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Abstract— Cameras are often used for visual servoing or real-
time mapping of the external environment in both autonomous
and teleoperated tasks with a dexterous manipulator. Nominal
operations will likely produce manipulator configurations that
occlude the line-of-sight from the camera to a target of interest.
In this paper, a technique is developed that treats the camera
line-of-sight as a virtual obstacle in order to prevent camera
occlusion. The approach is based on using virtual point charges
to represent obstacles and using the self-motion of the arm to
avoid collisions. The approach is demonstrated on the Ranger
Dexterous Manipulator.

I. INTRODUCTION

During autonomous manipulator operations, real-time
mapping of unknown and dynamic sampling environments
require that the camera line-of-sight (LOS) to the target
be maintained at all times. In Figure 1, the SAMURAI
manipulator, shown mounted to the front end of the JAGUAR
autonomous underwater vehicle, is being used to retrieve
samples with the assistance of a pair of externally mounted
cameras on the upper hull [12], [11]. An autonomous vision
system called “AVATAR” uses stereo vision to identify and
locate sample targets for retrieval and then sends position
commands to the robot controller. The trajectory planner
must ensure that the resulting manipulator configurations do
not obstruct the camera LOS during the sampling operation.
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Fig. 1. Illustration showing SAMURAI manipulator mounted to lower hull
of JAGUAR and AVATAR stereo cameras on upper hull.
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This paper discusses the design and implementation of
a potential field-based obstacle avoidance system that uses
manipulator self-motion to avoid collisions with obstacles.
Camera occlusion is prevented by modeling the LOS from
the camera to a point of interest as a virtual line obstacle.
Though this paper focuses on preventing camera occlusion,
this technique can be used in a variety of manipulation tasks
that require real-time obstacle avoidance.

This paper begins with a brief survey of previous work
in potential energy approaches to obstacle avoidance in
Section II. Section III overviews the inverse kinematics and
potential field models used in this work. Section IV provides
a 3-link planar example and describes how line obstacles
are modeled. Section V demonstrates this approach on an
eight degree of freedom (DOF) manipulator. Conclusions are
provided in Section VI.

II. PREVIOUS WORK

Manipulator obstacle avoidance is still an active area of
research in robotics [10], [13], [8]. Current methods can be
categorized into configuration-space (C-space) and energy-
based approaches. Because of their computational complex-
ity, C-space approaches are generally ill-suited for real-time
obstacle avoidance in high-dimensional systems [2]. Energy-
based approaches use artificial potential fields to guide the
manipulator away from obstacles. Obstacles are modeled
with high potential energy while obstacle-free regions are
modeled with low potential energy. The manipulator config-
urations that lie in the valleys of the potential field are chosen
to guide the manipulator away from obstacles. Energy-
based approaches can be further divided into coupled and
decoupled approaches.

The coupled approach, developed by Hogan, combines a
potential field with an impedance controller [5]. Disturbance
forces are generated from the potential field to guide the
manipulator away from obstacles. This technique has shown
promise in both low-dimensional [9] and high-dimensional
systems developed at the Jet Propulsion Lab for space robotic
applications [1]. This solution is advantageous because it
provides a means of controlling the dynamic behavior of the
manipulator as it interacts with obstacles by modifying the
impedance controller gains. However, this solution couples
the obstacle avoidance system with the control scheme which
may not be desirable.

The decoupled approach, developed by Khatib, uses the
negative gradient of the potential field to direct the self-
motion of the manipulator towards a lower potential energy
configuration for obstacle avoidance [6]. Unlike the coupled



approach, this solution is independent of the control scheme
being used because it is implemented within the inverse
kinematics. However, this approach does not produce a one-
to-one mapping between the end-effector position and joint
configuration because it is based on a local optimization of
velocity.

Wang presents an extension to Khatib’s approach that
numerically searches for the local minimum potential energy
solution instead of using a single step toward the mini-
mum [17]. Since Wang’s solution searches for a minimum
in a potential field based solely on the position of the arm
and obstacles, it results in unique joint solutions and yeilds
”cyclic” motion [16]. Some promising results are presented
for snake-like planar manipulators maneuvering through a
cluttered point obstacle field. This paper extends Wang’s
approach to three-dimensions and also develops a method
for incorporating line obstacles.

III. MANIPULATOR OBSTACLE AVOIDANCE

This section describes how locally minimum potential
solutions are computed to simultaneously avoid obstacles,
joint limits, and singularities. To this end, the total potential
field, V , comprises three components:

V = Vobst + Vjlim + Vmanip (1)

Vobst is used to guide the manipulator away from obstacles,
Vjlim is used to avoid joint limits, and Vmanip is used to
prevent singular configurations of the manipulator. Obstacles,
joint limits, and singularities are modeled with high potential
energy and are avoided by searching for a configuration q
that minimizes the total potential energy subject to the end-
effector constraints:

min
q

V, s.t. x = f(q) (2)

The function f defines the kinematic mapping from the joint
configuration q to the end-effector position and orientation
(pose) x.

For a desired change in the end-effector pose ∆x, the
minimum potential configuration is determined in three steps.

1) Calculate the pseudo-inverse solution

∆qpseudo = J†∆x (3)

where J† is the right pseudo-inverse of the Jacobian
and is defined as:

J† ≡ JT(JJT)−1 (4)

2) Calculate the nullspace component that minimizes
the potential energy. Do this numerically by using a
gradient-based search along the self-motion manifold.
Beginning at the configuration from Step 1, compute
each iteration using

∆qi = (I− J†i Ji)(−∇V(qi)) (5)

where −∇V (qi) is the negative gradient of the po-
tential field for the configuration at iteration i. I is
an N × N identity matrix for a manipulator with

N joints. The matrix I − J†i Ji projects the potential
field gradient onto the self-motion manifold to ensure
the end-effector location, satisfied in Step 1, does
not change. The local minimum is found when ∆qi
falls below a specified threshold ∆qthreshold and the
resulting nullspace component is the sum of the joint
displacements for each iteration:

∆qnull =
∑
i

∆qi (6)

3) Compute the final result by summing the pseudo-
inverse solution and the nullspace component

∆q = ∆qpseudo + ∆qnull (7)

A. Obstacle Potential: Vobst
An electric potential field is used to model the interaction

between the obstacles and the manipulator. The obstacles
are modeled as point charges and the major links of the
manipulator (those with significant length) are modeled as
charged line segments. The electric field Eobst, created by
the point charge obstacles, repels the charged links of the
manipulator as shown in Figure 2.

Eobst

FUpperArm

FForearm

Charged Links

Point Charge Obstacle

Fig. 2. A point charge obstacle creates an electric field Eobst which repels
the line charge modeled links of the manipulator.

The obstacle potential energy at position R is

Vobst(R) = −
∫ R

∞
Eobst(R)dL (8)

where L is an arbitrary path. The negative gradient yields:

−∇Vobst(R) = Eobst(R) (9)

For a point charge obstacle at R′ with charge Q′, the electric
field at R is

Eobst(R) =
Q′

4πεo

R−R′

|R−R′|3
(10)

where εo is the dielectric permittivity of free-space.
The interaction between a point charge obstacle and line

segment charge link of the manipulator can be projected
onto a plane as shown in Figure 3. A point charge Q′ is
located at position O which produces an electric field E. The



electric field produces a force and moment on the charged
line segment with endpoints P1 and P2. The origin of the
coordinate frame is affixed to P2 as shown. The x-axis points
in the direction of P1 to P2 and the y-axis points in the
direction of Pmin to O, where Pmin is the closest point on
the line containing P1 and P2 to O. The values for scalars a,
b, and c are defined in Table I. The sign of a and b depend
on the relative position of the charged line segment and point
charge, while the sign of c is always positive.
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Fig. 3. Force and moment on a charged line segment due to a point charge.

TABLE I
FORCE-MOMENT CALCULATION VARIABLE DESCRIPTIONS.

Value Description Range
a Distance Pmin to P1 in -x-direction -∞ < a < +∞
b Distance Pmin to P2 in +x-direction -∞ < b < +∞
c Distance Pmin to O in +y-direction 0 < c < +∞

The force on the line segment due to the electric field is
calculated by integrating the electric field from (10) over the
charged line segment with charge density ρl:

F =
Q′ρl
4πεo

∫
l

R−R′

|R−R′|3
dl (11)

Using R = xx̂ and R′ = −bx̂ + cŷ and performing the
integration yields

Fx = kobst(
1√

a2 + c2
− 1√

b2 + c2
) (12)

Fy = kobst(−
a

c
√

a2 + c2
− b

c
√

b2 + c2
) (13)

where kobst = Q′ρl
4πεo

for an actual electric field in free-space.
However, for the artificial potential field, selection of kobst
provides a means of varying the influence of the point charge
obstacle on the manipulator.

Multiplying the force by the moment arm and integrating
over the length of the segment yields the moment about the
origin on the charged line segment:

M = kobst(
ab− c2

c
√

a2 + c2
− −b2 − c2

c
√

b2 + c2
)ẑ (14)

The planar force and moment from (12), (13), and (14)
are represented in 3D by using the homogeneous transform
between the planar coordinate frame in Figure 3 and a frame
in the manipulator task space [4]. Multiplying the 3D link
force and moment by the transpose of the Jacobian yields
the resulting joint torques:

τj = JT
j Fj (15)

Fj is a partitioned vector containing the force and moment
vectors for link j. Jj is the partitioned Jacobian matrix
containing both the translational and rotational Jacobians for
the first j links. τj is the vector of joint torques for all joints
prior to link j. For a fixed-base manipulator, the force and
moment on link j is only reacted in the joints prior to link
j. Thus, the transpose of the Jacobian Jj can be used to
transform the Cartesian forces and moments Fj on link j
into joint torques τj for all joints from the base to link j.

For a general scenario with many point obstacles, (15)
is applied to each obstacle and link combination and the
results are summed to produce a net joint torque vector that
describes the influence of all obstacles on the manipulator.
Thus the negative gradient of the obstacle potential field
mapped into joint space is

τobst = −∇Vobst(q) =
M∑
i=1

N∑
j=1

JT
j Fij (16)

where M is the number of obstacles, N is the number of
major links of the manipulator, and Fij is the force on link
j due to obstacle i. The dimensions of τobst vary with j so
care must be taken when summing the vectors, but this is a
straightforward formulation.

B. Joint Limit Potential: Vjlim

Without an opposing force, the obstacle potential field will
cause the joints of the manipulator to migrate towards their
limits subject to the end-effector constraints. To prevent this,
a joint limit potential field is added which models each joint
as a spring to push the joints towards their centers of travel:

Vjlim(q) =
1
2

(q− qo)TK(q− qo) (17)

K is a diagonal matrix of spring constants and qo is the
nominal equilibrium position for the joints. The negative
gradient yields the joint torques on the manipulator due to
the field:

τjlim = −∇Vjlim(q) = K(qo − q) (18)

To account for differences in joint ranges, each diagonal
entry in K is defined as:

Kii =
kjlim

∆qi
(19)

where ∆qi is the range for joint i and kjlim is a single
parameter that can be used to adjust the influence of the
joint limit potential field on the manipulator.



C. Manipulability Potential: Vmanip
To implement this algorithm on a real manipulator, sin-

gularity avoidance is needed. Singularities occur when the
matrix being inverted in (4) becomes singular, or equivalently
when the manipulability D ≡ |JJT | becomes zero [4].
Singularities can be avoided by using:

Vmanip(q) = −kmanip(|JJT|) 1
2 (20)

Though the potential energy is always negative, the shape of
the potential field is what matters. When singular, the poten-
tial is at a maximum at zero. When the manipulator is far
from a singularity, the potential is negative. Thus, driving the
manipulator towards a lower potential configuration produces
the desired singularity avoidance behavior.

The negative gradient of (20) gives the resulting joint
torques on the manipulator due to the singularity potential
field:

τmanip = −∇Vmanip(q) =
kmanip

2(|JJT|) 1
2

∇D (21)

The total influence of all the potential fields is produced
by summing the joint torques from each field

τ = −∇V(q) = τobst + τjlim + τmanip (22)

where the components are given by (16), (18), and (21). The
total joint torque is used in (5) to search for the minimum
potential solution.

IV. PLANAR 3-LINK MANIPULATOR EXAMPLE

This section demonstrates a 3-link planar manipulator
subject to a single point charge and discusses the line charge
obstacle model. Though the obstacle avoidance technique
described in Section III applies to a general 3D case, a
planar manipulator is used in this section to more clearly
demonstrate the approach.

A. Planar 3-Link Manipulator with One Point Obstacle

Consider the planar 3-link example shown in Figure 4. The
left picture shows the manipulator in a non-singular starting
configuration at qT = [0 1.57 -1.57] radians with one point
obstacle placed near link 3 at position (1.5, 1.3) meters. The
influence coefficients kobst, kjlim, and kmanip are all set to
0.1. All three joints have a nominal position at zero and a
joint range of [−π, π] radians. The lengths for all three links
are set to 1 meter and ∆qthreshold is set to 0.001 radians.

Table II shows the joint torques produced by each potential
field. Since the obstacle is close to link 3 of the manipulator,
the joint torques due to the obstacle potential field are
dominant and are consistent with moving each link down-
ward away from the obstacle. The torques due to the joint
limits are small and consistent with returning the manipulator
to its nominal zero configuration. The singularity potential
produces negligible torques since the manipulator is not near
a singularity.

The picture on the right in Figure 4 shows the local
minimum potential configuration at qT = [-0.36 1.79 -1.07]
radians after iterating over (5). The manipulator is driven

starting configuration minimum potential configuration
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Figure 3.9: Minimum potential configuration for a point obstacle.

Table 3.8: Initial and minimum potential configurations for a point obstacle.

Initial and Minimum Potential Configurations

Configuration θ1 (rad) θ2 (rad) θ3 (rad)

initial 0 π
2 −π

2

min pot -0.3613 1.7995 -1.0676

The joint limit and singularity potential energies are calculated using Equa-

tions 3.23 and 3.31 respectively. The obstacle potential energy is calculated by

summing the potential due to each link:

Vobst =
M∑

i=1

N∑

j=1

Vobstij (3.36)

where Vobstij is the potential of link j due to obstacle i and is calculated by integrating

the electric potential along the line segment modeling each link:

Vobstij =
∫ 1

0

kobst

||P1 + (P2−P1)t−OB||dt (3.37)

where P1 and P2 are the endpoints of link j and OB is the position of obstacle i.
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Fig. 4. Obstacle avoidance for a planar 3-link manipulator.

TABLE II
JOINT TORQUES DUE TO POTENTIAL FIELDS.

Joint Torques
Source τ1 (Nm) τ2 (Nm) τ3 (Nm)

obstacles -0.9161 -0.2268 -0.2858
joint limits 0 -0.0250 0.0250
singularities ≈0 ≈0 ≈0

total -0.9161 -0.2518 -0.2608

away from the point obstacle while maintaining the end-
effector position.

B. Line Obstacle Model

A line obstacle is desirable for modeling a camera’s LOS
to a target of interest. Incorporating line segment obstacles
into the potential field calculations was initially investigated,
but proved to be exceedingly complex. Alternatively, a sim-
pler approach was chosen to approximate the line obstacle
with a series of point obstacles which allows the same
calculations from Section III to be used. The points chosen
on the line segment obstacle are the points closest to each
link of the manipulator as shown in Figure 5 for a 3-link
planar manipulator. OB1, OB2, and OB3 are the points
closest to links 1, 2, and 3 respectively. The points of closest
approach are updated in real-time and their locations change
as the manipulator and line obstacles move.

was chosen to model line segment obstacles in this research.

4.2 Point of Closest Approach

Consider an N -link manipulator. For each major link of the manipulator,

the closest point on the line segment obstacle to the link is chosen. Thus the line

segment obstacle is modeled with N point charges, each of which corresponds to a

point nearest to one of the manipulator’s major links.

Figure 4.1 shows the points of closest approach for a 3-link planar manipulator

with one line segment obstacle. OB1 is the point closest to link 1, OB2 is the closest

point to link 2, and OB3 is the closest point to link 3.

OB2, OB3
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Figure 4.1: Points of closest approach.

Specifically, for each link and line segment obstacle pair, the algorithm de-

scribed in Appendix A is used, which calculates the points on two line segments
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Fig. 5. Line obstacle approximation using the points of closest approach.

Though observations from this research have shown
promising results using this line obstacle model, a single
point charge obstacle may not be sufficient for all scenarios.
Alternatively, more points along the line obstacle could be
chosen to provide a more accurate model. The points of



closest approach were chosen for this research in an attempt
to minimize the computational complexity and simplify the
implementation.

V. MANIPULATOR IMPLEMENTATION AND
DEMONSTRATION

The 8-DOF Ranger Dexterous Manipulator uses a parti-
tioned inverse kinematics scheme which segments the ma-
nipulator at the wrist [3]. The first 4-DOFs are used to
position the arm and the last 4-DOFs are used to orient
the end-effector. The self-motion of the arm is represented
by the “orbit” of the elbow about the shoulder-wrist vector
SW (shown in Figure 6) while the position of the wrist
and shoulder are held fixed [15], [7]. The orbital angle φ is
defined as the angle that the plane formed by the points S,
E, and W makes with a reference plane.

Fig. 6. Definition of shoulder-elbow-wrist (SEW) angle.

The elbow orbit can often be used to avoid collisions
of the arm links with obstacles as the end-effector follows
a prescribed path. A flowchart that demonstrates how the
collision avoidance is incorporated into the inverse kinemat-
ics is shown in Figure 7. The end-effector (tool) pose is
commanded through a set of hand controllers or a trajectory
system and is used to calculate the pseudo-inverse solution.
Obstacle positions stored in a world model are combined
with joint telemetry to produce the nullspace component. The
pseudoinverse solution is then combined with the nullspace
component to produce the local minimum potential arm
configuration.
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Workspace and Singularities: 

Ranger has a reach of 135 cm when fully extended. As in all serial 

manipulators, boundary singularities exist in this configuration.  Moreover, 

precariously large joint torques are required to hold the arm in an outstretched 

position, further limiting the manipulator’s workspace. However, Ranger’s dual-

redundancy ensures that the dexterous workspace is almost as large as reachable 

workspace. By properly choosing the SEW angle and using the skew axis wrist 

design, Ranger can effectively avoid most singularities in its reachable workspace. A 

more detailed workspace description is currently not available because Ranger’s 

dexterous workspace has yet to be fully characterized.  

Figure 4. Path generation

IV. Vision System Calibration

A. Camera Calibration

As with any stereo vision system there are two calibration processes that must be performed to fully define
the system’s parameters - an intrinsic calibration for each camera and an extrinsic calibration between the
two cameras. The Camera Calibration Toolbox for Matlab6 was used to perform both of these calibration
procedures.

First, pictures were taken of a checkerboard pattern using both cameras. After picking out corners of the
pattern for each camera separately, the software determines the intrinsic calibration parameters: focal length,
principal point, skew coefficient, and distortion coefficients. The next step is to match the corresponding
checkerboard images from each camera to determine the extrinsic parameters of the stereo system. The
Matlab toolbox performs this calibration automatically when given the appropriate images pairs. These
parameters define the relative orientation and offset of the two cameras, expressed as a rotation matrix and
translation vector. This information allows a stereo triangulation procedure to calculate the depth, Z, of
points in the field of view of both cameras in addition to the two dimensional planar X, Y values.

This entire procedure was repeated for both 1-G and neutral buoyancy testing environments due to
the use of different camera hardware in addition to the change in optical properties of the environment.
Although the same model of camera was used in each test, Sony XC-999, Ranger’s boresight cameras had
poorer picture quality due to older age and a harsher work environment. This caused the calibration for the
neutral buoyancy testing to be less accurate, although the underwater environment itself has excellent visual
clarity.

B. Vision System to Vehicle Registration

In order to make use of the vision system’s data, the relationship between the vision system’s coordinate
frame and Ranger’s manipulator coordinate frame must be determined. Registration is the process of de-
termining this relationship, which enables the transformation of vision system data into the manipulator’s
coordinate frame. Manipulator paths can then be planned based on this data. The relationship between
the two coordinate frames can be expressed as a homogeneous transformation, which consists of a rotation
and a translation.5 Over the course of our testing, three different methods were used to determine the
transformation in an attempt to improve the system’s performance.

For the 1-G testing, a tape measure was used to determine the translation between the vision system’s
coordinate frame and Ranger’s manipulator coordinate frame. The relative orientation was assumed based
on the mounting arrangement. After a few tests it was clear that a constant rotation offset was causing posi-
tioning errors and resulting in the manipulator missing the sampling target. We then manually added small
angular corrections into the transformation until the manipulator was consistently grabbing the sampling
target at many different locations within the manipulator’s workspace.

For the neutral buoyancy testing, Ranger’s wide-body configuration prohibited accurate determination
of the transformation using only a tape measure. This was mainly due to the larger distance between the
coordinate frames and limited access to the vision system’s cameras inside the electronics housing. As an
alternative, we constructed a small checkerboard that could be grasped by Ranger’s manipulator and held
within the field-of-view (FOV) of the vision system as shown in Figure 5.
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Fig. 7. Inverse kinematics flowchart for Ranger Mk. II manipulator.

To demonstrate successful occlusion avoidance, a mock
sampling scenario was setup as shown in Figure 8. A video
camera was affixed to the head of the manipulator support
stand and pointed towards a yellow rubber duck sample
target. The points of closest approach, OB1 and OB2, used
to approximate the LOS obstacle are shown for the pictured
configuration. For this demonstration, the location of the
camera LOS was measured by hand and entered into the
world model. In real operations, the vision system would
determine the position of the sample target which would
define the LOS.

OB1

OB2

Sample Target

Camera

Fig. 8. Experimental setup for Ranger which shows an external view (left)
and a simulated view with the modeled camera LOS and the corresponding
points of closest approach (right).

The end-effector was commanded to move above the
camera LOS and then downward in a fashion which would
normally cause the forearm to occlude the camera. A se-
quence of snapshots in Figure 9 shows the manipulator
movement as well as the view from the camera. As the end-
effector moves above the LOS from Position 1 to Position 2
there is little self-motion since the links do not occlude the
view. However, when the end-effector moves downward to
Position 3 the forearm nears the LOS obstacle and the SEW
angle is modified to prevent occluding the camera view to
the sample target.

Position 1 Position 2 Position 3

Fig. 9. External view (top row) and camera view (bottom row) during
LOS avoidance maneuver.

Figure 10 shows a plot of the obstacle distance to each



link. OB1 and OB2 are the points on the line obstacle
closest to the manipulator’s upper arm link and forearm link
respectively. OB1 and OB2 are continually updated in real-
time during the trajectory to reflect the current manipulator
configuration and line obstacle position. The point of closest
approach approximation is sufficient for the obstacle avoid-
ance system to successfully maintain a distance of at least
5 centimeters from each link during the trajectory and avoid
occlusion.
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Figure 6.34: Obstacle distance to each manipulator link for Ranger hardware demon-
stration.
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Figure 6.35: Obstacle induced joint torques for the Ranger hardware demonstration.

6.4 Summary

This chapter demonstrated the use of the obstacle avoidance algorithm on the

Ranger dexterous manipulator. The extended Jacobian method was replaced with

the generalized inverse technique to provide obstacle avoidance with the first four

joints of Ranger. Demonstrations for moving point and line segment obstacles were

shown as well as interaction with a line obstacle during an end-effector trajectory.

90

Fig. 10. Obstacle distance to Ranger links during LOS avoidance maneuver.
OB1 is closest to the upper arm. OB2 is closest to the forearm.

VI. CONCLUSION
This paper discussed the development of a real-time

obstacle avoidance scheme to prevent camera occlusion for
visually guided manipulators in dynamic environments. The
decoupled energy-based scheme provides a flexible real-time
system that can easily be adapted to existing manipulators.
This scheme was based on Wang’s methodology which uses
an electric potential field to model obstacles and iterates to
find a local minimum potential solution. This work extended
Wang’s work to three-dimensions, provided a model for
incorporating line obstacles, added singularity avoidance, and
was successfully demonstrated on an 8-DOF manipulator.

Though successful, some limitations of this approach were
observed. High joint velocities were commanded in some sit-
uations due to the interaction between the obstacle and joint
limit potential fields. These circumstances caused a sudden
change in the shape of the potential field and resulted in a
large shift in the minimum potential solution. A joint velocity
limiting scheme was used to slow these transients, though
another method to better control the dynamic behavior is
desired. Also, the point of closest approach approximation
for line obstacles needs to be further refined. When a line
obstacle becomes parallel with a link, the point of closest
approach becomes undefined. For this paper, the midpoint
of the line obstacle was chosen, however in some situations
this caused instability because of a discontinuous jump in
the obstacle position [14].

Efforts are underway to develop an approach for using
this same obstacle avoidance system for kinematically non-
redundant manipulators by attaching a virtual prismatic link
between the end-effector and the desired trajectory. Using the
same methodology developed in this paper, the virtual link
adds redundancy and allows the end-effector to deviate from
the commanded path in order to avoid obstacles. This method
can also be used to allow end-effector deviations from the
nominal path for kinematically redundant manipulators.
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