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With photon-number resolving detectors, we show compression of interference fringes with in-
creasing photon numbers for a Fabry-Pérot interferometer. This feature provides a higher precision
in determining the position of the interference maxima compared to a classical detection strategy.
We also theoretically show supersensitivity if N -photon states are sent into the interferometer and
a photon-number resolving measurement is performed.
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I. INTRODUCTION

Interferometers with coherent light are one of the
building blocks for high-precision metrology. Recent
progress in the field of photon-number resolving detec-
tors has made it possible to explicitly measure the pho-
ton statistics of different quantum-light sources in inter-
ferometric schemes [1–3]. One such detector, the tran-
sition edge sensor (TES), is a superconducting micro-
bolometer that has demonstrated very high detection ef-
ficiency (95% at λ = 1550 nm) and high photon number
resolution [4–6].

Expanding the average intensity of an interference pat-
tern into its photon-number resolved components pro-
vides a better understanding of the interplay of sensitiv-
ity and resolution of an interferometer. Using a TES, we
are now able to observe photon-number resolved inter-
ference fringes and learn how they differ from a classical
photon-averaged signal. Although it is also possible to
obtain the photon-number resolved interference fringes
with multiplexed single photon counter modules [7], it is
advantageous to use a photon-number resolving detector
like a TES which provides a high detection efficiency. The
TES offers the advantage of high fidelity detection (high
probability of detecting the correct number of incident
photons). On the other hand, photon-number resolv-
ing configurations that rely on multiplexed single-photon
counters, which although have made exceptional progress
in recent years, still suffer from limited photon-number
resolving fidelity [8, 9].

For stand-off applications, such as a laser ranging de-
vice, it is typical to use coherent states, since they are
more robust under loss than nonclassical states of light.
A known strategy to improve the sensitivity of an inter-
ferometer is to squeeze the vacuum of the unused port of
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an interferometer, which was first demonstrated by Caves
[10]. Another promising strategy for quantum sensors is
to maintain a coherent laser light source, but replace the
classical intensity measurement with a photon-number
resolving detector, or employ other more complicated en-
tangling measurements to improve the performance of
the quantum sensor further [11]. In addition, the per-
formance of different non-classical input states, together
with a photon-number resolving detection scheme, may
be investigated. Under some conditions, the resolution
and, in particular cases, the sensitivity of these quantum
sensors may exceed the performance of ‘classical’ light
sources and detection schemes. We emphasize here and
highlight later that while resolution and sensitivity are
related, they are not identical. For an overview of quan-
tum metrology applications, see Ref. [12].

Many authors have proposed resolution and sensitiv-
ity enhancements in different types of interferometric
schemes, where a large variety of Sagnac, Michelson,
Mach-Zehnder, and Fabry-Pérot interferometers (FPI)
are considered [13–21]. A notable example is the laser in-
terferometer gravitational wave observatory (LIGO) that
consists of a Michelson interferometer with Fabry-Pérot
cavities in each of the two arms to boost the overall sen-
sitivity of the device [22].

We first theoretically investigate the photon-number
resolved interference fringes of a Fabry-Pérot interferom-
eter as we scan its phase. We then experimentally im-
plement this with a TES. Similarly, Khoury et al. have
reported the use of a visible light photon counter to moni-
tor the output of a Mach-Zehnder interferometer [19]. We
compare resolution and sensitivity of the photon-number
resolved interference pattern with the classical case where
a coherent state is sent through a FPI and only the av-
erage intensity is measured. We also theoretically inves-
tigate the performance of resolution and sensitivity for
a single-mode photon-number state |n〉 in combination
with a photon-number resolving detection of the inter-
ference fringes.
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II. QUANTIZED DESCRIPTION OF A
FABRY-PÉROT INTERFEROMETER

We start our investigation by deriving a quantum me-
chanical description for the Fabry-Pérot interferometer.
Loudon first considered a quantum theory of the FPI for
high-resolution length measurements [23]. The two in-
coming and two outgoing modes of the FPI can be quan-
tized as displayed in Fig. 1.

FIG. 1: (Color online) Fabry-Pérot cavity with complex am-
plitudes R and T for reflected and transmitted modes, respec-
tively, and incident intensity I. Each mode can be assigned a
mode operator marked by the hat to quantize the respective
mode, where the subscripts u and d stand for up and down.
We assume, for simplicity, that both mirrors have identical
complex reflection and transmission coefficients denoted with
r and t.

The modes described in Fig. 1 can be transformed by
an effective beam-splitter (BS) transformation, as is dis-
played in Fig. 2. For a FPI with two identical highly

FIG. 2: (Color online) Effective beam-splitter for the Fabry-
Pérot cavity with complex amplitudes R and T for reflected
and transmitted modes, respectively, which satisfy the condi-
tions |T |2 + |R|2 = 1 as well as TR∗ + RT ∗ = 0.

reflecting mirrors, the transmission and reflectance func-
tions T and R are given by [23]

T (r, φ) =
(1− |r|2)e−2i

√
1−|r|2

|r|2e−2i
√

1−|r|2e2iφ − 1
, (1)

R(r, φ) =
|r|e−i

√
1−|r|2(e−iφ − eiφe−2i

√
1−|r|2)

|r|2e−2i
√

1−|r|2e2iφ − 1
, (2)

where r denotes the complex reflectivity of the mirrors,
and φ = kL = 2πL/λ denotes a phase determined by the
wave-number k of the incoming light, and the distance L
between the two mirrors [23].

As a classical baseline, we consider a single-mode co-
herent state given by [24]

|α〉 = e−
|α|2

2

∞∑

k=0

αk

√
k!
|k〉 , (3)

(where |k〉 is a k-photon Fock state and α is the dimen-
sionless electric field amplitude of the coherent state with
the mean photon number n̄ = |α|2), which describes very
well a single-mode laser above threshold. This state is
incident on the FPI in mode â, and vacuum |0〉 goes in
mode â′. The two-mode input state |α〉â|0〉â′ = |α, 0〉ââ′

is then transformed with the BS transformation in Fig. 2,
from which we obtain â† = T â†u + Râ†d, where the sub-
scripts u and d stand for up and down, respectively. Note
that T and R satisfy the conditions |T |2 + |R|2 = 1 as
well as TR∗ + RT ∗ = 0.

We transform the incident coherent state |α, 0〉â,â′ by
the effective BS transformation and obtain the output
of the FPI. An ideal k-photon detection is described by
the projector Ĉ = |k〉〈k|. An approach including detec-
tion efficiencies is presented in Ref. [25]. Applying this
on mode âu, we obtain the photon-number resolved in-
terference fringes, which leads to the expression for the
probability of detecting k photons

pcoh
k = Tr

(
Ĉρ̂coh

)

= e−n̄
∞∑

j=k

n̄j

k!(j − k)!
|T |2k(1− |T |2)j−k, (4)

where ρ̂coh is the reduced density matrix for the coherent
state in mode âu. This result is displayed in Fig. 3(b) for
a mean photon number of four (n̄ = 4) and k = 1, .., 4
detected photons, which shows pcoh

k as a function of L/λ
(or φ/2π).

The structure of the transmission functions may be
understood from interpreting the terms in Eq. (4). Each
term in the sum represents the probability that k photons
are transmitted through the FPI, multiplied by the prob-
ability that j − k photons are reflected off the FPI. The
transmission probabilities |T |2k have a maximum where
the reflection probability (1− |T |2)j−k has its minimum.
The multiplication of both probabilities results in the
additional minimum in the transmission probabilities for
k < n̄.

We can also calculate the response of a non-photon-
number resolving detector by calculating the expectation
value

pcoh = 〈â†uâu〉coh =
∞∑

k=1

k pcoh
k = n̄|T |2 , (5)

which is proportional to the mean number of photons
incident on the detector. We refer to this result as the
‘classical’ signal that is usually associated with the out-
put of a FPI.
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FIG. 3: (a) shows the classical transmission function |T |2
displayed for a reflectivity of |r|2 = 70% (LHS) and |r|2 =
90% (RHS) of the FPI-mirrors. Note that the transmission
peaks become narrower and the maxima slightly shifted to
the left as the reflectivity increases. Also the minima go to
zero for 90% reflectivity whereas they do not reach zero for
lower reflectivities. (b) shows the probabilities of detecting
k photons, pcoh

k for a single-mode coherent input state |α〉
with mean photon number n̄ = |α|2 = 4 incident on the FPI
and a photon-number resolving measurement displaying k =
1, .., 4 (solid lines). The reflectivity |r|2 of the mirrors is 70%.
The dashed lines shows the transmission probabilities pF

k for
a single-mode photon-number state |4〉. We observe that the
Fock states (dashed lines) show transmission peaks that are
sharper in general. This effect is equivalent to operating at
a larger reflectivity of the mirrors, which is demonstrated in
(a) for the classical curves. A major difference appears for
k = 4 where the transmission maxima reach one for the Fock
state, whereas the coherent state stays low. Here and in the
following, we choose a reflectivity of 70% as the important
features are more pronounced than for larger reflectivities.

For a nonclassical input we consider a single-mode Fock
state |n〉 in mode â incident on the FPI, and the vacuum
state |0〉 in mode â′. The input state |n〉â|0〉â′ = |n, 0〉â,â′

is then transformed to

|n, 0〉â,â′ =
(â†)n

√
n!
|0, 0〉â,â′ → (T â†u + Râ†d)

n

√
n!

|0, 0〉âu,âd

=
1√
n!

n∑

`=0

(
n

`

)
T `Rn−`

√
`!(n− `)!|`, n− `〉âu,âd

.

(6)

Suppose we also perform a photon-number resolving mea-
surement on the transmitted photons. The result of this
measurement is given by

pF
k = Tr

(
Ĉρ̂F

)
=

n!
k!(n− k)!

|T |2k(1− |T |2)n−k , (7)

where ρ̂F is the reduced density matrix for the Fock state
in mode âu and the superscript F denotes Fock state.
Note that the right hand side of Eq. (7) is a binomial
distribution with the property

∑n
k=0 pF

k = 1. The detec-
tion probabilities pF

k in Eq. (7) are displayed in Fig. 3(b)
(dashed lines) as a function of L/λ for a four-photon
state and a photon-number detection for k = 1, . . . , 4.
The mean photon counts at the output of the FPI are
obtained from the expectation value

〈â†uâu〉F =
n∑

k=1

k pF
k = n|T |2 . (8)

The result of Eq. (8) is the same as in the classical case
(Eq. (5)) above, when we identify n̄ = n. However, the
photon-number resolving measurements in Eq. (7) show
a different behavior. In particular, we consider the case
k = n, i.e., we measure the same photon number in our
detector as that of the initial input state. In this case
Eq. (7) reduces to

pF
n = |T |2n . (9)

It turns out that the transmission peaks become nar-
rower as the photon number n increases (Fig. 4). We
also observe a similar interference pattern for the photon-
number resolved peaks for k < n for the same reason as
described earlier for coherent states. As in the coherent
case, for k < n the transmission probability |T |2k for k
photons is multiplied by the probability (1 − |T |2)n−k

which is the probability that the other n−k photons are
reflected. The multiplication of these two probabilities,
which have opposite functional forms, produces the dip
in the middle of the maximum.

III. RESOLUTION AND SENSITIVITY FOR
COHERENT STATES

To quantify our results for different states and detec-
tion operators, we first calculate the uncertainty in de-
termining the free spectral range (FSR) given by ∆L/λ,



4

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

pF
n

←−
∆L

λ
−→

n = 1

n = 2

n = 3

for k = n

L/λ

FIG. 4: (Color online) Transmission probabilities for a single-
mode photon-number state and a photon-number resolving
measurement, for photon numbers n = 1, 2, 3. The free spec-
tral range ∆L/λ is the distance between two adjacent max-
ima. Transmission probabilities are calculated for 70% reflec-
tivity of the mirrors.

which is the dimensionless distance between two adja-
cent interference peaks (Fig. 4). From the experimental
data we can determine the variance of the transmission
peaks. The uncertainty of the absolute positions, or in
other words, the standard deviation of the mean (SDM)
value of the individual peaks one and two are given by
σL1 = σ1/

√
n1, and σL2 = σ2/

√
n2, where n1 and n2 are

the total number of counts in peak one and two. For an
explicit definition of the SDM σLi see section V, which
contains our experimental results. The uncertainty in
determining the FSR is then given by

σ∆L =

√
σ2

1

n1
+

σ2
2

n2
≈
√

2
σ√
n

, (10)

where the approximation holds, if the two peaks have ap-
proximately the same variance and number of counts. A
smaller variance σ for the transmission peaks provides an
improvement in resolution, but increasing the number of
counts can provide a similar improvement. If the variance
shrinks by a factor of m, i.e., σ → σ/m, the uncertainty
of the peak center in Eq. (10) becomes

√
2σ/(m2n)1/2.

This means that we need a factor of m2 fewer counts to
obtain the original variance σ. In section V we show ex-
perimentally that we can determine the position of the
peaks from the photon-number resolved data obtained
with coherent states with up to three times higher preci-
sion, for the same optical power compared to the classical
signal.

On the other hand, we can compute the uncertainty
δL of a length measurement, which we also refer to as
sensitivity, from the expression

δL =
∆Ĉ∣∣∣∂〈Ĉ〉/∂L

∣∣∣
, (11)

where 〈Ĉ〉 is the mean value of the detection operator

and ∆Ĉ = (〈Ĉ2〉 − 〈Ĉ〉2)1/2 is the standard deviation of
the observable Ĉ [26].

Next we compute the sensitivity δLcoh
n̄ for a coherent

state with average photon number n̄ as a classical base-
line, and compare it with the photon-number resolved
transmission probabilities (Fig. 5). For a coherent state
input and a mean intensity measurement, Eq. (11) re-
duces to

δLcoh
n̄ =

1√
n̄

|T |
|∂|T |2/∂L| . (12)

This expression defines the shot-noise limit evidenced by
the 1/

√
n̄ dependence. Improving the sensitivity beyond

this is referred to as supersensitivity. For the photon-
number resolved sensitivity δLcoh

k , Eq. (11) reduces to

δLcoh
k =

√
pcoh

k (1− pcoh
k )

|∂pcoh
k /∂L| . (13)

We observe that the uncertainty of a length measure-
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δLcoh

k
λ

L/λ

n̄ = 4
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FIG. 5: (Color online) Dimensionless uncertainty δLcoh
k /λ

(where L is the length change of the FPI and λ is the wave-
length of the coherent laser beam) for a mean intensity mea-
surement with n̄ = 4 compared to photon number resolving
measurements k = 1 and k = 4. The solid line also repre-
sents the shot-noise limit. The reflectivity |r|2 of the mirrors
is 70%.

ment δLcoh/λ for the photon-number resolved measure-
ment is always larger than for the average photon-number
measurement. In other words the photon-number re-
solved interference fringes do not increase the sensitiv-
ity of the interferometer. However, we show in the next
section that increased sensitivity can be achieved by re-
placing the input coherent state with a photon-number
state.

IV. SENSITIVITY FOR N-PHOTON STATES

We propose an experiment with an N -photon state |N〉
incident on the FPI as displayed in Fig. 6. From the
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FIG. 6: (Color online) Transmission experiment with an N -
photon state incident on a Fabry-Pérot interferometer and
photon-number resolving detection of the output.

Fig. 3(b) (dashed line for k = 4 ), and Fig. 4 we con-
clude that in addition to obtaining narrower transmis-
sion functions as the photon-number increases (increased
resolution), the amplitude at the maximum remains one.
That is an indication that we have an additional bene-
fit from using N -photon states as opposed to a coherent
state input. We not only increase the resolution, we also
obtain a higher sensitivity. To quantify this statement
we calculate the sensitivity as defined by Eq. (11). The
sensitivity is given by

δLF
k =

√
pF

k (1− pF
k )

|∂pF
k/∂L| , (14)

where pF
k is taken from the expression in Eq. (7), which

simplifies for a |k〉 Fock state input and a k-photon de-
tection to

δLF
k =

|T |k
√

1− |T |2k

|∂|T |2k/∂L| . (15)

We display the sensitivity as a function of phase (here
scaled length L/λ) in Fig. 7, analogous to the coherent
state case in Fig. 5. We observe that the shot-noise limit
given by the black solid line is beaten by the k = 4 curve.
This means that we can achieve supersensitivity (beating
the shot-noise limit) with a photon-number state input
|n〉 and a n photon detection.

We can also investigate how the minimum phase un-
certainty behaves as a function of the photon number
n for the photon-number state input or mean photon
number n̄ for coherent states, respectively. We see that
(Fig. 8), as opposed to coherent states, a length mea-
surement with photon-number states provides us with a
much smaller uncertainty δL in the few photon limit.
Hence, the sensitivity of the FPI is increased. An al-
ternative way to describe the result can be formulated
in terms of the finesse F = FSR/FWHM of the FPI,
where FWHM stands for full width at half maximum.
The finesse F of the FPI, which for R > 0.5 can be ap-
proximated by F = πR1/2/(1−R) for classical detection,
is essentially improved by using photon-number resolving
detection without changing the reflectivity of the mirrors,
since the FSR remains the same but the FWHM becomes
narrower with increasing photon number.

Finally, we provide an intuitive interpretation of our
results. The probability that a single photon traverses

δLF
k

λ

δLF
k

λ

L/λ

L/λ

n̄ = 4

k = 1

k = 4

FIG. 7: (Color online) Dimensionless uncertainty δLF
k /λ

(where L is the length change of the FPI and λ is the wave-
length of the light) for a mean intensity measurement with
n̄ = 4 compared to photon number resolving measurements
k = 1 and k = 4. The solid line also represents the shot-
noise limit. The reflectivity |r|2 of the mirrors is 70%. The
shot-noise limit (solid line) is beaten by the k = 4 curve.

through a single beam-splitter, described by the com-
plex transmittivity t, and reflectivity r, is just |t|2. If we
ask for the probability that n photons in a Fock state
traverse through the BS, we obtain |t|2n (compare with
Eq. (7)). In our quantum mechanical model for the FPI,
we use an effective BS transformation where the matrix
elements of the unitary BS transformation are given by
the complex functions T and R defined in Eqs. (1) and
(2). We observe then the same functional behavior as for
the regular BS and Fock states. The transmission func-
tion for the FPI, given the n photons in a Fock state that
have traversed the FPI, is |T |2n, as given by Eq. (7). As
|T | becomes smaller than one, the probability of trans-
mitting n photons given by |T |2n decreases more rapidly
than that for single photons (n = 1) or a coherent state,
which manifests as narrower transmission curves. This
feature may find applications in interferometry for high-
precision length measurements as in LIGO for instance.
The quantum light source may provide a high sensitivity
at a much reduced optical power. The FPI can also be
nested in a Michelson or Mach-Zehnder interferometer,
as has been implemented at LIGO, to boost the sensitiv-
ity and achieve an even higher resolving power.
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FIG. 8: (Color online) Comparison of the sensitivity δL/λ
(Eq. (12)) for a coherent state (solid line) and mean intensity
detection (shot-noise limit) as a function of mean number of
detected photons versus a n-photon state |n〉 with n-photon
resolving measurement (Eq. (15)) as a function of the pho-
ton number, where we take n = n̄, slightly away from the
transmission maximum. The reflectivity |r|2 of the mirrors
is 70%. The parameter of the phase is chosen for each n, n̄,
respectively, so that the sensitivity is at its minimum.

V. EXPERIMENTAL RESULTS FOR
COHERENT STATES

We performed an experiment with an attenuated co-
herent pulsed laser diode at a fixed wavelength λ =
1550 nm, a repetition rate of 50 kHz, and a pulse dura-
tion of 50 ps (Fig. 9). Our photon-number resolving TES
detected on average four photons per pulse [5]. We used a

FIG. 9: (Color online) Transmission experiment with a weak
coherent laser beam incident on a length tunable FPI and a
fiber coupled TES. The light is collected and coupled into a
single-mode fiber and transmitted to the detector.

scanning Fabry-Pérot interferometer that had originally
been designed as a tunable filter with a FSR of 70 nm and
a FWHM of 0.15 nm to be used in locked mode. However,
its feedback (locking) circuit locks only to the maximum
of the transmission curve. Since we wanted to measure
the entire transmission function, we had to use the FPI
in the unlocked mode. The stability of the unlocked FPI
was initially poor due to ambient temperature fluctua-
tions. To circumvent this, we employed a thermo-electric
cooler to stabilize the temperature within 0.1 ◦C. For the
measurement, we attenuated the laser diode output, sent
it through the FPI and then to the fiber-coupled TES. We
adjusted the distance between the mirrors of the FPI by
tuning the voltage of the piezo-electric transducer inside
the FPI.

Photon absorption in the TES creates a voltage pulse

whose integral is proportional to the energy absorbed.
Thus, by simply integrating the output pulses from the
TES, we can resolve straightforwardly the number of pho-
tons absorbed in a given time window. In our setup, we
amplify the TES signal and record it using a digital os-
cilloscope. We then integrate each pulse and create a
histogram of these pulse integrals to observe the photon-
number resolved detection as shown in Fig. 10. We repeat

FIG. 10: Sample histogram of the output pulse integrals of
the photon-number resolving TES used in our experiment.
The histogram indicates the probabilities of detecting each
photon number, as well as the probability no photons were
detected (labeled “0”). The vertical lines show the thresholds
between the individual photon-number peaks.

this procedure to obtain a histogram at each value of the
piezo voltage and generate the curves shown in Fig. 11 for
1 ≤ k ≤ 7. The preliminary data support the theoretical
predictions, as can be seen in Fig. 11.

Unfortunately, although the stability of the FPI out-
put was improved with temperature control, substantial
drift occurred during the data acquisition time of more
than 30 minutes, resulting in smearing of the data. Also,
the apparent classical signal from the photon-number re-
solved data is systematically underestimated. For weak
laser pulses with a mean photon number of four, we would
need to include photon-number resolved data of up to
k = 10 to cover 99% of the signal. Our measurements
only cover 1 ≤ k ≤ 7, before the signal disappears into
the noise, which results in the reconstructed classical sig-
nal being 15% lower than expected.

Note that from the theoretical curves shown in
Fig. 3(b), one can see that there is always a dip in the
middle of the maximum whenever k < n̄. The dip be-
comes less pronounced as k approaches n̄, and disappears
for k ≥ n̄. This feature can be utilized as a diagnostic
tool to bound n̄, without doing any detailed fitting. For
example, from the data in Fig. 11, we can easily identify
3 < n̄ < 4, just from the “dip characteristics” described
above. We can therefore confidently justify the rejection
of the reconstructed number n̄′ = 2.6 from Fig. 11 (bot-
tom right), which corroborates the arguments given in
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FIG. 11: (Color online) Transmission probabilities for a
single-mode coherent state and a photon-number resolving
measurement, for photon numbers k = 1, .., 7. The blue
solid lines show the individual theoretical fits. The peaks
become narrower as k increases. The fit yields the mean
photon number n̄ ≈ 3.9 and the reflectivity of the mirrors
≈ 91%. The graph at the bottom right is the reconstructed
classical signal from the photon-number resolved curves with
pcoh =

P7
k=1 k pcoh

k . The black solid line is the theoretical
fit. From the fit the mean photon-number is determined as
n̄′ = 2.6, which is not in good agreement with the mean
photon-number obtained from the photon-number resolved
curves of n̄ ≈ 3.9 and reflects insufficient stability of the used
FPI. We also only have access to photon-number counts in
the range 1 ≤ k ≤ 7 which amounts to reconstructing the
classical signal with an amplitude 15% too low.

the caption of Fig. 11 and the above text.
The photon-number resolved output of the FPI

(Fig. 11) shows narrower peaks with increasing photon
number. To quantify any improvement in resolution we
compare the standard deviations of the photon-number
resolved peaks σk to the standard deviation σcl obtained
from the classical transmission peak (Table I).

The SDM is defined by σ2 =
∑

i pi(φi−µ)2, where the
mean µ obtained from µ =

∑
i piφi, pi is the normalized

probability defined by pi = fi/N , fi is the number of
counts for a particular phase φi = 2πLi/λ, and N is
the total number of counts for the kth transmission peak
σk or the classical signal σcl. For the photon-number
resolved peaks we observe that the SDM gets smaller

TABLE I: Resolution improvements. Theoretical and exper-
imental results for the photon-number resolved SDM σexp

k

compared to the SDM σexp
cl = 0.103 nm of the classical sig-

nal. The theoretical results are calculated for a mean photon
number n̄ = 3.9 and 91% mirror reflectivity (fit-parameters
determined from the experimental data). The expected clas-
sical SDM is σtheo

cl = 0.0995 nm. All standard deviations are
given in nm.

k 1 2 3 4 5 6 7

σtheo
k 0.176 0.116 0.074 0.052 0.039 0.032 0.028

σtheo
cl /σtheo

k 0.6 0.9 1.3 1.9 2.5 3.1 3.6

σexp
k 0.161 0.094 0.062 0.064 0.075 0.045 0.036

σexp
cl /σexp

k 0.6 1.1 1.7 1.6 1.4 2.3 2.9

σ

k

σcl/σk

FIG. 12: (Color online) Figure of the standard deviations as
a function of k presented in Table I.

for larger photon numbers. This feature allows us to
determine the center of the peak positions with higher
accuracy than classically possible, if we are using the
photon-number resolved peaks for k ≥ 3.

VI. SUMMARY

We have highlighted the difference between resolution
and sensitivity in interferometry measurements with clas-
sical and nonlcalssical sources and detectors. In partic-
ular we have shown that the resolution of a Fabry-Pérot
interferometer with weak coherent states and photon-
number resolving detection is improved up to three times
compared to a classical detection strategy. Here resolu-
tion relates to how well two peaks can be seen as distinct
as opposed to the sensitivity in finding the center of one
lone peak. The improvement in resolution is not to be
confused with the sensitivity shown in Fig. 5, which ac-
tually cannot be improved for the coherent state input
and a photon-number resolving measurement. We also
show that by replacing the classical input state with a
photon-number state |n〉 incident on the FPI and per-
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forming a photon-number resolved measurement, we ob-
tain supersensitivity (beat the shot-noise limit, Fig. 8). A
demonstration experiment to show this effect with pho-
ton pairs from a spontaneous parametric down conver-
sion source or an optical parametric oscillator incident
on a FPI should be well within reach. An interesting
line of research would be to investigate generalized quan-
tum metrology schemes other than the schemes above
with coherent states and detection strategies based on
photon-number resolving detectors.
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