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Abstract

Several recently-developed particle-tracking and imaging methods achieve three-dimensional sen-

sitivity through the introduction of angled micromirrors into the observation volume of an optical

microscope. Here, we model the imaging response of such devices, and show how the direct and

reflected images of a fluorescent particle are affected. In particle-tracking applications, asymmetric

image degradation manifests itself as systematic tracking errors. Based on our results, we identify

strategies for reducing systematic errors to the 10 nm level in practical applications.

PACS numbers:
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Optical microscopy and single-particle tracking provide experimental access to nanoscale

dynamics in diverse areas, including colloid physics [1], intracellular transport [2], and molec-

ular biophysics [3]. The most widely used version of the technique consists of two-dimensional

tracking based on offline analysis of digital images [4]. However, the extension of these meth-

ods to localizing and tracking particles in three dimensions is not straightforward, and a

significant body of research has been devoted to this problem using various techniques such

as astigmatic imaging [5], off-focus imaging [6], holographic microscopy [7], and point-spread

function engineering [8]. Recently, a new approach to three-dimensional particle tracking

has been developed by several groups [9–13], in which angled mirrors [14] are placed in

the object space of a microscope, providing the usual direct image and a complementary

reflected image in a plane (nearly) perpendicular to the focal plane. This approach gives

3D information by providing, for example, simultaneous xy and xz views of the region of

interest.

With this new approach, we recently demonstrated three-dimensional tracking of 190 nm

fluorescent particles with better than 20 nm repeatability at camera frame rates in excess of

300 Hz, using pyramidal micromirror wells (PMWs) [11]. In that study, we also exploited

the redundant information provided by multiple reflected images to evaluate the overall ac-

curacy of the measurement. We found that position-dependent systematic tracking errors

contributed an uncertainty of approximately 20 % of a trajectory’s extent, suggesting abso-

lute errors of several hundred nanometers over few-micron trajectories. While micromirror-

based methods are promising for 3D, nanometer-scale metrology, errors of this magnitude

threaten their utility.

In this Letter, we investigate the origin of these systematic errors in micromirror-based

three-dimensional particle tracking. We calculate the image of a particle reflected from an

angled micromirror, accounting for optical aberrations and the fact that the mirror creates

an asymmetric entrance pupil that removes the space-invariance of the system’s optical

response. We find that systematic errors are predominantly due to angular truncation

within the imaging system, where the degree of truncation depending on the particle’s

position, the micromirror geometry, and the details of the optical system. These factors

contribute to position-dependent image distortions and a corresponding deviation between

a particle’s true position and the apparent position of its reflection, likely an example of

the fundamental tradeoff between axial resolution and lateral shift invariance [15]. Our
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calculations suggest a mitigating strategy: by using lower numerical aperture (NA) imaging

conditions, fabricating PMWs with wider opening angles, or imaging particles that are deep

within a PMW, deleterious effects are suppressed and systematic tracking errors can be

reduced to the 10 nm level.

In order to analyze tracking errors, we must calculate the reflected image of a particle

near an angled reflective surface. Two components contribute to the overall reflected image:

the geometric occlusion of certain rays by the angled micromirror, and the native diffractive

aberrations of the imaging system. For the geometric component, we evaluate the effect of

the mirror geometry on the imaging system. For the diffractive component, we use the scalar

method of Gibson and Lanni [16] to model the aberrations resulting from the microscope

optics, sample medium, and cover glass. Closely related geometric effects have been studied

in Ref. [17], though reflected images and aberrations were not considered.

The geometry of our calculation is shown in Fig. 1. The particle position is p and the

mirror surface has unit normal vector n̂ and passes through some point v. In a well-corrected

imaging system, each Cartesian point (ξ, η) in the back focal plane (BFP) corresponds to

a propagation direction û within the sample. It is convenient to use normalized cylindrical

coordinates (ρ, φ) in the BFP, with ξ = ρR cos φ and η = ρR sin φ. R is the radius of an

extremal ray, which for a system with back focal length f and magnification M satisfies

R = NAf/M , so that the field amplitude is nonzero only in the BFP region ρ ≤ 1. The

correspondence between (ρ, φ) and û can be deduced from the Abbe sine condition [16]:

û(ρ, φ) = (sin θs cos φ, sin θs sin φ, cos θs) with sin θs = ρNA/ns and ns the refractive index

of the specimen. The geometry of the mirror then determines whether any reflected ray

propagates from the particle position p into the optical system along û and hence reaches

(ρ, φ) in the BFP. For a mirror of infinite extent, direct and reflected rays reach (ρ, φ) in

the BFP whenever û(ρ, φ) · n̂ > 0. For a mirror with finite extent, however, we must

formulate additional criteria to determine whether a particular ray reaches the BFP. Let

εp = (p− v) · n̂ be the (assumed positive) distance of the particle from the mirror surface.

The reflected virtual image of the particle appears to originate from the position pr given by

the law of reflection, pr = p− 2εpn̂. One then finds that a ray leaving p and reflecting off

an infinite mirror at the point tr = pr + εpû/(û · n̂) propagates along the direction û(ρ, φ)

and consequently reaches (ρ, φ) in the BFP. Therefore, we must only determine whether the

reflection point tr, which is itself a function of (ρ, φ) through û, lies within the extent of the
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finite mirror. Specializing to a simple geometry where the mirror surface extends from z1

to z2, we find that a reflected ray reaches (ρ, φ) in the BFP whenever ρ ≤ 1, û · n̂ > 0, and

z1 < tr · ẑ < z2.

We model diffractive effects, following Ref. [16], by calculating the optical path difference

between an aberrated and unaberrated ray originating from pr and reaching (ρ, φ) in the

BFP. This optical path difference Wpr(ρ) is independent of the mirror geometry, and is a

function only of ρ and the reflected position pr, along with the parameters of the optical

system such as the refractive indices and thicknesses of the sample, cover glass, and immer-

sion medium. Combining diffractive and geometric effects, we now find the reflected image

Ir(x, y) by Fourier transforming the amplitude in the BFP [18]:

Ir(x, y) =
∣∣∣∣∣
∫∫

Sr

dξdη Are
ikWpr (ρ)−i k

f
[(x−Mpr·x̂)ξ+(y−Mpr·ŷ)η]

∣∣∣∣∣

2

where Sr is the set of points satisfying ρ ≤ 1, û·n̂ > 0, and z1 < tr ·ẑ < z2. Ar is an amplitude

factor, which we take to be constant. An angle-dependent reflectivity or apodization factor

could be included in Ar, but we leave these considerations to a more refined vector calculation

that also includes polarization effects [19, 20]. The direct image can also be distorted by the

presence of the mirror, though we have found this to be a negligble effect. Similar reasoning

to that described above shows that the direct is found from the same equation, by replacing

Wpr(ρ) with Wp(ρ) and integrating over the region Sd, the set of points satisfying ρ ≤ 1,

but not (û · n̂ < 0 and z1 < t · ẑ < z2), where t = p− εpû/(û · n̂).

In Fig. 2, we show measured and calculated images showing four reflections of a particle

in a pyramidal micromirror well. The figure shows good qualitative correspondence between

the observed (a) and calculated (c) distorted images. To quantitatively evaluate the 3D

tracking error resulting from image distortion, we calculated the center-of-mass deviation

between distorted and undistorted images of a particle near a single micromirror, with

normal vector in the xz plane. Results are shown in Fig. 3, which reveals the shape of the

“usable” particle tracking region for various mirror depths, numerical apertures, and mirror

angles θ. Although the exact values of the systematic error will generally depend on all

parameters of the system, we can nevertheless draw a number of general conclusions. First,

the tracking error is smaller for particles deeper inside a PMW, i.e. farther from the top
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edge. Second, decreasing the mirror angle θ or increasing the numerical aperture gives more

severe tracking errors. Several scenarios with significant regions of 3D tracking error below

10 nm are predicted in Fig. 3.

In summary, we have calculated images and systematic tracking errors for a particle near

an angled, reflective surface in an optical microscope. For three-dimensional particle tracking

applications, we predict that systematic errors can be reduced by imaging deep within a

micromirror well, reducing the numerical aperture, and increasing the mirror angle. The

method presented here should facilitate calculation of the direct-plus-reflected point spread

function necessary as a deconvolution kernel for three-dimensional imaging applications [21].
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FIG. 1: Geometry of the model. The ray along direction û reflects off the micromirror at tr and

eventually reaches the BFP. No ray leaving along û′ reaches the BFP because the reflection point

t′r lies outside the finite extent of the mirror (t′r · ẑ > z1).
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FIG. 2: Observed and calculated images of a particle in a PMW. (a) Measured image of a 190 nm

diameter fluorescent microparticle in a PMW (θ = 35 ◦, imaged with NA 0.95/40X air objective),

showing the direct and four reflected images. (b) xz cross-section section of the geometry used

for calculations (c-d). The collected light cone is asymmetrically truncated by the mirror on the

left and by the NA on the right. The particle and mirror positions are estimated from analysis

of (a), while unknown experimental parameters such as the position of the focal plane (dashed

line) are chosen by hand. (c) Calculated images as described in the text, modified to account for

truncation by the four triangular PMW faces. (d) “Perfect” images, which would arise if microscope

aberrations were present but there was no truncation of rays by the mirror. Other parameters:

specimen index ns = 1.47 (a 4:1 glycerine-water mixture), coverglass (ng = 1.5), 2π/k = 550 nm.

To represent a spherical aberration correction collar on the objective, the calculations use an index-

matched immersion medium ni = 1.5. The contrast is enhanced equally in (a), (c), and (d) to aid

in viewing the weaker reflections. Scale bar: 5 µm.
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FIG. 3: Contour plots showing the regions where absolute tracking errors are below 10 nm (lighter

region, yellow online) and below 250 nm (darker region, red online) for various scenarios. For each

plot, the NA, mirror angle θ, and mirror depth z1−z2 are shown at the top. The reflected image of

a particle is calculated at each position, and the center of mass of the brightest 95% of the reflection

is determined; the 3D position is reconstructed using this value as the reflected position, and the

resulting tracking error is recorded. Scale bar: 5 µm. The insets show the calculated reflection

at the point indicated by the arrow (scale bar 1 µm). Other parameters: ns = 1.33, ng = 1.5,

ni = 1.5, 2π/k = 550 nm.
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