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Abstract

Recently the hp version of the finite element method, in which adap-
tivity occurs in both the size, h, of the elements and in the order, p, of the
approximating piecewise polynomials, has received increasing attention.
It is desirable to combine this optimal order discretization method with an
optimal order algebraic solution method, such as multigrid. An intriguing
notion is to use the values of p as the levels of a multilevel method. In
this paper we present such a method, known as hp-multigrid, for high
order finite elements and hp-adaptive grids. We present a survey of the
development of p-multigrid and hp-multigrid, define an hp-multigrid algo-
rithm based on the p-hierarchical basis for the p levels and h-hierarchical
basis for an A-multigrid solution of the p = 1 “coarse grid” equations,
and present numerical convergence results using hp-adaptive grids. The
numerical results suggest the method has a convergence rate of 1/2 for
Poisson’s equation.

Keywords: elliptic partial differential equations, finite elements, hp adap-
tive refinement, multigrid, p-multigrid

1 Introduction

The numerical solution of partial differential equations (PDEs), is the most
compute-intensive part of a wide range of scientific and engineering applications.
So the development and application of faster and more accurate methods for
solving PDEs is a very important field that has received much attention in the
past fifty years. For simplicity, we consider the elliptic PDE
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where (2 is a bounded, connected, open region in R?, f € L?(Q), and A is a
piecewise constant positive definite symmetric matrix, although the algorithm
described here can be applied to more general second order elliptic PDEs and
boundary conditions. Determining the best grid and approximation space on
which to efficiently compute the solution with the finite element method (FEM)
is a central concern in this regard. Unfortunately, it is rarely possible to de-
termine an optimal algorithm in advance. Thus, developing self-adaptive tech-
niques which lead to optimal resource allocations is critical for future progress
in many fields.

Self-adaptive methods have been studied for nearly 30 years now. Most
of the work has focused on h-adaptive methods. But recently the research
community has begun to focus more attention on hp-adaptive methods. In
these methods, one not only locally adapts the size of the mesh, h, but also
the degree of the polynomials, p. The attraction of hp-adaptivity is that, for
problems with piecewise analytic data and with a properly chosen grid, the
H' norm of the error approaches zero at an exponential rate in the number of
degrees of freedom [17], as opposed to a polynomial rate for h-adaptivity with

fixed p. In two dimensions the error behaves as ||e|| = O(e‘cw), where N is
the number of degrees of freedom, i.e. the dimension of the linear system that
results from discretization, and c is a constant independent of N. Much of the
theoretical work showing the advantages of hp methods was done in the 1980’s
by Babuska and coworkers (see [4] for an overview) but it wasn’t until the 1990’s
that practical implementation began to be studied (see [39] for a survey).

A critical piece of an optimal-time hp-adaptive algorithm is an optimal O(N)
method for solving the linear system of equations. For the traditional h finite
element method, such methods are obtained by using a multigrid method [8, 20]
or by the preconditioned conjugate gradient method where the preconditioner
is a Schwarz-based domain decomposition consisting of local block solves and
a coarse grid solve [13]. Several researchers have examined the use of these
Schwarz-based methods for high order finite element methods. The direct ap-
plication of algebraic multigrid methods has also been considered. References
[26] and [30] contain extensive bibliographies on these approaches. In this pa-
per, we examine the use of a different type of multilevel method in which the
order of the polynomials are used as the multi“grids”.

Following [43], we refer to this as the hp-multigrid method. The hp in the
name refers to the combination of p-multigrid (using lower order for “coarse
grids”) with h-multigrid (using larger elements for coarse grids) on the p = 1
level. On the surface, the method in this paper seems similar to the one in
[43]. However, the method in [43] is developed for the discontinuous Galerkin
method for conservation laws with non-adaptive unstructured meshes using an
agglomeration h-multigrid method on the p = 1 level, while in this paper we
develop the method for the continuous Ap-adaptive finite element method for
second order elliptic PDEs using an h-hierarchical multigrid method on the
p =1 level.

The remainder of the paper is organized as follows. In Section 2 we give



a history of the hp-multigrid method. Section 3 gives the definition of h-
hierarchical and p-hierarchical basis functions. In Section 4 we define an hp-
multigrid method. Computational complexity is considered in Section 5. Sec-
tion 6 presents numerical results to examine the rate of convergence of the
hp-multigrid method with 2D elliptic PDEs in both uniform and hp-adaptive
grid settings. To the author’s knowledge, this is the first presentation of nu-
merically determined convergence rates for hp-multigrid using hp-adaptive grids
with continuous finite elements.

2 History

The early development of hp-multigrid occurred in two contexts: the p-version
of the finite element method, and the spectral element method.

The use of p to define the levels of a multilevel method was first suggested by
Craig and Zienkiewicz [10] in 1985 for the p-version of the finite element method,
where it was simply referred to as “multigrid based on the hierarchical basis”.
The presentation was abstract enough to define a multigrid method using either
the h-hierarchical basis for the h-version of the finite element method, or the
p-hierarchical basis for the p-version of the finite element method. They did
not combine the two, but rather used an exact solver on the coarsest grid. The
sequence of p’s for the p-version is implied to be p, p — 1, p —2, ..., 2, 1, 2,
..., p — 1, p, which we will refer to as a V-cycle with an arithmetic p sequence.
The presentation was in the context of 2D rectangular elements and elasticity
equations.

Bussino et al. [9, 16] followed up with a parallel implementation of a “multi-
level method for p-version FEM”. They replaced the exact solver at p = 1 with a
conjugate gradient solver, and presented numerical experiments to demonstrate
the convergence rate and the speed up obtained on a parallel computer using a
2D Poisson equation.

Babuska et al. [2] also examined what they called a “multi-p iterative pro-
cedure” (as opposed to multi-grid) for p-version FEM. Their work was with
Laplace’s equation in 2D using rectangular elements, and used Successive Over-
relaxation (SOR) for the relaxation part of the multi-p algorithm. They pre-
sented computationally-determined convergence rates for several different types
of cycles. In addition to the full arithmetic p sequence, they considered using
just even p, using just odd p, and the sequence p, p/2, p/4, ..., 2, 1, 2, 4, ...,
p/2, p (which we will refer to as a V-cycle with a geometric p sequence). They
also considered V-cycles, downward cycles, and upward cycles.

Field and Pressburger [15] presented what they called an “h-p-multigrid”
method for “hp-FEM” for 3D structural analysis using tetrahedral elements.
However, they only used quadratic elements and the solution method was an
iteration between the quadratic and linear elements with SOR relaxation, so it
is not truly an hp-adaptive FEM as we know it, and it is at best a two-level
p-multigrid method.

In 1995, Hu and Katz [28] presented the first theoretical results for the



“multi-p V-cycle of Babuska et al.” in the context of 2D rectangular elements
and second order elliptic PDEs. This work used an arithmetic p sequence and
an exact solver at p = 1. They proved that the method converges, but did
not prove that the convergence rate is independent of p. In Hu, Guo and Katz
[27] they started calling it the “algebraic multi-p method”, and also a “multi-p
preconditioner” by using it as a preconditioner for conjugate gradients. As a pre-
conditioner, the smoother is changed to a symmetric Gauss-Seidel iteration. In
the context of elastostatic examples in 2D and 3D, they proved convergence with
condition number O(1+1log(p)?), and gave numerical evidence of p-independent
convergence rates in both 2D and 3D. Further work by this team is found in
[18, 19].

Sun et al. [49] extended the method of Babuska et al. to a “p-multilevel-ILU
preconditioned conjugate gradients” solver for Maxwell’s equation. Although
presented as a multiplicative Schwarz algorithm, it is equivalent to a V-cycle
with the arithmetic p sequence.

The first paper from the spectral element community was by Rgnquist and
Patera [46] in 1987, where they call it “spectral element multigrid”. This
method uses the geometric p sequence and an exact solver on p = 1. They
presented the method for Poisson’s equation in 1D, and numerically demon-
strated p-independent convergence. A year later, a paper by Maday and Munoz
[33] gave the convergence theory for the spectral element multigrid method.
They proved that the convergence rate is independent of p in 1D, but in 2D it
is O(1 — ¢/p) for some constant c¢. Other presentations of work by Renquist,
Patera, Maday and Mufioz can be found in [34, 35, 41]

In 2001, Helenbrook [21] applied the spectral multigrid method to a 2D in-
compressible Navier-Stokes equation using triangular elements. For the first
time, a geometric multigrid method was used for the solution at p = 1. Two
years later, Helenbrook, Mavriplis and Atkins [25] changed the name of the
method to “p-multigrid”, but still used a geometric p sequence. This paper
considered both a (non-adaptive) hp-FEM discretization of the Laplace equa-
tion in 2D, and Streamline-Upwind Petrov-Galerkin (SUPG) and Discontinu-
ous Galerkin discretizations of the convection equation. In 2006, Nastase and
Mavriplis [43] coined the term “hp-multigrid” for their method using an alge-
braic p sequence and h-multigrid at p = 1. The paper addressed the Discontin-
uous Galerkin method for inviscid compressible flows in 3D.

Starting in 2005, many more researchers began using multilevel methods
based on reducing p, with most of them using the name “p-multigrid”. Most
of this work is either with spectral element methods or with the Discontinuous
Galerkin method for fluid flow problems. At this point it becomes difficult to
be exhaustive in the citations, but a sampling of the work can be found in
[7, 11, 14, 23, 22, 24, 29, 31, 32, 36, 42, 45, 51].

The h-multigrid method has a much more extensive history, beginning with
the seminal paper of Brandt [8]. In fact, the MGNet Bibliography [12] contains
about 3600 entries. In this paper we mainly consider the h-hierarchical multigrid
method developed in the late 1980’s [6, 37].



XXX ZSFA

Figure 1: The nodal basis (left) and h-hierarchical basis (right) for 1D linear
finite elements.

Figure 2: Bisection of a pair of triangles.

3 Hierarchical Bases

The simplicity of the p-multigrid method depends on using a p-hierarchical basis
for the finite element space. Although other forms of geometric or algebraic h-
multigrid methods can be used for the p = 1 level, the h-multigrid method in
Section 4 will be similarly defined in terms of the h-hierarchical basis [5, 6, 37,
44, 53]. In this section, the relevant properties of hierarchical bases are given.

The defining characteristic of hierarchical bases is that they are created as a
hierarchy. Figure 1 illustrates this using linear bases in 1D. The left side of the
figure shows the usual “hat function” nodal basis for a grid with four intervals.
The right side shows the h-hierarchical basis for the same finite element space.
One begins with a grid consisting of a single interval and defines the nodal basis
on that grid, i.e. the two basis functions that have the value 1.0 at one end
point and 0.0 at the other. The grid is refined by adding a node at the middle
of the interval, and a new basis function, which would be a nodal basis function
on this grid, is added, but the existing basis functions are not changed. Finally,
the grid is refined again, and two more basis functions are added, leaving the
existing basis functions unchanged.

The definition of the linear h-hierarchical basis for bisected triangles is the
same. With each refinement of a pair of triangles as in Figure 2, a new vertex
is added with a corresponding piecewise linear basis function whose support is
the four triangles just created.

In practice, the h-hierarchical basis is not used directly because the stiffness
matrix is too dense, due to the large supports of the coarse level bases [53].



Instead, the h-hierarchical basis is used implicitly in the h-multigrid method
of Section 4 through a sequence of 2-level transformations of vectors and the
stiffness matrix. For any [ > 2, consider a 2-level h-hierarchical basis where the
lower level is the nodal basis of the coarse grid consisting of h-refinement up to
level [ — 1, and the fine grid consists of h-refinement up to level . Any function
in the finite element space of the fine grid has an expansion in both the nodal
basis and this hierarchical basis,

N N
F= 2 alefM =3 aligl
i=1 i=1

where qﬁl(-N) are the nodal bases and qbgH) are the hierarchical bases. Conversion
between the nodal and hierarchical bases is a linear process, so the coefficients
in the expansion are related by o™ = Sja() and o) = 57 'a®™) where S

has the form
I 0
si= 7]

with the lower block corresponding to the lower level (coarse grid) part of the
hierarchical basis. For bisected triangles, s; has two nonzeros per row. Note
that S, ! has the same form as S, but with s negated, so basis conversion
in either direction can be performed with a small number of operations. The
relationship between the nodal and 2-level h-hierarchical stiffness matrices is
given by AI(H) = SZTAI(N)SZ. By the equivalence of A;N)xl(N) = bl(N) and

(st A s s a™) = s oY)

we have xl(H) = Sl_lxl(N) and bl(H) = SlTbl(N).

Similarly, the p-hierarchical bases are defined by beginning with nodal linear
basis on the fine grid, adding bases of exact degree 2, then bases of exact degree
3, etc. The exact definition of the basis functions is not important for this paper,
but we mention that the numerical results in Section 6 were obtained using the
p-hierarchical basis of Szabo and Babuska [50].

For triangular elements, the p-hierarchical basis functions can be divided
into three groups:

1. Vertex bases. There is one piecewise linear basis function associated with
each vertex. These are the usual linear nodal basis functions.

2. Edge bases. An edge of degree p has p — 1 associated basis functions, one
each of exact degree 2,3, ...,p. They are 0.0 at the end points of the edge.
The support is the union of the two triangles that share that edge (one
triangle if the edge is on the boundary), and they are a polynomial over
each of the triangles.

3. Element bases, sometimes called face bases or bubble functions. An el-
ement of degree p has ¢ — 2 element basis functions of exact degree ¢,
q=3,4,...,p, for a total of (p — 1)(p — 2)/2 element basis functions. The
support is the triangle, and they are 0.0 on the boundary of the triangle.



4 The hp-Multigrid Method

In this section we define one form of the hp-multigrid algorithm. Obviously
many other variants are possible by using other smoothers, coarse grid (p = 1)
solvers, cycle strategies (e.g. W-cycle), etc., for example the method in [43].
Here we use a Gauss-Seidel smoother, h-hierarchical multigrid on p = 1, and
V-cycle.

The first observation is that the element bases can be eliminated by static
condensation [47, 52]. Using subscript e to denote parts associated with el-
ements, and v to denote parts associated with vertices and edges, the linear
system can be partitioned as

Ae Aev Te _ be

AL A, Ty || by |
Because the support of the element bases is a single triangle, A, is block di-
agonal with the size of the blocks being the number of element bases in the

corresponding triangles, so it is easy to multiply by A_! using a direct solver.
Performing block Gauss elimination gives the condensed system

(A, — AL AZ1 Apy)zy, = by, — AT AT 1D,

The Schur complement A, — A7 A1 A,, has the same nonzero structure as A,.
After the condensed system is solved for x,, the coefficients for the element
bases are computed by solving A.x, = b, — Ay Ty

For the remainder of this section it is to be understood that the matrices
and vectors are from the condensed system given above.

The next observation is that, because of the p-hierarchical nature of the
basis, the matrix for the coarse p-level with degree p — 1 is contained within the
matrix for the fine p-level with degree p. If A, denotes the stiffness matrix with
all bases up to degree p, and Ay denotes the stiffness matrix with all bases of
exact degree p, then

A | A A
P A%,p—l Ap_1

Using similar notation for the vectors, the coarse level equations are simply
given by

_ T _
Ap_lxp_l = bp—l — Aﬁ,p—lxp'

Note that the restriction operator simply amounts to removing the section of the
coefficient vector corresponding to bases of exact degree p, and the prolongation
operator simply amounts to reinstating them.

The Gauss-Seidel relaxations at any level p are limited to the region near
elements of degree at least p. In Section 5 we show that, for uniform grids, the
number of operations for one V-cycle is proportional to the number of nonzero
entries in the stiffness matrix, M, divided by p. But if the p refinement is very
local, these operation counts will not hold and the total number of operations to
solve the linear system will be larger than O(M/p). The same suboptimality was



procedure hp-multigrid
repeat
p-multigrid(A4, — AL AZYAey 20,0, — AL AZ1b, .P)
until converged
Te = A7 H(be — Aeyy)
end procedure

Figure 3: Algorithm for Ap-multigrid, including static condensation. P is the
maximum degree of any element in the grid.

observed for h-multigrid with highly localized h refinement in [37]. The solution
given there is to use “local black” relaxation. The term black comes from the
red-black coloring of the vertices with the black vertices being the coarse grid
vertices. The term local refers to performing Gauss-Seidel relaxation only at red
vertices and black vertices that are immediate neighbors of red vertices. This
recovers the optimal order number of operations and does not significantly effect
the convergence rate in the numerical experiments of [37]. We propose the same
approach for p-multigrid: on level p, perform relaxations only on equations
coming from bases of degree p and equations that are directly connected to
equations coming from bases of degree p.

A similar observation about nestedness of the matrices holds for the h-
hierarchical basis for the p = 1 equations, i.e., the linear system for level [
with the 2-level hierarchical basis has the form

(H)  7(H) " H
AITAZ,H [xf)]_[bg)]
H N N | = N) |-
ROV I N A O

This leads to an h-multigrid algorithm that is in essence the same as the p-
multigrid algorithm. The algorithm given here first appeared in [37], although
similar, but suboptimal, algorithms are given in [6] and [10]. The difference be-
tween the h-multigrid algorithm and the p-multigrid algorithm is that we begin
an h-level with the nodal basis, and have to convert to the 2-level hierarchical
basis to get the coarse grid equations.

Let P be the maximum degree and L be the maximum number of h refine-
ment levels. The hp-multigrid algorithm is given in Figures 3, 4 and 5.

5 Computational Complexity

In this section we consider the number of operations required by one V-cycle of
the Ap-multigrid method in the case of a uniform grid. In particular, we show
that the number of operations is O(M/p) where M is the number of nonzero
entries in the full (noncondensed) stiffness matrix.

Let V be the number of vertices in the grid, and let every triangle have degree
p. The number of edges is ¥ =~ 3V and the number of triangles is T' &~ 2V. Since
there is one basis associated with each vertex, p — 1 bases associated with each



procedure p-multigrid(Ap,zp,bp,p)

if p==1 then
h-multigrid (A1 ,21,b1,L)
else

perform Gauss-Seidel relaxation on Apz, = b,
p-multigrid(Ap_1,2p—1,bp—1 — A%’pflscﬁ,p -1
perform Gauss-Seidel relaxation on Apx, = b,
end if
end procedure

Figure 4: Algorithm for p-multigrid part of hp-multigrid. L is the maximum
h-refinement level of any element in the grid.

procedure h—multigrid(A( ) (N) b(N) )

if (==1 then
solve AEN)ng) = ng) with a direct solver
else

perform Gauss-Seidel relaxation on AZ(N)xl(N) = bl(N)
A(H) STA(N)S
(H) Z1 (N
S 1 [( )
b(H) STb(N)

h—multlgrld(Al(Nl), (N) b(N) AEH)TQ:EH),Z -1)

11-1"1
l ( )1

=5 N
o™

perform Gauss-Seidel relaxation on A(
end if
end procedure

)2 (M) = (™)

Figure 5: Algorithm for A-multigrid part of hAp-multigrid.



edge, and (p — 2)(p — 1)/2 bases associated with each triangle, the number of
degrees of freedom, and number of rows in the full matrix, is

N=V+3V(p—1)+2V(p—2)(p—1)/2=p°V.

The number of rows in the condensed matrix is N, =~ 3pV —2V = O(pV'). In the
full matrix there are O(p®) nonzero entries in each row, giving M = O(p?N) =
O(p*V). In the condensed matrix there are O(p) nonzeros in each row, so the
number of nonzeros in the condensed matrix is M. = O(pN.) = O(p?V).

The number of operations required for a Gauss-Seidel sweep at p-level i |
i =2,3,..,p, is O(i*V). The computation of A;le;. to get the coarse grid
equations for level ¢ — 1 requires only O(iV'). Also’7 the h-multigrid on p-level 1
uses O(V') operations, so the total operation count for one V-cycle is

P
Operations = O(Z i2V) = O(p*V) = O(M/p).
i=1

If the convergence rate of the multigrid cycles is bounded away from 1.0
independent of h and p, then when used in a full multigrid scheme where a fixed
number of iterations on each intermediate grid suffices to reduce the algebraic
error below the discretization error, the number of operations used in the multi-
grid cycles to solve the final linear system is O(M/p). In addition, it can be
shown that the number of operations for static condensation, which occurs once
on each intermediate grid, is O(p?M). Thus the total number of operations for
solution is O(p*M).

Note that the number of operations required to generate the linear system
is necessarily at least O(M) unless the matrix entries are simply constants that
are known in advance.

6 Experimental Convergence Rates

We examine the convergence rate of the hp-multigrid method defined in Section
4 numerically using newest vertex bisection of triangles [37] and four examples.
In the first example we use a simple Poisson problem with different values of
uniform h and uniform p to demonstrate that the convergence rate appears to
be bounded away from 1.0 independent of both h and p. In the other examples
we use hp-adaptive grids with two Poisson problems that are commonly used as
test cases for adaptive grids, and a problem with discontinuous coefficients.

By convergence rate, we mean the contraction factor of the Ly norm of the
residual. Specifically, let Az = b be the discrete system, and let (") be the
approximate solution after ¢ V-cycles of the hp-multigrid iteration. The relative
residual after iteration ¢ is defined as

P = [lb — 42|}/
and the contraction factor of iteration 7 is defined as

pl0) = p(0) fpli=1)
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Figure 6: Grid with h=1/16 for the first test problem.

h =1 2 3 4 8 16
1/16 06 .47 42 45 43 40
1/32 09 48 41 45 41 .40
1/64 09 48 41 45 41 .39

1/128 09 49 41 45 41 39
1/256 09 49 40 45 41 *
1/512 09 49 40 45 41 %
1/1024 .09 .49 .40 45 @ * *

Table 1: Convergence rates for uniform grids. * indicates insufficient memory.

for i > 1. Starting with 2(©) = 0, we iterate until r® < 10~2 and report the
largest p(¥ as the contraction factor.

These computations were performed using the program PHAML Version
1.5.1 [38] on one core of a dedicated 8 dual-core AMD Opteron Processor 8218
shared memory system with 64 Gbytes RAM operating under the 64-bit CentOS
5.2 distribution of Linux. ! PHAML was compiled with Intel Fortran Version
11.0.

For the first problem we use Poisson’s equation on the unit square with
Dirichlet boundary conditions and the right hand side chosen so that the solution
is 240210(1 — 2)10910(1 — ¢)19. The power 10 was chosen so that the degree of
the polynomial is larger than any p to be considered, and 24° is a normalization
factor so that the maximum value of the solution is 1.0. We computed the
convergence rate for grids with h ranging from 1/16 to 1/1024 and p = 1,2, 3,4, 8
and 16. The grid for A = 1/16 is shown in Figure 6. The convergence rates

IThe mention of specific products, trademarks, or brand names is for purposes of identifica-
tion only. Such mention is not to be interpreted in any way as an endorsement or certification
of such products or brands by the National Institute of Standards and Technology. All trade-
marks mentioned herein belong to their respective owners.
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p=2 4 5 6 7 8 12 16
49 45 43 42 42 41 40 .39

Table 2: Additional convergence rates for Example 1 indicating monotonic im-
provement as p increases.

Figure 7: Solution of the L-shaped domain problem.

are given in Table 1. We observe that the convergence rate is bounded by 1/2
throughout the table. The asymptotic convergence rate is quickly achieved as h
is decreased. Note that the column labeled “p = 17 reflects h-multigrid for linear
elements, and we observe the usual rate of convergence of approximately 1/10,
while the other columns show a slower convergence rate for p-multigrid. We
also observer that if p = 1 and p = 3 are not considered, the rate of convergence
actually improves as p is increased. This is further illustrated in Table 2 which
contains convergence rates for additional values of p, using sufficiently small h
to have reached the asymptotic limit.

The second example is the L-shaped domain problem used frequently in the
illustration of adaptive grid techniques. It is Laplace’s equation on the domain
(—=1,1)x (—=1,1) \(0,1) x (—1,0). The solution has a singularity at the reentrant
corner at the origin. It is given in polar coordinates by /% sin(26/3). Dirichlet
boundary conditions are set accordingly. A contour plot of the solution is shown
in Figure 7.

Adaptive refinement is performed by refining elements with large error indi-
cators until the number of equations in the discrete system is doubled, at which
point the Ap-multigrid solution is performed. We used a classical element resid-
ual error indicator [1] in which the error indicator for triangle T is given by the
energy norm of the solution of

Le=f—LainT

en = [ty on OT
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Figure 8: An hp-adaptive grid for the L-shaped domain problem.

N mazxref minp maxp rate
226 9 1 2 44
453 15 1 2 Ar
904 25 1 3 .46

1809 35 1 5 .42
3616 45 1 6 .44
7233 53 1 8 .42

Table 3: Convergence rates for the L-shaped domain example.

where L is the differential operator, f is the right hand side of the differential
equation, 4 is the approximate solution, subscript n denotes the outward normal
derivative, and [d,] is the jump in the normal derivative of the approximate
solution on the boundary of T. The local Neumann problem is solved using
bases one degree higher than the current degree of T. The hp strategy, i.e.
selection of whether to refine an element by h (subdivide by bisection) or by p
(increase the degree by one), for this problem is to refine by h if the element
touches the reentrant corner, and by p otherwise. An example hp-refined grid is
illustrated in Figure 8. Here the gray scale indicates the degree of the element
with white being degree 1 and darker colors indicating higher degree. The inset
shows the detail of the grid near the reentrant corner.

Table 3 contains the convergence rates of hp-multigrid on each of the grids
in the sequence obtained by hAp-adaptive refinement. Here N is the number of
equations in the discrete system, max ref is the maximum number of times any
element was refined by A (minimum h oc 27" 7¢/)/2) "min p is the minimum
element degree, and maz p is the maximum element degree. We again find that
the convergence rates are bounded by 1/2.

The third example is another Poisson equation commonly used in the adap-

13



Figure 9: Solution of the wave front problem.

K

Figure 10: An hp-adaptive grid for the wave front problem.

tive grid refinement literature. The right hand side and Dirichlet boundary
conditions on the unit square are chosen so that the solution is

U(l‘,y) = tan_l(a\/(x - xc)Q + (y - yc)2 - TO)

which contains a circular wavefront with position determined by (z.,y.) and 7
and sharpness determined by «. It also has a mild singularity at (z.,y.). We
choose (z,y.) = (—.05,—.05) so that the singularity does not have an effect in
this example. For the other parameters, we use rg = .7 and o = 100. A contour
plot of the solution is shown in Figure 9.

We use the same approach to adaptive refinement as in Example 2, except
for the hp strategy. For this example we use a strategy based on that of Siili
et al. [48], which is called PRIOR2P in PHAML. For an element of degree p,
an error estimate, 1,_1, for the degree p — 1 part of the solution is given by the
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local full

black  black

N mazxref minp maxp rate rate

291 1 1 3 .46 .20

580 3 1 4 .39 .23
1174 5 1 5 41 18
2320 7 1 5 42 27
4640 8 1 5 .45 .34
9281 9 2 7 .46 18
18561 11 2 7 44 .24
37181 13 2 8 41 .24
74325 14 3 9 43 .24
148480 15 3 10 44 .26
297138 17 3 10 42 .29
593921 18 3 11 .40 .30
1187894 19 3 12 .40 .29
2375722 22 3 13 .40 27
4751622 22 3 14 A1 .25

Table 4: Convergence rates for the wave front example.

norm of the part of the solution from the p-hierarchical bases of exact degree p.
Similarly 7,_2 estimates the error of the degree p — 2 part of the solution using
the bases of exact degree p — 1. Using the a priori error estimate [3]

I
el < OWHUHHW

where p = min(p, m — 1), C is a constant independent of i and p, u is the true
solution, and H' and H™ are the usual Sobolev spaces, take the ratio of the
error estimates for p — 1 and p — 2 to estimate the smoothness

~ log(np—1/mp—2)
log((p—1)/(p = 2))’

Then use h refinement if m < p + 1 and p refinement otherwise. Since this
formula requires p > 3, use p refinement if p < 3. An example of an hp-adaptive
grid for this problem is shown in Figure 10. The convergence rates are given in
the column labeled “local black rate” in Table 4. Once again, all convergence
rates are less than 1/2.

The second and third examples suggest that the local black relaxation does
not harm the convergence rate of the hp-multigrid method, compared to the
convergence rate obtained with uniform grids. In the final column of Table 4 we
give the convergence rates for the wave front problem if relaxation is performed
at all the black points instead of just those that are neighbors of red points. This
results in a substantial reduction in the convergence rate, typically to about 1/4,

15
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Figure 11: Solution of the Kellogg problem.
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Figure 12: An hp-adaptive grid for the Kellogg problem.

which implies the full black relaxation could converge in half as many V-cycles.
However, unless p is fairly uniform, a V-cycle with full black relaxation will
require considerably more than twice as many operations as a V-cycle with
local black relaxation, so the local black relaxation is still advised in general.
As a final example we consider a problem with discontinuous coefficients,
the Kellogg problem as given in [40]. In Equation 1, Q = (—1,1) x (—1,1),
A = I in the first and third quadrants, and A = RI in the second and fourth
quadrants, where R will be defined shortly, and f = 0. The solution is given in
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1h 20 h

N mazxref minp maxp V-cycle V-cycles
309 4 1 5 .33 .33
647 7 1 6 45 .34
1179 11 1 7 .58 .36
2528 15 1 7 .70 .38
4653 21 1 7 .78 .39
9553 29 1 8 .85 41
22412 39 1 9 .89 .46
39419 49 1 9 .92 .50
81033 53 1 9 .93 .43

Table 5: Convergence rates for the Kellogg example.

polar coordinates by u(r, ) = r7u(6) where

cos((m/2—o)y)-cos((0 —m/2+p)y) f0<6<m7/2

1(0) = cos(py) - cos((0 — m + o)) ifr/2<0<nm
cos(o7y) - cos((0 — m + p)7y) if <0 <3m/2
cos((m/2 — p)y) -cos((0 —3w/2 —0o)y) if 3m/2 <6 <27

with v = 0.1, R = 161.4476387975881, p = 7/4 and 0 = —14.92256510455152.
The solution is shown in Figure 11 and an example grid in Figure 12. We use
the same adaptive strategy as in the wave front example.

The convergence rates are given in Table 5. Under the column labeled “1
h V-cycle” it is seen that the convergence rate deteriorates as the mesh is re-
fined. The column labeled “20 h V-cycles” gives the convergence rate of an
hp-multigrid V-cycle if we use 20 V-cycles for the h-multigrid on p-level 1. Ev-
idently, the deterioration of the convergence rate is due to the h-multigrid, and
the p-multigrid converges with a rate that is independent of the mesh if the
p-level 1 equations are solved accurately enough. This suggests that, for this
problem, it may be better to use an h-multigrid that is tuned for discontinuous
coefficients, or perhaps an algebraic h-multigrid, for the p-level 1 equations.

7 Conclusion

In this paper we presented the hp-multigrid method for high order and hp-
adaptive finite elements using triangular elements for 2D elliptic partial differ-
ential equations. Extensions to any finite element space with a p-hierarchical
basis are obvious. The crux of the method is to use the polynomial degree p as
the multilevels of a V-cycle, and use a standard h-multigrid method to solve the
equations at p = 1. Although the roots of the method go back nearly 25 years,
only a handful of researchers considered it until a few years ago.
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Most of the research on this and related methods has been in the context
of the p version of the finite element method, spectral element methods, and
Discontinuous Galerkin methods. In this paper we examined it in the context of
hp-adaptive continuous finite elements. The number of operations required for
one V-cycle with uniform grids is O(M/p) where M is the number of nonzero
entries in the stiffness matrix. Numerical results suggest the convergence rate
for Poisson’s equation and uniform grids is bounded by 1/2 independent of both
h and p. Together these imply that the number of operations for the multigrid
cycles in a full multigrid method is O(M/p). The number of operations for static
condensation is O(p>M). Thus, for uniform grids and Poisson’s equation, the
method is optimal in the sense that the number of operations to solve the linear
system is of the same order as the number of operations required to generate
the linear system up to a factor of p2.

For hp-adaptive grids, the algorithm is modified by using local black re-
laxation to maintain the O(M/p) operation count. Numerical results with
hp-adaptive grids using two Poisson examples that are commonly used in the
adaptive refinement community also show convergence rates bounded by 1/2
independent of both h and p. Numerical results with hp-adaptive grids for an el-
liptic PDE with discontinuous coefficients also show convergence rates bounded
by 1/2 provided the p-level 1 equations are solved to sufficient accuracy.
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