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Abstract 
This chapter explores measurements from an experiment with a batch effect induced by 
switching the mass of RNA analyzed from 400 ng to 200 ng.  The experiment has as 
additional factors the RNA material (liver, kidney, and two mixtures) and the RNA 
source (six different animals).  We show that normalization can partially correct the batch 
effect, and that, after normalization, the size of the batch effect is comparable to the 
animal-to-animal variation.  In addition, we present data analysis results that suggest 
other batch effects. 
 
1. Introduction 
In metrological terminology, conditions of measurement can be held constant, or certain 
conditions can be allowed to vary (ISO, 2007).  Measurements made under constant 
conditions (also referred to as repeatability conditions) constitute a batch.  A set of 
measurements may include several batches that are delineated by changes in certain 
conditions.  Variations observed among the batches beyond what is observed under 
constant conditions are batch effects.  In this paper, we illustrate batch effects in 
microarray measurements by examining variations related to two measurement 
conditions.  The measurements were made with the Agilent Whole Rat Genome 
Microarray 4x44K.  The two measurement conditions allowed to vary are the 
amplification and labeling input mass and the substrate on which four microarrays are 
mounted. 
 
In contrast to the familiar univariate metrology, batch effects in microarray gene 
expression have many facets.  The Agilent microarray considered here has 45018 probes, 
and, consequently, technical variation manifests itself in 45018 dimensions.  For this 
reason, there are many choices to be made in the characterization of microarray batch 
effects.  On one hand, one does not want to present a characterization that is 
incomprehensible because it is overwhelming in its detail.  On the other hand, one does 
not want to hide manifestations of the batch effects that might be helpful in improving 
measurement protocols or methods for statistical inference.  The purpose of this paper is 
to present a characterization that strikes a balance.  We illustrate the various ways that 
batch effects show up in measurements and describe methods for analyzing batch effects.  
These ideas can be applied in other situations. 
 
The structure of the experiment considered here provides many possibilities for data 
analysis.  There are measurements on liver RNA and kidney RNA, which are very 
different, and on mixtures of these RNAs to allow insight into calibration-curve linearity.  



Measurements were made on RNAs from six animals (Rattus norvegicus).  Because these 
animals formed a control group for a previous study, their RNAs were expected to be 
similar.  In addition, technical replicates are included.  Guo, et al. (2006) performed an 
experiment with six animals as biological replicates but without mixtures or technical 
replicates. 
 
The data set considered here consists of 96 microarray measurements.  Seventy-two of 
these measurements were made on RNAs from six animals (Rattus norvegicus), twelve 
measurements from each animal.  RNA was extracted from both the liver and the kidney 
of each animal.  In addition to these RNAs, mixtures of the liver and kidney RNAs were 
prepared, one with 3 parts liver to 1 part kidney and the other with 1 part liver to 3 parts 
kidney.  The four materials from each animal were each measured in triplicate.  In 
addition to the individual animal materials, the liver RNAs from the six animals were 
pooled; the kidney RNAs were similarly pooled; and mixtures of these pools were 
prepared.  These four materials were each measured in quadruplicate.  Finally, the liver 
RNAs from the first three animals were pooled; the kidney RNAs were similarly pooled; 
mixtures were prepared; and the four materials were measured without replication.  
Moreover, the RNAs from the second three animals were pooled, mixed and measured.  
Affymetrix measurements of the same 96 materials have been reported as a 
preprint(Liggett et al., 2008). 
 
This paper is organized as successive steps in uncovering the input mass effects, which 
are more pronounced than the substrate effects in our experiment.  It should be noted that 
the two levels of input mass are completely confounded with choice of operator and with 
some other potential causes of batch effects.  As is typical in microarray data analysis, we 
begin with normalization (Stafford, 2008).  Our normalization method makes use of the 
mixture relations among the RNAs, which has as one result a partial correction of batch 
effects (Liggett, 2008).  For each probe, we model the normalized intensities with a linear 
mixed model (Pinheiro and Bates, 2000).  Such a model involves fixed effects such as the 
animal effects and the input mass effects, random effects such as the substrate effect, and 
the random error.  Finally, we consider evidence of unrecorded changes in measurement 
conditions. 
 
2. Input mass effect on the amount of normalization applied 
In this section and the next, we present an analysis of the measurements on the individual 
animals with the Agilent platform (ArrayExpress E-TABM-555).  These measurements 
consist of results from 72 arrays.  Our analysis is based on background corrected 
intensities given by gBGSubSignal divided by gMultDetrendSignal, values of which can 
be found in the ArrayExpress data files.  We eliminate intensities from control probes 
(ControlType) and from probes that exhibit feature nonuniformity (glsFeatNonunifOL) or 
saturation (glsSaturated) for any of the 72 individual-animal arrays.  Thus, for each array, 
intensities from 42697 probes enter our analysis.  
 
Generally, the observed intensities from a group of arrays exhibit inter-array differences 
that must be dealt with either by a preprocessing step referred to as normalization or by 
some other means.  We normalize the 12 arrays from each individual animal separately 



using a two-step process (Liggett, 2008).  The first step is array-by-array global 
normalization of the intensities.  For each array, we compute a scale factor by first adding 
30 to each background-corrected intensity because some intensities are reported as 
negative and then by finding the geometric mean of these values.  We then divide each 
intensity by this scale factor.  The second step is adjustment of the globally normalized 
intensities so that the linear model implied by the mixing of the materials fits better.  
Letting the globally normalized intensity for array i  of animal j  and for probe  be 

, the adjusted intensity is 
g

jigy ( ) jijijigy ηη0− .  The values of ji0η  and jiη  are computed 
to improve the fit of the adjusted intensities to the linear model specified by the mixing. 
 
In addition the estimates of ji0η  and jiη , our two-step normalization process gives a fitted 
model for the intensities.  As implied by the mixing, the intensities can be modeled as 

DjgDjiAjgAji xx θθ + .  The fraction of the liver material in the mixture  is 1 for material 
A, 

Ajix
( )jϕ+33  for material B, ( )jϕ311 +  for material C, and 0 for material D.  The 

symbol jϕ  denotes the ratio of the concentration of mRNA in the kidney RNA to the 
concentration of mRNA in the liver RNA.  We have AjiDji xx −= 1 .  Liggett, et al. (2008)  
describe estimation of jϕ  in the second step of the normalization. We use the estimates of 

jϕ , Ajgθ , and Djgθ  in specifying the analysis in the next section. 
 
Figure 1 shows the estimated normalization parameters for each of the six animals.  The 
points are labeled with the user designation A or B, which corresponds to input mass of 
200 ng and 400 ng.  We see that the second step of our normalization process generally 
scales the 200 ng arrays up in comparison to the 400 ng arrays.  This can be viewed as 
our normalization providing a partial correction of the input mass batch effect. 
 
3. Probe-by-probe modeling of the input mass effect 
For each probe, there are 72 normalized intensities that are differentiated by the animal, 
the material (liver, kidney or a mixture), the input mass, and the substrate.  By fitting a 
linear mixed model (Pinheiro and Bates, 2000) to these intensities, we can distinguish the 
contributions of these factors.  Of particular interest is comparison of the animal-to-
animal variation with the input mass effect.  In case-control studies, the central statistical 
question is whether the amount of animal variation within the control group can account 
for the apparent differences between the cases and the controls.  If the input mass effect is 
of the same size or larger than the amount of animal variation, then this effect has the 
potential for misleading researchers in the formulation of study conclusions. 
 
It is, of course, not enough to compare animal variation with input mass effect for each 
probe.  Summarization over the probes is necessary in the understanding of the input 
mass effect.  In our approach, we confine the summarization to a subset of the probes and 
choose a model parameterization with coefficients that are comparable from one probe to 
another.  One aspect of selecting the probe subset is choice of probes for which there is 
appreciable liver mRNA or appreciable kidney mRNA.  Another aspect is selecting a 
probe subset for which there is a model parameterization appropriate for summarization. 



 
In our approach, the model parameterization is based on representing the animal-to-
animal variation and the input mass effect in terms of fractional deviations from the 
animal average intensities.  Such an approach has the advantage of making the probes 
with strongest response comparable regardless of their liver-kidney difference or overall 
intensity response.  The average intensities are obtained from the intensity estimates 
obtained in the normalization process.  These are animal-by-animal estimates of the liver 
intensity  and the kidney intensity .  We denote the average of the liver 

intensities by 
Ajgθ̂ Djgθ̂

Agθ  and the average of the kidney intensities by Dgθ .  For array i  of animal 
j , the animal average intensity is given by 

 
 ( ) ( )( ) 2ˆˆ2ˆˆ DgAgDjiAjiDgAgDgDjiAgAji xxxx θθθθθθ −−++=+ . 
 
In our notation, we apply a “hat” to  and  because they incorporate the estimate of Ajix̂ Djix̂

jϕ  obtained as part of the normalization.  In modeling, we parameterize the animal 

effects with an intercept term ( ) 2Dgjg θθα Ag +  and with a slope term 

( )( ) 2ˆˆ DgAgDjiAjijgβ xx θθ −− .  Similarly, we parameterize the input mass effect with the 

terms ( ) 2DgAgg θθγ +  and ( )( ) 2ˆDjix−ˆ DgAgAjig x θθδ − . 
 
The probes we select for summarization satisfy two conditions.  First, the probes satisfy 
 
 ( ) ( )( ) ( ) ( )( )3AND0OR0AND3 >>>> DgAgDgAg θθθθ . 
 
In general terms, this condition amounts to the requirement that either the liver mRNA or 
the kidney mRNA have appreciable intensity.  As a way of gauging this condition, we 
note that there are 9620 probes for which 3>Agθ  and there are 11107 probes for which 

3>Dgθ .  Second, the probes must exhibit a fold change of at least 2 between the liver 
and the kidney.  In other words, the probes satisfy 
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These two conditions assure that the model parameterization we have adopted is not 
misleading. 
 
With the substrate effect left out, the modeling equation for the normalized intensity  
corresponding to array  for animal 

jigu
i j  is given by 

 
 ( )( ) ( )( )( ) jigDgAgDjiAjiigjgDgAgigjgjig xxu εθθδβθθγα +−−++++= 2ˆˆ2 , 



 
where 
 

 . ( )( ) ⎥⎦
⎤

⎢⎣
⎡ ++= 222 0,ˆˆˆˆmax)var( ωθθσε DjgDjiAjgAjigjig xx

 
In this modeling equation, the unknown parameters are jgα , jgβ , igγ , igδ  and .  The 
other quantities are obtained from the normalization results.  The parameters 

2
gσ

igγ  and igδ  
are restricted to gγ±  and gδ±  because the input mass has only two levels. 
 
In Figure 2, the input mass effect is shown as a plot of the intercept coefficient gγ  versus 
the slope coefficient gδ  for the selected probes.  The points lie close to the x = y line.  
This means that most of the input mass effect shows up as a fractional deviation from the 
average intensity ( )DgDjiAgg x θθδ ˆ+Ajix̂ , that is, as a multiplicative effect on the average 

intensity.  Relative to this, the remainder of the input mass effect ( )( ) 2DgAggg θθδγ +−  
is small.  This leads us to thinking about the modeling results in terms of the fractional 
deviation from the intensity gδ  and the remaining fractional deviation gg δγ − . 
 
Consider comparison of the input mass effect with the animal variation.  On the basis of 
what is shown in Figure 2, we begin by comparing ( )DgDjiAgAjig xx θθδ ˆˆ +  with the animal-

by-animal changes in ( )DgDjiAgAjijg xx θθβ ˆˆ + .  To make this comparison, we compute, for 
each probe, the standard deviation of 6...,,1, =jjgβ , the fractional deviations of the 
animal intensities.  For the group of probes selected, the top two panels of Figure 3 show 
histograms for the fractional deviations from the average intensities.  The top panel 
shows the input mass effect.  The second panel shows the standard deviation of the six 
animal values.  We see that these two histograms have roughly the same spread.  To be 
more exact in the comparison of the two histograms, we must account for the fact that the 
animal variation is given as a single standard deviation although two standard deviations 
would come closer to covering all the animal variation.  Moreover, the probe-to-probe 
variation in the animal standard deviation also involves sampling error.  In other words, 
the standard deviations shown are spread out in part by the estimation error inherent in a 
sample of only six animals and in part by actual probe-to-probe variation in the standard 
deviation.  A more exact comparison seems to require that we introduce a more definite 
context. 
 
There is more to the animal variation than ( )DgDjiAgAjijg xx θθβ ˆˆ + , the fractional deviation 

from the average intensity.  There is ( )( ) 2DgAgjgjg θθβα +− .  The bottom panel of 
Figure 3 shows a histogram of the standard deviation of jgjg βα − , the remaining 
fractional deviation.  Comparison of the second and third panels of Figure 3 shows that 
the remaining fractional deviation is generally smaller. 
 



That the microarrays used in this experiment come from Agilent mounted four on a 
common substrate might be expected to introduce another batch effect.  We model the 
substrate effect as a random effect given by ( )DgDjiAgAji xx θθς ˆˆ + , where ς  varies 
randomly from the arrays on one substrate to the arrays on another.  We can perform a 
likelihood ratio test of the null hypothesis that there is no substrate effect.  Were exact p 
values for this test available, we could combine the results from a set of probes using 
false discovery rate methodology (Storey and Tibshirani, 2003).  Because this is not the 
case (Pinheiro and Bates, 2000), the current situation is somewhat more complicated. 
 
Figure 4 shows the estimate of the standard deviation of ς  plotted versus the likelihood 
ratio test statistic for the 5014 probes selected.  Values of the test statistic below 0.001 
have been replaced by 0.001.  Points for most of the probes lie in the lower right corner 
where the test statistic and the standard deviation are both nearly 0.  We see that few of 
the probes have substrate-effect standard deviations that are comparable to the animal 
variation shown in Figure 3.  Moreover, we see that few of the probes have values for the 
likelihood ratio test statistic greater than 1. 
 
On the basis of theoretical results, it is generally believed that the likelihood ratio test 
statistic under the null hypothesis is distributed as a mixture of two distributions, a 
probability mass at 0 and a chi-square distribution with 1 degree of freedom.  The 
probability mass at 0 can be seen in the probes shown in the lower right of Figure 4.  The 
mixing proportion for the distributions must generally be determined by simulation 
(Pinheiro and Bates, 2000). 
 
We conclude that the substrate effect should be of little concern.  We have derived a 
mixing proportion from the observed distribution of the likelihood ratio test statistic.  The 
resulting mixture distribution fits the observed distribution closely.  Moreover, the 
random-effect standard deviations are relatively small compared to the animal variation. 
 
4. Further evidence of batch effects 
The choice of 200 ng of material for some of the Aglient microarray measurements was 
not part of the experimental design originally.  Rather, two (microarray) users were 
assigned the task of making the 96 measurements, 72 on individual animal RNAs and the 
rest on RNAs made from pooling the individual animals RNAs.  The user designated A in 
the ArrayExpress description of the measurements made a mistake in performing the 48 
measurements assigned.  In remaking these measurements, only 200 ng of material was 
generally available for each RNA sample.  In that the 200 ng measurements were a 
recovery from a mistake, it would not be surprising if other batch effects showed up.  The 
samples obtained by pooling the liver RNAs of the six animals and the kidney RNAs 
provide an opportunity to investigate this.  From these pools, 3 to 1 and 1 to 3 mixtures 
were made as with the individual animal RNAs.  The pooled materials were then 
measured in quadruplicate.  User A made all these measurements. 
 
Consider using the measurements on the six-animal pools for testing the linearity of the 
relation between concentration and the intensity.  We begin with the same normalization 



procedure that we applied to the measurements on the individual animal RNAs.  The 
normalized intensities are given by .  Linearity implies that pigu
 
 pigDpgDpiApgApipig xxu εθθ ++= ˆˆ , 
 
where the variance of pigε  is given by 
 

 . ( )( ) ⎥⎦
⎤

⎢⎣
⎡ ++= 222 0,ˆˆˆˆmax)var( ωθθσε DpgDpiApgApigpig xx

 
The parameters Apgθ , Dpgθ , and  are unknown, and values for the other parameters are 
taken from the output of the normalization.  If the realizations of 

2
gσ

pigε  are independent 

from measurement to measurement, then we can estimate  from the four sets of 
replicates regardless of the material-to-material relations among the intensities.  This 
estimate provides the denominator for an F test.  Otherwise, there are 4 average 
intensities, one for each material, and a model of the relation among these averages with 
2 parameters 

2
gσ

Apgθ  and Dpgθ .  This gives another estimate of .  The ratio of the two 

estimates of  can be used as statistic for a lack of fit test.  Under the null hypothesis, 
the test statistic is an F ratio with 2 and 12 degrees of freedom. 

2
gσ

2
gσ

 
We consider all the probes for which 
 
 ( ) ( )( ) ( ) ( )( )3ˆAND0ˆOR0ˆAND3ˆ >>>> DpgApgDpgApg θθθθ  
 
except for the control probes and those showing non-uniformity or saturation.  There are 
11530 such probes.  Figure 5 shows a quantile-quantile plot for the log of the F ratio.  If 
the null hypothesis were satisfied for every probe, the curve would fall on the x = y line.  
We see that the curve is above this line and that there is further deviation from this line at 
the upper end.  The deviation at the upper end is evidence that some probes exhibit 
saturation.  Similar behavior has been seen in other expression microarray data.  The 
separation of the curve from the x = y line over the whole range is more puzzling. 
 
That the curves in Figure 5 are above the x = y line could be evidence of an unsuspected 
batch effect.  That the F ratio is too large could be the result of the denominator of the F 
ratio being too small.  Supposedly, the denominator is computed from 4 independent 
replicate measurements on each material.  If there were an unsuspected batch effect, the 
independence assumption would not be valid.  The F test is based on the hypothesis that 
the observed variation within the sets of replicates accounts for the observed deviation 
from a linear calibration curve.  If there is batch structure that largely coincides with the 
replicate sets, then this hypothesis will not be true and the denominator of the F ratio will 
be too small. 
 



An investigation of an unknown batch effect on the basis of the 16 measurements from 
one probe would have limited possibility.  Combining measurements from all the selected 
probes offers more possibilities.  Let the residuals from the material means be denoted 

.  Consider the standardized version of these residuals pigr
 

 ( )( ) 22
0,ˆˆˆˆmax ωθθ ++ DpgDpiApgApipig xxr . 

 
Regarding each probe as a replicate, we can compute 16 by 16 covariance matrix from 
these standardized residuals.  This covariance matrix might suggest the form of the 
unknown batch effect.  One way to proceed is to perform a principal components analysis 
(PCA) on this covariance matrix.  PCA suggests that the replicate-to-replicate variation 
for materials A and B is larger than that for materials C and D.  This is consonant with 
the results shown in Figure 5 although the cause of the unknown batch effect is still not 
clear. 
 
5. Conclusions 
Examination of some particular batch effects suggests aspects of a general approach to 
dealing with batch effects.  Not addressed in this chapter is the initial step of identifying 
potential batch effects.  This chapter started with potential batch effects already 
identified.  These came from the list of effects such as user (operator) effects and 
interlaboratory effects that are usually considered in metrology.  Potential effects are 
often identified through remeasurement of reference materials such as the materials used 
in the MicroArray Quality Control (MAQC) project (MAQC Consortium, 2006).  
Because microarrays provide a multivariate response, clues can also come from single-
array quality measures (Brettschneider et al., 2008). 
 
Once potential batch effects have been identified, the methods illustrated in this chapter 
can be applied.  Note that user was identified at the outset and before the 200 ng-400 ng 
protocol difference arose.  The design and data analysis methods of the current study 
seem appropriate for use in the study of other batch effects.  These methods have two 
advantages.  First, the inclusion of liver, kidney, and mixture RNAs allow the batch 
effects to be portrayed in terms of slopes of calibration curves.  Second, the inclusion of 
several animals allows comparison of biological variation with technical variation. 
 
The batch effect caused by the change in input mass cannot be completely erased through 
data analysis.  This shows that one cannot rely on data analysis to solve problems with 
batch effects.  One solution is to reduce the batch effect through protocol modification.  
For example, stricter adherence to 400 ng as the input mass, which is the mass Agilent 
specified in its initial measurement protocol, would have been preferable to relying on the 
data analysis.  Because complete elimination of a batch effect may not be possible, a 
complimentary solution is choice of experimental design.  For example, the data analysis 
methods presented here were able to separate the animal variation from the user effect 
because the design specified the operator factor as orthogonal to the animal and material 
factors.  In particular, for the individual animal measurements, one and only one of every 
three replicate measurements was made by user A with the 200 ng protocol.  Were one 



user to have measured four animals and the other user, two animals, the measurements 
would have been much harder to interpret. 
 
Disclaimer 
Certain commercial equipment, instruments, or materials are identified in this paper to 
foster understanding.  Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor does it imply 
that the materials or equipment identified are necessarily the best available for the 
purpose. 
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Figure 1. Normalization parameters for each array with input mass 200 ng (A) and 400 ng 

(B) indicated.  Normalization consists of subtraction of the shift followed by 
division by the scale. 



Figure 2 
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Figure 2.  The input mass effect for 5014 selected probes.  The effect is given as 

fractional change in the calibration curve intercept and the fractional change in the 
calibration curve slope. 



Figure 3 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0
20

0
40

0
60

0
80

0

Input Mass Effect: Fractional Deviation From Intensity

N
um

be
r o

f P
ro

be
s

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
40

0
80

0
12

00

Animal Variation: Standard Deviation of Fractional Deviation From Intensity

N
um

be
r o

f P
ro

be
s

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
50

0
10

00
15

00

Animal Variation: Standard Deviation of Fractional Deviation From Intercept

N
um

be
r o

f P
ro

be
s

 
Figure 3. The input mass effect compared to the animal-to-animal variation and the 

animal intensity variation compared to the animal intercept variation.  Histograms 
for 5014 selected probes. 



Figure 4 
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Figure 4.  Aspects of the substrate effect for 5014 probes:  effect standard deviation and 

the statistic for the likelihood ratio test of the hypothesis of no substrate effect. 
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Figure 5.  Measurements of the pooled materials from 11530 probes:  quantile-quantile 

plot of the F test for linearity of the calibration curve. 


