

Semantic-Mediation for Standards-based B2B Interoperability

Marko Vujasinovic1, Nenad Ivezic1, Boonserm Kulvatunyou2, Edward Barkmeyer1, Michele Missikoff3,
Francesco Taglino3, Zoran Marjanovic4, Igor Miletic4

1 Manufacturing Engineering Laboratory

National Institute of Standards and Technology, Gaithersburg MD, USA
{marko.vujasinovic, nenad.ivezic, boonserm.kulvatunyou, edward.barkmeyer}@nist.gov

2 Oracle Corporation
Belmont CA, USA

 serm.kulvatunyou@oracle.com

3 Laboratory for Enterprise Knowledge and Systems
Consiglio Nazionale delle Ricerche, Rome, Italy

{missikoff, taglino}@iasi.cnr.it

4 Department of Information Systems, FON
University of Belgrade, Belgrade, Serbia

marjanovic.zoran@fon.rs, igor.miletic@brezasoftware.com

Abstract. The authors discuss a semantic-mediation
architecture to advance traditional approaches for
standards-based business-to-business (B2B)
interoperability. The architecture is supported by the
ATHENA Knowledge Representation and Semantics
Mediation tool suite. Initial experimentations with the
architecture and the toolset offer discussions of key
architectural and functional aspects and suggest
directions for future tools enhancements.

Introduction

Most existing business software applications are not
interoperable as they use proprietary data models and
message sets for B2B communication. As a response,
industry consortiums and standards development
organizations (SDOs), such as Automotive Industry
Action Group (AIAG7), publish standard messages
for interoperable B2B data exchanges to accomplish
standards-based interoperability.

The current approach for standards-based
interoperability unfolds at three levels;
 Business process and data modeling. An SDO

defines business process models and conceptual
models of data being exchanged, which, in turn,
allows definition of standard message schemas
(also called Business Object Documents or
BODs) that specify standard messages.

 BODs adoption and mapping. An industry
consortium adopts or extends the BODs for the
industry-specific business process. Then,
application providers interpret the BODs and

define design-time mappings between
proprietary application interfaces and the BODs.

 Run-time execution. Providers use the
proprietary-to-BOD interface mappings to
implement message content transformations.
These transformations effectively implement
standard-conformant message interfaces.

However, this traditional approach has four
shortcomings that affect adoption of the standards.
(s1) Informal specification of the business domain
concepts using syntactic notations to convey data-
exchange requirements and their business meaning
leads to ambiguity and misinterpretation1. (s2)
Informal and non machine-understandable annotation
of the meaning of the standard or proprietary
message elements leads to misinterpretations of the
message semantics and application integration
problems2 - homonymy and synonymy issues, for
example. (s3) Manual and hard-coded mappings
between the proprietary and standard message
elements lead to error-prone and labor-intensive
implementations3. (s4) High inter-dependence
between proprietary and standard message interfaces
(at execution-platform, technology, terminology,
adopted message-exchange standard, and message
syntax levels) implies inflexible, tightly-coupled
integrations.

To address these shortcomings in standards-
based interoperable message exchanges, we explored
a novel semantic-mediation architecture for
standards-based interoperability. As a basis for
exploration, we executed a small-scale industrial

message exchange scenario. In this paper, we discuss
key aspects of the architecture, approaches taken, and
recommended advances to handle realistically large-
scale industrial situations.

Semantic-mediation architecture for
standards-based interoperable applications

The proposed semantic-mediation architecture builds
on the traditional approach and introduces new
activities at each level (now indicated by new titles).
 Business-domain ontology modeling. An SDO

captures the intended meaning of the data
exchange, and creates a reference ontology (RO)
on the basis of the business process model and
the data-exchange requirements (shown as the
‘Create’ activity in Figure 1). The reference
ontology specifies, formalizes, and explicates
domain business concepts and concept
relationships. The reference ontology is publicly
available to the application providers.

 Design-Time semantic-mediation specification.
Following adoption of the BODs, the SDO
annotates the BOD semantics (step B1 in Figure
1) by relating each BOD element to the
corresponding concept in the reference ontology.
Then, the SDO uses the BOD annotations to
define publicly avaiable reconciliation rulesets
(step C1 in Figure 1) for the transformation of a
BOD-conformant message to a reference
ontology instance and a reference ontology
instance to a BOD-conformant message. The
application providers annotate the semantics of
their proprietary-message interfaces (step B2 in
Figure 1). The providers use their respective
interface annotations to define their proprietary
reconciliation rulesets (step C2 in Figure 1) for
the transformation of a proprietary message to a
reference ontology instance and a reference
ontology instance to a proprietary message.
Effectively, the proprietary and public rulesets
define transformations between proprietary
messages and BOD-conformant messages via the
reference ontology.

 Run-Time semantic-mediation execution. When
an application is sending, the semantic-mediator
uses the appropriate reconciliation rulesets to
translate the proprietary message to the reference
ontology instances and those instances to the
BOD-conformant message. When an application
is receiving, the semantic-mediator translates
from the BOD-conformant messages to the
reference ontology instance and then to the

proprietary message. Effectively, the semantic-
mediator implements the standard-conformant
message interface for the application.

To address the aforementioned shortcomings

(s1-s4), our proposed architecture introduces the five
advances. (a1) The formal specification of the
business domain concepts in the reference ontology
provides a basis for unambiguous interpretation of
the data-exchange artifacts. (a2) The ontology-based
semantic annotation of message schemas provides
machine-understandable annotation expressions that
formally and precisely describe the meaning of
message elements. (a3) The precise specification of
semantic reconciliation rules are enabled by
machine-understandable annotation expressions. (a4)
Automated and consistent standard-interface
implementation through the reconciliation rules
execution moves the engineering effort from
implementation time to modeling and design time.
(a5) Semantic-mediation reconciles terminological,
structural, semantic, and representational differences
between message specifications.

In summary, the key steps to achieve standards-
based interoperability by the semantic-mediation are
the reference ontology development, semantic
annotation of message elements, and definition of
reconciliation rules. The total effort is distributed
between application providers and the SDO. The
SDO creates the ontology, annotates BODs and
defines reconciliation for BOD-conformant
messages; this is done initially, and only once. To
implement the standard-conformant message
interface for the application, each application
provider must annotate its proprietary-message
interface, define reconciliation rules for its
proprietary messages using the reference ontology,
and deploy the semantic-mediator. This must be done
once for each reference ontology and for each
proprietary interface. Translations into and out of
tool-specific forms may also be required. Obviously,
the scale of effort will depend on the complexity of
the proprietary messages and the ontology.

Proprietary
Tool

Standard-
conformant
Application

Interface Modeling
(proprietary)

Interface Modeling
(standard)

WS call

Standard
XML message

Standard- Based
Run-Time Data

ExchangeProprietary
XML message

Reconciliation
Rules Stand.

Ontology Modeling

ATHENA
Tool

Semantic
Element

Repository
App

Private
Area

Public
Area

ArtifactLegend

(business concepts
& relationships)

Reference
Ontology

Annotate

ARGOS

ASTAR

ARGOS

ASTAR
Annotate

Semantic
Annotations

Standard XML
Schema (i.e., BOD)
Standard XML
Schema (i.e., BOD)

ATHOSATHOS

Reconciliation
Rules Prop.

Semantic
Annotations

Proprietary
XML Schema
Proprietary
XML Schema

Define Reconciliation

Data
Flow
Data
Flow

Internet

Define Reconciliation

Application Provider Effort Standards Development Group Effort

Create

D
es

ig
n

 T
im

e
 S

em
a

n
ti

c
-

m
e

d
ia

ti
o

n
 s

p
ec

if
ic

a
ti

o
n

R
u

n
 T

im
e

 S
e

m
a

n
ti

c
-

m
ed

ia
ti

o
n

XSD2RDFS
transformation RDFS modelRDFS model BOD’s RDFS

model
BOD’s RDFS
model

XSD2RDFS
transformation

A2

C2

A1

B1

C1

B2

ARESARES

Coordinator
Gateway

Coordinator
Workflow Engine

XML2RDF RDF2XML

Johnson
WS Engine

RO
RDF

RDF
message

BOD RDF
message

Orchestrate

Step

Figure 1 Semantic-Mediation for standards-based interoperability

Supporting tools

We implemented the proposed architecture using a
suite of tools developed as part of the ATHENA
project4. These tools facilitate semantics-based
reconciliation of RDF (Resource Definition
Framework) documents (Figure 1). At design-time,
we used the ATHOS ontology development tool
(http://leks-pub.iasi.cnr.it/Athos), the ASTAR
semantic annotation tool (http://leks-
pub.iasi.cnr.it/Astar), and the ARGOS reconciliation
specification tool (https://services.txt.it/argos). At
run-time, we employed the ARES reconciliation
execution engine
(http://euproj.gformula.com/athena/ares), and the
Johnson Web Service (WS) execution engine to
support WS interfaces.

ATHOS relies on the OPAL5 ontology modeling
language to construct ontologies through predefined
business categories and inherent constraints. OPAL is
built on top of the OWL (Web Ontology Language),
which gives a formal basis to the ATHOS-developed
ontologies.

ASTAR sets up semantic correspondences,
semantics annotation expressions, between the RDFS
(Resource Description Framework Schema) model
concepts and the reference ontology concepts.
ASTAR provides a graphical annotation
environment, visualisation of RDFS models, and
semi-automatic support to define annotation
expressions.

ARGOS provides a graphical environment for
reconciliation rules specification. ARGOS visualizes
RDFS models and reference ontology and assists in
creating reconciliation rulesets that transform RDF
documents to and from reference ontology instances
(forward-backward rulesets). ARGOS is driven by
annotation expressions from ASTAR.

ARES performs the actual RDF-to-RDF
document reconciliation by executing declared
forward and backward rulesets on RDF documents.

These tools provided many of the capabilities
needed to support our B2B integration requirements.
However, our B2B software applications also used
XML (Extensible Markup Language) messages,

besides RDF messages. We needed to build some
additional tools. The first tool, XSD2RDFS6,
transformed specific message-element definitions in
XML Schema to the corresponding message-
elements’ concepts in the RDFS model (i.e. to
conceptual message-schema). The second and third
tools - XML2RDF6 and RDF2XML6 - transformed
XML messages to and from the corresponding RDF
documents, respectively. To integrate all of the run-
time tools, we developed a Coordinator Gateway to
transform a proprietary message into a standard-
conformant message.

eKanban Experimental pilot

To assess representational capabilities of our
architecture, we executed an experimental pilot based
on the AIAG eKanban Inventory Visibility and
Interoperability (IV&I) business scenario7. The
AIAG defined a set of standard BOD messages for
the electronic Kanban (eKanban) business process
that regulates the flow of goods from suppliers to
match actual usage by customers.

We employed two independently developed
applications capable of sending and receiving only
their proprietary AuthorizeKanban message, and one
standard-conformant application capable of receiving
the standard BOD AuthorizeKanban message:
 Apolon open source application with an RDFS-

based proprietary message interface.
 General Motors’ experimental application (GM)

with an XML Schema-based proprietary message
interface.

 Ford Test Harness (FTH) with an XML Schema-
based BOD-conformant message interface.

We adopted the following scenario: Apolon (running
in Serbia) exchanges a message with the FTH
(running in Maryland, USA), and the GM application
(running in Michigan, USA) exchanges a message
with the FTH and Apolon.

First, we used the ATHOS tool to develop the
eKanban Reference Ontology8, which formally
captured the business conceptual model for the
eKanban process.

Then, we performed the design-time steps. First,
we completed XSD2RDFS transformation of the
BOD and GM AuthorizeKanban XML schemas to the
corresponding RDFS conceptual message-schemas
(steps A1, A2 in Figure 1). Next, we completed
annotation of the BOD, GM, and Apolon
AuthorizeKanban RDFS conceptual message-
schemas by using ASTAR (steps B1, B2 in Figure 1).
Then, reconciliation specification (steps C1, C2 in
Figure 1) was completed using ARGOS to create (a)
forward rules to transform data from the GM,
Apolon, and BOD AuthorizeKanban RDF documents
to the reference ontology instances, and (b) backward
rules to transform data from the reference ontology
instances to Apolon and BOD AuthorizeKanban RDF
documents.

At run-time, Coordinator Gateway orchestrated
a sequence of transformations and reconciliations, as
shown in Table 1. Each application had its own
appropriately configured Coordinator. The semantic-
mediation was successful; applications sent and
received messages in their proprietary formats. More
importantly, these messages were conformant to the
adopted exchange standard.

Table 1 Message flow and executed transformation inside the Coordinator: blue font indicates the sender and the messages sent;
red font indicates the receiver and the messages received; black font indicates the intermediate transformations and data formats.

Scenario

Message

Input (relative
to RO) message
transformation

Message

Reconciliation

Reconciled
message
in ontology
(RO) form

Reconciliation

Message

Output
(relative to RO)
message
transformation

Message

XML

GM

XML2RDF

RDF

GM

GM_

FORWARD_

RDF

RO

BOD

BACKWARD

RDF
BOD

RDF2XML

standard

XML
BOD

GM
sends to
Apolon

(continued
from above)

standard

XML
BOD

XML2RDF

RDF
BOD

BOD_

FORWARD_

RDF

RO

APOLON_

BACKWARD

RDF

APOLON

not needed

RDF

APOLON

Apolon
sends to
FTH

RDF

APOLON

not needed

RDF

APOLON

APOLON_

FORWARD_

RDF

RO

BOD_

BACKWARD

RDF
BOD

RDF2XML

standard

XML
BOD

GM
sends to
FTH

XML

GM

XML2RDF

RDF

GM

GM_

FORWARD_

RDF

RO

BOD_

BACKWARD

RDF
BOD

RDF2XML

standard

XML
BOD

Key aspects and findings

Central to successful use of the proposed architecture
in realistically complex B2B integration cases are
message-representation transformation, message
semantics annotation, and message reconciliation
specification.

A. Message representation transformation

Message representation transformation is an
automated process that transforms a message schema
or message instance into a message representation
form required by the semantic-mediation tools. That
form is typically aligned with the ontology
representation language. A key challenge here is to
develop a general and flexible transformation that
abstracts from the unnecessary message syntax
details while maintaining the essential schema or
instance information.

Approach. The XSD2RDFS, XML2RDF, and
RDF2XML message representation transformations
were developed because the ASTAR and ARGOS
tools dealt with RDFS models and messages in the
form of the RDF documents. To transform an XML
message schema to an RDFS conceptual message-
schema, XSD2RDFS builds an ‘internal tree’
structure that reflects the XML message structure.
That tree nodes represent XML element and attribute
definitions and each node encapsulates name,
datatype, and namespace for the corresponding
element or attribute. Then, the tool transforms that
tree into RDFS conceptual message-schema through
predefined transformation rules and the ‘extended
names’ naming convention6. Listing 1 shows an
XSD2RDFS example.

Even though the functionality of XSD2RDFS
was driven by specific requirements from ASTAR
and ARGOS, the tool is very general – it can
transform any given XML schema into corresponding
RDFS conceptual message-schema.

Listing 1 Portion of the XSD2RDFS transformation for the GM schema. xsd:elements are transformed into corresponding
RDFS classes (e.g., gmSyncShipmentSchedule to gmSyncShipmentSchedule_sender). Each simple xsd:element is transformed
into a corresponding RDFS data-property (e.g., gmSyncShipmentSchedule_sender_DUNS_sValue for the DUNS element). Each
XML parent-child relation is transformed into an RDFS object-property (e.g., gmSyncShipmentSchedule_sender_DUNS_PROP
RDFS property for the sender-DUNS parent-child XML relation)

For the runtime message-representation
transformations, we defined the XML2RDF and
RDF2XML transformation-naming convention6 that
transformation algorithms used to create RDFS-

conformant RDF documents for the reconciliation
input, and XML schema-conformant XML
documents for the reconciliation output. Listing 2
shows the example of XML2RDF and RDF2XML

<?xml version="1.0" encoding="UTF-8"?> <rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
<xsd:schema

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns="http://www.nist-athena-ivi.com/rdfs#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<rdfs:Class rdf:about="http://www.nist-athena-ivi.com/rdfs#gmSyncShipmentSchedule">
</rdfs:Class>
...
<rdfs:Class rdf:about="
http://gm.com/gmSyncShipmentSchedule/rdfs#gmSyncShipmentSchedule_sender">
</rdfs:Class>
<rdfs:Class rdf:about=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS">
</rdfs:Class>

<rdf:Property rdf:about=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS_sValue">
 <rdfs:domain rdf:resource= http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</rdf:Property>
...
<rdf:Property rdf:about=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_PROP">
 <rdfs:domain rdf:resource=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule"/>
 <rdfs:range rdf:resource="http:// http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender"/>
</rdf:Property>
<rdf:Property rdf:about=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS_PROP">
 <rdfs:domain rdf:resource=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender"/>
 <rdfs:range rdf:resource=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS"/>
</rdf:Property>
...
</rdf:RDF>

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://gm.com/gmSyncShipmentSchedule/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 name="gmSyncShipmentSchedule"
 targetNamespace=
 "http://gm.com/gmSyncShipmentSchedule/">

 <xsd:element name="gmSyncShipmentSchedule">
 <xsd:complexType>
 <xsd:sequence>
 …
 <xsd:element name="sender“
 type="tns:partner"/>
 ….
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

<xsd:complexType name="partner">
 <xsd:sequence>
 <xsd:element name="DUNS" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 …..
</xsd:schema>

transformations outcome. Neither the XML schema
nor the RDFS conceptual message-schema was

required during run-time transformation, which made
the approach very flexible.

Listing 2 Portion of the XML2RDF and RDF2XML transformation for the GM’s message

<?xml version="1.0" encoding="UTF-8"?>
 <gmSyncShipmentSchedule
 xmlns="http://gm.com/gmSyncShipmentSchedule/">
 ...
 <sender>
 <DUNS>General Motors</DUNS>
 </sender>
 ..
 </gmSyncShipmentSchedule>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.defaultnsrdf.rdf#">
 <gmSyncShipmentSchedule>
 ...
 <gmSyncShipmentSchedule_sender_PROP>
 <gmSyncShipmentSchedule_sender rdf:ID="X2">
 <gmSyncShipmentSchedule_sender_DUNS_PROP>
 <gmSyncShipmentSchedule_sender_DUNS rdf:ID="X3">
 <gmSyncShipmentSchedule_sender_DUNS_sValue
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 General Motors
 </gmSyncShipmentSchedule_sender_DUNS_sValue>
 </gmSyncShipmentSchedule_sender_DUNS>
 </gmSyncShipmentSchedule_sender_DUNS_PROP>
 </gmSyncShipmentSchedule_sender>
 </gmSyncShipmentSchedule_sender_PROP>

 </gmSyncShipmentSchedule>
</rdf:RDF>

Findings. In executing the pilot, however, we
discovered that the message representation
transformation needs to preserve both message-
structure and data-representation rules (originally
specified in the message schema) in order to
transform RDF documents to XML schema-
conformant XML messages. Particularly, to produce
an XML schema conforming message from
reconciliation output, at least the following definition
must be maintained: a) message structure, b)
elements order, c) concepts (elements/attributes)
names including namespaces, d) concept granularity
(element vs. attribute), and e) formatting rules.

A conceptual message-schema doesn’t capture
this information. However, we were able to embed
the structural and granularity characteristics in
naming conventions - concepts’ extended-name
convention maintained message-structure definition,
and the _ATTR suffix maintained elements vs.
attributes distinctions. Additionally, we created
reconciliation rules that generated additional RDF
statements for the target RDF document to carry
purely data-representation rules through the entire
semantic-mediation - additional RDF statements
carried the definition of namespaces and elements
order.

Creating such additional reconciliation rules
required undesired effort on behalf of a rule expert
and additional knowledge about message-
representation and formatting rules, beyond
understanding the message structure and semantics.
Neither our approach nor other similar transformation
approaches6, transform message schemas to a
message-representation form that sufficiently capture
information (a-e) and that is aligned with an
ontology-representation language (OWL or RDFS).

Future direction: Abstract message model. To
eliminate this additional work and to provide
mediation for other message-formats, such as EDI
(Electronic Data Interchange), we propose an
abstract message model. This abstract message
model will not capture certain syntax-specific
constructs of message schemas or messages. It will,
however, faithfully capture (1) message schema
concepts such as definition of elements/attributes,
definition of complex/simple types, and information
(a-e) from above; and, (2) message concepts such as
elements, attributes, content, and values. The
message-representation transformations shall then
instantiate and populate the abstract message model
with information from an actual message schemas or
message instances. That further implies that the
forward reconciliation shall be from, and the
backward reconciliation shall be to, the abstract
message model instance - GM and BOD abstract
message model instances, for example. Then, the
abstract message model instance, as an output from a
reconciliation tool, will contain enough information
so that the specific message-representation
transformation needs to produce the schema-
conformant message from that abstract message
model instance.

B. Message semantics annotation

Message semantics annotation clarifies message
semantics by associating each message element with
a machine-understandable expression that represents
its business meaning in terms of reference ontology
concepts. The significant challenge is to have an
annotation method that reduces human effort, detects
semantic correspondences, provides sufficient
expressivity, and allows multi-purpose usability of
semantic annotation expressions.

Approach. The ASTAR annotation method is
organized in two phases: diagnostic and remedial.
The diagnostic phase aims to identify terminological,
structural, and semantic mismatches between a
conceptual message-schema and the reference
ontology. In the remedial phase conceptual message-
schema concepts are associated with expressions that
represent their semantics in terms of the reference
ontology. The remedial phase has four steps:
terminological semantic annotation (TSA), path
semantic annotation (PSA), simple semantic
annotation (SSA), and full semantic annotation
(FSA).

In the TSA step, the ASTAR tool contrasts the
terms of the conceptual message-schema concepts
with the terminology of reference ontology concepts
and automatically detects lexical-terminological

similarity among them. Then, we establish
correspondences between the terms, which resolve
terminological mismatches and further assisted in
structural path matches identification in the PSA step.

In the PSA step, we consider the structures of the
conceptual message-schemas and reference ontology,
and associate one or more conceptual message-
schema paths to one or more matching reference
ontology paths, which resolve structural mismatches.

In the SSA step, all the path matches are further
composed into path expressions by using abstract
operators, which denote a data-transformation
template needed at run-time. In this step, other
semantics mismatches, which are mostly about the
encoding and representation choices for information
units (such as named values, time intervals) can also
be noted by abstract operators.

Table 2 Portion of the GM’s RDFS conceptual message-schema annotation

- TSA - Mismatch

GM’s RDFS concept Reference ontology concept

gmSyncShipmentSchedule ShipmentSchedule, SyncShipmentSchedule_Message
gmSyncShipmentSchedule_sender SenderParty

gmSyncShipmentSchedule_sender_DUNS PartyId

gmSyncShipmentSchedule_sender_PROP relTo_SyncShipmentSchedule_Message_SenderParty
gmSyncShipmentSchedule_sender_DUNS_PROP relTo_ SyncShipmentSchedule_Message_SenderParty_PartyId
gmSyncShipmentSchedule_sender_DUNS_sValue has_identifier

- PSA -
GM’s RDFS path Reference ontology path

gmSyncShipmentSchedule. gmSyncShipmentSchedule_sender_PROP.
gmSyncShipmentSchedule_sender.
gmSyncShipmentSchedule_sender_DUNS_PROP.
gmSyncShipmentSchedule_sender_DUNS.
gmSyncShipmentSchedule_sender_DUNS_ sValue:STRING

ShipmentSchedule.
relTo_ShipmentSchedule_message_SyncShipmentSchedule.
SyncShipmentSchedule_Message.
relTo_SyncShipmentSchedule_Message_SenderParty.
SenderParty.
relTo_SyncShipmentSchedule_Message_SenderParty_PartyId.PartyId.
has_identified:STRING

- SSA -
gmSyncShipmentSchedule.
gmSyncShipmentSchedule_sender_PROP.
gmSyncShipmentSchedule_sender.
gmSyncShipmentSchedule_sender_DUNS_PROP.
gmSyncShipmentSchedule_sender_DUNS.
gmSyncShipmentSchedule_sender_DUNS_sValue
:STRING

=
(abstract operator)

ShipmentSchedule.
relTo_ShipmentSchedule_message_SyncShipmentSchedule.
SyncShipmentSchedule_Message.
relTo_SyncShipmentSchedule_Message_SenderParty.
SenderParty.
relTo_SyncShipmentSchedule_Message_SenderParty_PartyId.PartyId.
has_identified:STRING

- FSA -
OWL DL semantic annotation expressions

STRING∩
(∃inverseOf_gmSyncShipmentSchedule_sender_
DUNS.(
gmSyncShipmentSchedule_sender_DUNS∩
(∃inverseOf_
gmSyncShipmentSchedule_sender_DUNS_PROP.
(gmSyncShipmentSchedule_sender∩
(∃inverseOf_gmSyncShipmentSchedule_sender_
PROP(gmSyncShipmentSchedule))))))

<owl:
equivalentClass>

STRING∩
(∃inverseOf_has_Id_identified.(PartyId∩(∃inverseOf_ relTo_
SyncShipmentSchedule_Message_SenderParty_PartyId.(SenderParty∩(
∃inverseOf_relTo_SyncShipmentSchedule_Message_SenderParty.(Syn
cShipmentSchedule_Message∩(∃inverseOf_relTo_ShipmentSchedule
message_SyncShipmentSchedule(ShipmentSchedule))))))))

naming

structuring

In the FSA step, path expressions are translated into
OWL semantic annotation expressions. OWL allows
encoding of the actual relationships between the
semantic concepts such as equivalence, subsumption,
or overlap. Table 2 shows an example of the
mismatches and the four-step annotation for a portion
of the GM conceptual message-schema.

Findings. Path matching required significant human
effort since ASTAR provided combinations of all
paths through the reference ontology. This led to
overwhelming complexity in the annotation activity.
A semantic-annotation tool should allow the user to
steer the path development rather than present all
possible paths. Nevertheless, by using ASTAR, we
successfully annotated all the conceptual message-
schemas.

ASTAR uses OWL as an internal representation
language for semantic annotation expressions.
However, OWL has shortcomings such as
interpretation-framework dependence, complexity,
limited expressivity, and non-executability9. The
message semantic annotation, however, needs an
interchangeable, executable, expressive, but simple
representation format.

Significantly, ASTAR doesn’t provide for
semantic annotation of the actual (XML/EDI)
message schema components and message elements,
but annotation of conceptual message-schemas.
Hence, the usability of annotations in the
reconciliation that generates message-schema
conformant messages is directly affected. The
important information about the message element
definitions, message structure, and data-
representation cannot be engineered from conceptual
message-schemas. Also, multi-purpose usability of
such annotations for other purposes - such as
semantic querying over XML/EDI messages and
schema components discovery - is impossible.

Future direction: A message semantics annotation
method enabled by the abstract message model. We
propose a method that annotates abstract message
model instances (conformant with an actual message
schema) rather than conceptual message-schemas.
We believe that this method will improve the
reconciliation run-time capabilities and multi-purpose
usability. Additionally, it will support three different
types of annotation re-use (1) reuse for message
components, – annotation of the base elements type
definitions (e.g., the base type PartyType with its
elements) could provide annotation re-use for the
specific XML elements, which are declared for
specific use context, whose type is that already
annotated base type (e.g., SenderParty and
ReceiverParty elements which base type is Party); (2)

reuse across different, but overlapping message
types, and (3) re-use of an entire set of annotations
for a set of messages.

C. Message reconciliation specification

Messages reconciliation defines the forward and
backward executable message-content-transformation
rules. Forward rules describe how to obtain content
of a concept appearing in a reference ontology
instance by transforming the content from one or
more message elements. Backward rules describe
how to obtain content of a message element by
transforming the content from one or more concepts
appearing in the reference ontology instance. There
are several simple transformation patterns including
one-to-one, many-to-one, one-to-many; there are also
more complex patterns including conversion
functions. The significant challenge is to achieve
automated rules generation.

Approach. ARGOS provided for semi-automatic
specification of reconciliation rules based on
semantic annotation expressions. The specification
was performed by selecting an appropriate
transformation pattern for one or more conceptual
message-schema paths leading to the content to be
transformed. The tool then created declarative run-
time rules by substituting the conceptual message-
schema path (or paths) and matching reference
ontology path (or paths) into the template, on the
basis of annotation expressions. ARGOS uses Jena as
an executable rule-representation language
(http://jena.sourceforge.net). Listing 3 shows Jena
rule that specifies one-to-one mapping between the
GM ‘Sender.DUNS’ and reference ontology
‘senderParty.PartyId.identifier‘ concepts.

Listing 3 The one-to-one map Jena rule example
[rule:(?x rdf:type a:gmSyncShipmentSchedule)
 (?x a:gmSyncShipmentSchedule_sender_PROP ?y)
 (?y rdf:type a:gmSyncShipmentSchedule_sender)
 (?y a:gmSyncShipmentSchedule_sender_DUNS_PROP ?z)
 (?z rdf:type a:gmSyncShipmentSchedule_sender_DUNS)
 (?z a:gmSyncShipmentSchedule_sender_DUNS_PROP ?t)
 (?t rdf:type a:gmSyncShipmentSchedule_sender_DUNS)
 (?t a:gmSyncShipmentSchedule_sender_DUNS_sValue ?value)
 ->
 (?x rdf:type refOnt:ShipmentSchedule)
 (?x refOnt:relTo_ShipmentSchedule_message_SyncShipmentSchedule ?y)
 (?y rdf:type refOnt:SyncShipmentSchedule_Message)
 (?y refOnt:relTo_SyncShipmentSchedule_Message_SenderParty ?z)
 (?z rdf:type refOnt:SenderParty)
 (?z refOnt:relTo_SyncShipmentSchedule_Message_SenderParty_PartyId ?t)
 (?t ref:type refOnt:PartyId) (?t refOnt:has_identified ?value)
]

Findings. Although ARGOS is a semi-automatic
tool, all rules were instantiated manually. This,
however, could be automated if annotation
expressions and abstract operators were fully as

mapping directives. In fact, the instantiations of the
one-to-one mappings could have been done
automatically. Since 85% of pilot rules were one-to-
one mappings, this would have reduced the
reconciliation time considerably. Nevertheless, using
ARGOS, we successfully created all required
reconciliation rules.

Future direction: Automated reconciliation
method. We propose a novel reconciliation rules
generator that can fully use the semantic annotation
expressions to derive most reconciliation rules
automatically. Hence, the semantic annotation tool
must capture non-trivial semantic correspondences
including value-to-value map tables, conversion, and
default values. Application experts should be
involved only in the most difficult cases such as
complex conversion functions.

Related work

Several different architectural models for the
semantic-mediation have been discussed10 and
demonstrated.

Anicic11 demonstrated an any-to-any model
where local OWL ontologies are merged and source
ontology individuals classified and transformed into
target ontology individuals by automated reasoners.
Artemis12 demonstrated crosswise mappings among
local OWL ontologies, by using an ontology mapping
tool (http:// sourceforge.net/projects/owlmt).

However, the any-to-any model, which employs
no reference ontology as the mediation point, can
increase the number of crosswise mappings and the
size and complexity of the merged ontology, when
many local ontologies are involved. On the other
hand, an architectural model that employs a reference
ontology as the central mapping point - the any-to-
one mapping model - reduces the number of such
mappings.

Harmonise13 demonstrated any-to-one mapping
model, developed reference Tourism RDFS
Ontology, and used RDF as an interchange format.
Mafra tool (http://sourceforge.net/projects/mafra-
toolkit) was used for mappings between RDFS
models. Similar semantic-mediation architecture for
supply-chain applications introduced general Supply-
Chain Ontology (SCO) and used Semantic Web Rule
Language (SWRL) for mappings between the SCO
and local ontologies14.

Our work leans on the Automated Methods for
Integrating Systems (AMIS) project15, which also
discussed any-to-one mapping model for the
semantic-mediation. We applied AMIS model to
address the lack of formal and machine-

understandable message semantics and inappropriate
hard-coded implementation of mappings between
proprietary and standard interfaces.

Besides the ATHENA tools, other tools could be
used in the proposed architecture: Protege
(http://protege.stanford.edu) for ontology
development; Mafra, OWLmt or Snoggle
(http://snoggle.projects.semwebcentral.org/) for
mappings specification. Tools for message semantics
annotation are missing. The SAWSDL (Semantic
Annotations for Web Service Description Language
and XML Schema)16 is an emerging standard that
defines set of extensional attributes by which
semantic annotations can be added to web-service
description and XML schemas; however, there are no
tools capable to generate mapping rules from
SAWSDL annotations yet. So far only ATHENA
provided a toolset for both design and run-time
activities to enable the proposed semantic-mediation
of XML messages.

The semantic web-services have also become a
key technology for semantic integration of supply
chains17. Our work is, however, concerned with the
semantic integration of supply-chain applications in
traditional web-service environments.

Conclusion

We demonstrated a novel semantic-mediation
architecture supporting interoperable standards-
conformant message exchanges between
heterogeneous applications employing proprietary
message schemas.

The proposed approach moved syntactic,
informal specifications of business intent to formal,
semantic-based specifications. Consequently, several
implementation tasks associated with standards
compliance were moved to a model-based approach.
As a result, implementation became more
straightforward compared to the traditional one.

Although the experimental scenario was small-
scale and involved three participants, it was based on
a real standards-based message exchange - the BOD
developed by the AIAG standards development
organization. The actual BOD presented annotation
and reconciliation requirements that would be found
in large-scale scenarios, too. The pilot showed that
most of the mappings between elements of, either
actual BOD or proprietary-message interfaces, and
the reference ontology concepts were simple one-to-
one mappings (86% of BOD, 92% of GM, and 96%
of Apolon rules, respectively). We believe that this
will be true for most other real-world scenarios.
Nevertheless, in any mapping case, the reconciliation
specification shall not require a large effort on behalf
of the annotation or rules engineer if the supporting

toolset is optimized to realistically handle industrial
B2B messaging solutions (e.g. XML schemas or
EDI).

While the ATHENA toolset supported our XML
semantic-mediation scenario, we showed that current
design-time and run-time semantic-integration tools,
which use Semantic Web technologies, were not
adequate. The chief suboptimal results that we
observed include (1) inadequate representation
method that supports low-level handling of
information for both the message schemas and
messages; (2) limited reuse of annotation artifacts;
and (3) insufficiently automated reconciliation rules
creation.

These findings are the basis for our on-going
work in developing abstract message model, abstract
message model based semantic annotation, and
automated reconciliation support that could largely
eliminate problems in handling realistically complex
integration artifacts.

Disclaimer: Certain commercial and open-source software
products are identified in this paper. These products were used
only for demonstration purposes. This use doesn’t imply approval
or endorsement by NIST, nor does it imply these products are
necessarily the best available for the purpose.

References

1 P. Snack, “Standards-Based Interoperability: The Road Ahead”,
AIAG Actionline, July/August 2007, pp. 21-29

2 J.Heflin, J. Hendler, “Semantic Interoperability on the Web”,
Proc. of Extreme Markup Languages, 2000, pp. 111-120

3 S. Decker, et al., “The Semantic Web: The roles of XML and
RDF”, IEEE Internet Computing, 15(3), 2000, pp. 63-74

4 ATHENA Web Site, Knowledge Support and Semantic
Mediation Solutions - Deliverables D.A3.2-D.A3.5, January 2006,
online at http://www.modelbased.net/aif/

5 F. D’Antonio, et al., “Formalizing the OPAL eBusiness ontology
design patterns with OWL”, Proc. Int’l Conf. IESA, Springer-
Verlag, 2007, pp. 345-357

6 I. Miletic, et al., “Enabling Semantic-Mediation for Business
Applications: XML-RDF, RDF-XML, and XSD-RDFS
Transformation,” Proc. Int’l Conf. IESA, Springer, 2007, pp. 483-
494

7 Automotive Industry Action Group Web Site, online at
http://www.aiag.org/

8 E. Barkmeyer, B. Kulvatunyou, “An Ontology for the e-Kanban
Business Process”, NISTIR 7404, June 2007, online at
http://www.mel.nist.gov/msidlibrary/doc/NISTIR_7404.pdf

9 J. Euzenat and P. Shvaiko, “Ontology Matching”, Springer 2007.
page 223

10 G. Vetere, M. Lenzerini, “Models for semantic interoperability
in service-oriented architectures”, IBM Systems Journal 44(4),
2005, pp. 887-903

11 N. Anicic, et al.,”Semantic Enterprise Application Integration
Standards”, Int’l Journal of Manufacturing and Technology, 10(2-
3), 2007, pp. 205-226

12 V. Bicer, et al., “Artemis Message Exchange Framework:
Semantic Interoperability of Exchanged Messages in the
Healthcare Domain”, SIGMOD Record 34(3), 2005, pp. 71-76

13 M. Dell’Erbaa, et al., “HARMONISE: A Solution for Data
Interoperability”, Proc. of IFIP I3E Conf., 2002, pp. 114-127

14 Y. Ye, et al.,”An ontology-based architecture for implementing
semantic integration of supply-chain management”, Int’l Journal of
Computer Integrated Manufacturing, 21(1), 2007, pp. 1-18

15 D. Libes, et al., “The AMIS Approach to Systems Integration”,
NISTIR 7101, May 2004, online at
www.mel.nist.gov/msidlibrary/doc/nistir7101.pdf

16 J. Kopecký, et al., “SAWSDL: Semantic Annotations for WSDL
and XML Schema”, IEEE Internet Computing, 11(6), 2007, pp.
60-67

17 S.A. McIlraith, et al.,“Semantic Web services“, IEEE Intelligent
Systems, 16(2), 2001, pp. 46-53

