more submission tests will have to be
performed. We note that the number of submission
tests required to achieve a certain level of
combinatorial coverage can grow quickly as we
increase the strength of coverage.

In spite of the cases just described, our experimental
results, as presented in the Section 5, suggest that our
approach produces close to complete navigation graphs
for the applications we studied.

4. Tansuo: a prototype tool

We have implemented our approach in a prototype

tool called Tansuo. Tansuo is written in Java, and uses
HTTPUnit to handle Javascripts, which allows for
exploring more complete navigation structures.
(HttpUnit can execute Javascripts, but it does not
perform static analysis on the source code of
Javascripts.) As shown in Fig. 4, Tansuo has seven
components: Builder, Fetcher, Parser, Form Handler,
Fireeye, State Manager and Viewer.

Builder. This component is at the core of Tansuo. It
implements algorithm BuildNavGraph, and is
responsible for driving the entire exploration process.

Fetcher. This component is responsible for fetching
a page from the server side, upon Builder’s request.

Parser. This component is responsible for parsing a
page, and for extracting static and dynamic links in the
page.

Form Handler. This component is responsible for
interacting with forms. Specifically, Form Handler is
responsible for three tasks: (1) Obtaining parameter
values either from a user interactively or by reading
from a set of XML files; (2) Generating parameter
combinations by using a combinatorial test generation
tool, called Fireeye [22]; (3) Submitting a form with
those combinations. Note that in the interactive mode,
Tansuo stores user-provided values into an XML file,
so that those values can be reused later.

One challenge for Form Handler is handling POST
forms. URLs generated from POST form submissions
contain only the base component of the URL shown in
Fig. 1. The parameter name-value pairs in a POST
request are not appended to the URL. Instead they are
encoded in the HTTP request header. In order to

216

distinguish different web pages generated from POST
form submissions, Tansuo changes the method
parameter value in the POST form to “GET”. Doing so
allows parameter name-value pairs to be appended to
URLs generated from POST form submissions. Note
that URLs with query components generated from
POST forms may be rejected by some web applications
if they do not implement a universal interface for
handling GET and POST requests.

Figure 4: Tansuo’s architecture

State Manager. The Builder calls State Manager,

which is responsible for resetting the database to its
initial state, and restoring the system state before a new
path is explored. Note that we restore system states by
re-visiting the sequence of pages that are on the stack.

Viewer. This component is responsible for
displaying the page that is currently being explored by
the Builder. When a user is asked to provide parameter
values for a form, displaying the current page helps the
user to understand the context.
Another feature of Tansuo is that it allows the user to
specify the scope of exploration. Specifically, it allows
the user to specify a base URL so that only links that
begins with this base URL will be explored and
included in the navigation graph that is generated.

5. Experiments

We used Tansuo to generate navigation graphs for

five web applications and measured its runtime
performance. We evaluated the completeness of the
generated web navigation graphs on two of the five
applications. We also compared Tansuo with
WebSphinx and Link Checker Pro for all the subject
applications.

5.1. Research questions

RQ1. How complete is a navigation graph built by
Tansuo?

RQ2. How efficient is Tansuo in terms of time and
memory usage?

RQ3. How does Tansuo compare with existing
tools?

 5.2. Metrics

For RQ1, the completeness of a generated navigation
graph is measured by the number of missed nodes and
edges when compared with a complete navigation
graph generated by a manually performed static
analysis of the source code. For RQ2, we evaluate the
runtime performance of Tansuo by measuring the time
taken to generate navigation graphs and the memory
used during the navigation graph generation process.
For RQ3, we compare Tansuo with two other tools -
WebSphinx and Link Checker Pro - by recording the
number of nodes and the number of edges generated by
each tool to capture navigation structures of web
applications.

5.3. Experimental Setup

Subject Applications: We used five web

applications [7]: Bookstore, Bug Tracking System
(BugTrack), Classifieds, Links and Portal in our study.
Table 1 shows some server-side characteristics of the
subject applications, including the number of non-
commented lines of code (NLOC), classes, methods,
and branches in the five applications. Table 2 shows
some client-side characteristics of the subject
applications, including the number of forms, actions,
parameters (params), the average number of
parameters per action (APA), and the average number
of values per parameter (AVP). Note that these client-
side factors affect the size of navigation graphs, as well
as the time for building navigation graphs of these
applications. We note that all of the applications are
implemented in JSP.

Table 1: Server-side characteristics of subject

applications
Subject Characteristics

NLOC Classes Methods Branches
Bookstore 18385 27 925 4392
BugTrack 8094 13 438 1946
Classifieds 11599 18 618 2730
Links 8849 13 499 2074
Portal 17621 27 915 4084

217

Table 2: Client-side characteristics of subject
applications

Subject Characteristics
Forms Actions Params APA AVP

Bookstore 18 63 66 1.05 3.35
BugTrack 8 19 27 1.42 6.15
Classifieds 11 29 27 0.93 5.07

Links 11 24 26 1.08 5.77
Portal 19 39 95 2.44 3.40

Machine Configuration: The experiments were
carried out on a computer with the following
configuration: CPU: 1.66GHz, RAM: 2G, Hard disk:
80G. The machine was running Windows XP SP2, the
Resin 2.1.8 web server, Apache 2.0.48, and the
MySQL Server 4.1.

5.4. Results and discussion

RQ1: Completeness

We used Tansuo to generate navigation graphs for
the five subject applications. Table 3 shows the
characteristics of those graphs, including the number of
nodes, edges, and connectivity (Conn). Connectivity is
the average number of incoming and outgoing edges
per node. All the graphs were generated using normal
form input data, and those data were identified
manually. Malicious input data, such as SQLInjection
data and penetration data, were not used in these
experiments. (Navigation graphs generated with both
malicious input data and normal input data will likely
be more complete than the navigation graphs generated
with only normal input data.) The navigation graph of
the largest application in terms of NLOC, Bookstore
(with 18K NLOC), was represented with 93 nodes and
484 edges. The navigation graph for the largest
application in terms of forms, actions and parameters,
Portal, was represented with 80 nodes and 652 edges.

We evaluated the completeness of the navigation
graphs of the two most complex subject web
applications, Bookstore and Portal. (Other applications
were not evaluated due to time constraints.) To
perform this evaluation, we manually generated
complete web navigation graphs, in terms of abstract
nodes and edges, from the source code for Bookstore
and Portal. Each JSP file in the web application source
code was studied and abstract URLs were extracted.
Abstract URLs were generated from either form
actions or from the value of the attribute href of the
anchor (<a>) tag. Each such abstract URL became a
node in the resulting navigation graph. For each
abstract URL, the corresponding page was studied to
find transitions to other pages. These transitions
became edges in the resulting navigation graph.

Table 4 shows the number of nodes and edges
present in the manually generated graphs for Bookstore
and Portal. The navigation graphs generated by
Tansuo missed 12.1% of the nodes and 22.0% of the
edges. After carefully studying the nodes and edges
generated by the manual exploration and Tansuo’s
exploration, we found that the reason for the missed
nodes and edges is that Tansuo did not capture the
navigation structures for page-flipping. For example,
the OrderGrid page, in Bookstore, lists orders placed
by a user. If total orders are no more than 20, all of
them will be listed in one page. But, if a user places 25
orders, the first 20 orders will be listed in the current
page and the last 5 orders will be listed in the second
page. In this case, page-flipping is needed for users to
browse all these orders. Bookstore places a link in the
current page so that the user can navigate to the second
page by clicking this link. Initially, there is no order
listed in the OrderGrid page. During exploration,
Tansuo only placed one order to drive the exploration
for the reason of efficiency. As a result, there was only
one order listed in the OrderGrid page, and Tansuo
failed to capture the navigation structure related to
page-flipping.

Table 3: Navigation graphs of five subject applications

Subject Characteristics
Nodes Edges Conn.

Bookstore 93 484 10.17
Bug Track 43 175 7.85
Classifieds 50 313 12.53

Links 52 259 9.72
Portal 80 652 17.77

Table 4: Completeness results for Bookstore and Portal

Subject Manual Tansuo
Nodes Edges Nodes % Edges %

Bookstore 97 596 93 95.9 484 81.2
Portal 91 836 80 87.9 652 78.0

RQ2: Efficiency

Table 5 shows the time taken to generate a
navigation graph for each web application. From the
results in Table 5, we see that the application state
restoration process is the most time consuming
activity. The time taken to restore the application state
includes the time taken to reset the database and the
time to re-exercise the path from the home page to the
current page. A large number of submission tests for a
form can significantly increase the state restoration
time, since system state has to be restored before each
submission test is performed (except for the first one).

We note that the exploration time of Bookstore is
much higher than the other 4 web applications. The
reason is that Bookstore stores images for books. When

218

a large number of images are present in an application,
heavy database access and image download, especially
during the application state restoration process,
dramatically increase the exploration time of Tansuo.
The other 4 applications in our study did not contain a
large number of images (e.g., a search result page for
Bookstore contained 20 images, whereas a search
result page for Portal contained no images). Tansuo’s
exploration time for image-intensive applications can
be reduced by ignoring image retrievals when
retrieving a page.

Recall that Tansuo explores a web application in a
depth-first manner. The maximum memory usage
occurs at one of those back-up points, i.e., after Tansuo
finishes exploring the current path, and right before it
backs up to explore the next path. We recorded the
memory usage at each of these back-up points and
reported the highest of these values in Table 6. From
Table 6, we see that, in general, the memory usage is
consistent with the scale of the web navigation graph
that is generated.

Table 5: Time (hours) taken to generate navigation

graphs

Subject
Total Time

State
Restoration

Time
Bookstore 33.4415 27.7654
BugTrack 0.1321 0.0641
Classifieds 0.2999 0.2123

Links 0.1275 0.0581
Portal 1.2218 0.9519

Table 6: Memory usage (M bytes)

Subject Memory Usage

Bookstore 42.6328
BugTrack 19.5625
Classifieds 39.0078

Links 19.4570
Portal 80.3554

RQ3: Comparison to other tools

We compared Tansuo with WebSphinx [8] and
Link Checker Pro (LCP) [9]. Note that WebSphinx and
LCP do not handle forms. (It would be better if the
comparison were made to tools that handle forms.
Unfortunately, we were not able to obtain access to
such tools.) In addition, they do not make any page
abstraction. For example,
“http://test.com/BookDetail.jsp?item_id=1” and
“http:/test.com/BookDetail.jsp?item_id=2” are
identified as two different pages in their navigation
graphs. If there are thousands of such pages in a web
application, the navigation graphs generated by

WebSphinx and LCP will be very large, while
contributing little to represent the navigation structure
of the application.

Table 7 shows the results of our comparison. Both
WebSphinx and LCP generated similar numbers of
nodes and edges, while Tansuo generated significantly
more nodes and edges than WebSphinx and LCP. This
suggests that the ability to interact with forms is vital
to build high-coverage navigation graphs.

Table 7: Comparison to WebSphinx and LCP

Subject WebSphinx LCP Tansuo
Nodes Edges Nodes Edges Nodes Edges

Bookstore 11 11 11 11 93 484
BugTrack 7 7 7 7 43 175
Classifieds 15 16 9 9 50 313

Links 11 12 11 11 452 259
Portal 17 22 17 22 80 652

5.5. Threats to validity

Although our study investigates Tansuo with 5
medium to large web applications, the number, the size
(in terms of NLOC), and the specific technologies
(HTML, JSP, MySQL) of the subject applications
prevent a generalization of our results to the entire
domain of web applications.

We manually explored the source code to generate
the web navigation graph for answering RQ1.
Although extreme care was taken to accurately model
the navigation graph, the human involved in the
exploration process could have made errors when
analyzing the source code, which may affect the
completeness of the web navigation graphs generated
by Tansuo.

6. Conclusion

In this paper, we have presented an approach to

building navigation graphs of dynamic web
applications. Our approach has two salient features.
First, each node in a navigation graph represents a
group of pages that are likely to display the same
navigation behavior. Grouping pages allows us to
reduce and bound the size of a navigation graph for
practical applications, while still preserving the
navigation structure. Second, a combinatorial strategy
is employed to interact with forms. Specifically, when
we encounter a form, we perform a pairwise set of
submission tests on the form, in order to reach the
dynamic pages that can be generated by the form. This
can significantly reduce the number of submission tests
that have to be performed while still achieving a high
degree of coverage of dynamic pages. We have

219

described a prototype tool, namely Tansuo, and have
applied the tool to five open-source web applications.
The results indicate that our approach is effective for
generating navigation graphs of these applications.

There are a number of venues to continue our work.
First, some combinations of parameter values may be
invalid based on domain semantics. These
combinations need to be excluded when we generate a
pairwise submission test set. We will enhance Tansuo
with constraint support so that invalid combinations
can be specified and excluded during submission test
generation. Second, we plan to develop automated or
semi-automated techniques to help identify values of
individual parameters. In particular, we intend to
leverage existing work that handles similar problems in
the context of web crawling. Third, we currently
restore an application state by re-executing a path that
previously reached the state, which can be time-
consuming. We plan to explore the use of checkpoints
to improve the time efficiency of state restoration. The
challenge is to identify state objects that need to be
included in a checkpoint in an application-independent
manner. Finally, we plan to improve the user interface
of our tool so that it is accessible to average users. It is
our goal to make the tool publicly available on the
Web.

Acknowledgements: We would like to thank Prof.
Richard Carver at George Mason University for his
comments on an earlier version of this paper. This
work is partly supported by a grant (Award No.
60NANB6D6192) from the Information Technology
Lab (ITL) of National Institute of Standards and
Technology (NIST).

Disclaimer: The identification of any commercial
product or trade name does not imply endorsement or
recommendation by the National Institute of Standards
and Technology.

7. References

[1] W. Wang, S. Sampath, Y. Lei and R. Kacker, “An

Interaction-based Test Sequence Generation Approach
for Testing Web Applications”, Proc. of 11th Int’l IEEE
HASE Symposium, pp. 209-218, 2008.

[2] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
Resource Identifier (URI): General Syntax”,
http://labs.apache.org/webarch/uri/rfc/rfc3986.html.

[3] D.M. Cohen, S.R. Dalal, J. Parelius and G.C. Patton,
“The Combinatorial Design Approach to Automatic
Test Generation”, IEEE Software, 13(5): 83-88, 1996.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G.
C. Patton, “The AETG System: An Approach to
Testing Based on Combinatorial Design,” IEEE

Transactions on Software Engineering, 23(7): 437-444,
1997.

[5] D. R. Kuhn, D. Wallace, A. Gallo, “Software Fault
Interactions and Implications for Software Testing,”
IEEE Transactions on Software Engineering, 30(6):
418-421, 2004.

[6] K. Burr, and W. Young, “Combinatorial Test
Techniques: Table-based Automation, Test Generation
and Code Coverage”, Proc. of Int’l Conf. on Software
Testing Analysis and Review, pp. 503-513, 1998.

[7] Open Source Web Applications with Source Code,
http://www.gotocode.com, Feb. 3, 2009.

[8] R.C. Miller, and K. Bharat, “SPHINX: A Framework
for Creating Personal, Site-specific Web Crawlers”,
Proc. of 7th Int’l Conf. on WWW, pp. 119-130, 1998.

[9] Link Checker Pro, http://www.link-checker-pro.com,
Feb. 3, 2009.

[10] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb:
Automatically Testing Dynamic Web Sites”, Proc. of
11th Int’l Conf. on WWW, 2002.

[11] J. Madhavan, D. Ko, Ł. Kot, V. Ganapathy, A.
Rasmussen, and A. Halevy, “Google’s Deep-Web
Crawl”, Proc. of the VLDB Endowment, 1 (2): 1241-
1252, 2008.

[12] R. Cai, J.M. Yang, W. Lai, Y. Wang and L. Zhang
“iRobot: An Intelligent Crawler for Web Forums”,
Proc. of 17th Int’l Conf. on WWW, pp. 447-456, 2008.

[13] S. Raghavan, and H. Garcia-Molina, “Crawling the
Hidden Web”, Proc. Of 27th Int’l Conf. on Very Large
Data Bases, pp. 129-138, 2001.

[14] B. He, M. Patel, Z. Zhang, and K.C. Chang,
“Accessing the Deep Web”, Communications of the
ACM, 50 (5):94-101, 2007.

[15] G.D. Lucca, A. Fasolino, F. Faralli, and U.D. Carlini,
"Testing Web Applications", Proc. of the 18th ICSM,
pp. 310-319, 2002.

[16] P. Godefroid, “Model Checking for Programming
Languages using VeriSoft”, Proc. of 24th ACM Int’l
Symp. on POPL, pp. 174-186, 1997.

[17] A. Andrews, J. Offutt, and R. Alexander, “Testing Web
Applications by Modeling with FSMs”, Journal of
Software and Systems Modeling, 4 (3): 326-345, 2005.

[18] C.-H. Liu, D.C. Kung, P. Hsia, and C.-T. Hsu,
"Structural Testing of Web Applications", Proc. of 11th
ISSRE, pp. 84-96, 2000.

[19] F. Ricca, and P. Tonella, "Analysis and Testing of Web
Applications", Proc. of 23rd ICSE, pp. 25-34, 2001.

[20] M. Grindal, J. Offutt, and S.F. Andler, “Combination
Testing Strategies: A Survey”, Software Testing,
Verification, and Reliability, 15 (2): 167-199, 2005.

[21] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J.
Lawrence, “IPOG/IPO-D: Efficient Test Generation for
Multi-way Combinatorial Testing”, Software Testing,
Verification, and Reliability, 18 (3): 125-148, 2007.

[22] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J.
Lawrence, “IPOG: A General Strategy for T-Way
Software Testing”, Proc. of Int’l Conf. and Workshops
on the Engineering of Computer-Based Systems, pp.
549-556, 2007.

220

