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ABSTRACT 
 
Modeling and simulation (M&S) techniques are increasingly 
being used to solve problems and aid decision making in 
many different fields. Results of simulations are expected to 
provide reliable information for decision makers. But 
potential errors may be introduced during the M&S 
development lifecycle.  It is critical to ensure to build the 
right model and the model is built right.  M&S community 
has had intensive Verification and Validation (V&V) 
research. But V&V activities are often not formally 
performed in most of the cases. For those who perform 
V&V activities, they normally wait until development of the 
simulation modeling is finished. Practical and solid 
validation techniques are hence needed. In this paper, the 
authors propose a validation methodology that allows 
parallel simulation development and model parameter 
validation, i.e. first the simulation model can be built with 
unknown parameters included; and then, those parameters 
can be estimated using a built-in constraint optimizer.  
Finally the initially unknown parameters are replaced with 
the found optimal values. The model is then ready for future 
output prediction. As an example application, a simple 
supply chain cost simulation model was discussed using the 
proposed methodology. 

 
INTRODUCTION 
 
In order to perform the study of the real world problem 
scientifically, we often have to make a set of assumptions 
about how it works. These assumptions, which usually take 
the form of mathematical or logical relationships, constitute 
a model that is used to gain some understanding of how the 
corresponding system behaves. If the relationships are 
simple enough, one may just use an analytic solution that is 
a mathematical function to express it and obtain exact 
information on questions of interests. Unfortunately, most 
real-world problems we are trying to solve are too complex 
for an exact mathematic function to represent and there may 
be many parameters that are unknown. They must be studied 
by means of simulation. That’s why simulation is regarded 
as second only to “math programming” among 13 
operations-research techniques (Law and Kelton 2000).  
 
M&S is the process of constructing a model of a system that 
contains a problem and conducting experiments with the 
model for a specific purpose of solving the problem and 

aiding in decision-making. M&S is particularly valuable for 
Department of Homeland Security (DHS) applications and 
manufacturing applications, because it can provide a non-
destructive and non-invasive method of observing a system 
and also provide a way to test multiple inputs and evaluate 
various outputs (Jain and McLean 2006). For example, in 
DHS applications, simulations allow users to reconstruct a 
comprehensive representation of real-world features during 
disaster response. Simulation models can help the decision 
makers determine staff and resource levels in hypothetical 
terrorist attack scenarios (Shao and McLean 2008) (Shao 
and Lee 2007). But for the developers and users of the 
simulation models, the decision makers using the results of 
these models, and individuals affected by decisions based on 
such models are all concerned with whether a model and the 
simulation results are correct (Sargent 2007). Even though 
M&S community has had intensive V&V research (DOD 
2001), V&V activities are often not formally performed in 
most of the cases. Validation efforts have often been limited 
to the use of less rigorous techniques, such as face validation 
and traceability assessment (Sargent, et al., 2000). Practical 
and solid validation techniques are hence needed to make 
sure the simulation model is validated and the simulation 
results are credible.  
 
The contribution of this paper is to propose a novel 
validation methodology that allows parallel simulation 
development and model parameter validation. The technique 
integrates constraint optimizer that performs the parameter 
validation for M&S. First the simulation model can be built 
with unknown parameters included; and then, those 
parameters can be estimated using a built-in constraint 
optimizer. Finally the initially unknown parameters are 
replaced with the optimal values. After validating the 
simulation results using corresponding set of input data, the 
model is ready for future output prediction. The constraint 
optimizer uses Constraint Optimization Regression in Java 
(CoReJava) that implements Regression Analysis (RA) to 
estimate the parameters based on a training data that could 
either be historical data or experimentation data (Brodsky, et  
al. 2008).  

 
The rest of the paper is organized as follows: next section 
identifies the V&V needs and issues. Then related work and 
technologies are discussed. The parameter validation 
technique is presented. A methodology to validate the 
technique, and a simple supply chain example modeled 
using CoReJava and a simulation tool are introduced. 
Finally the paper is concluded with future works and 
discussion.  
 



 

VERIFICATION AND VALIDATION NEEDS AND 
ISSUES 
 
During the development lifecycle of M&S, risks associated 
with potential errors in creating the model (programming 
errors) and inadequate fidelity (errors in accuracy when 
compared to real-world results) may be introduced (Cook 
and Skinner 2005). To guarantee that you have a valid 
model and simulation that produces correct results, V&V of 
the model and data used for the simulation must be 
employed throughout the life cycle of an M&S application.  
 
Balci (Balci 2007) defines the model V&V as follows: 
“Model validation is substantiating that the model, within its 
domain of applicability, behaves with satisfactory accuracy 
consistent with the study objectives. Model validation deals 
with building the right model. It is conducted by running the 
model under the “same” input condition that drive the 
system and by comparing model behavior with the system 
behavior. Model verification is substantiating that the model 
is transformed from one form into another, as intended, with 
sufficient accuracy. The accuracy of transforming a problem 
formulation into a model specification or the accuracy of 
converting a model representation in micro flowchart into an 
executable computer program is evaluated in model 
verification.” 
 
Figure 1 is the Sargent’s circle - a simplified version of the 
M&S process (Sargent 2007). The problem entity shown in 
the figure could be a real or proposed system, idea, situation, 
policy, or phenomena to be modelled.  
1. Conceptual model validity should answer the questions: Is 

the description of the system sufficient and correct? Is it 
valid for the intended use? 

2. Computerized model verification deal with the questions: 
Is the numerical implementation of the model correct? Are 
the numerical algorithms employed correct and fully 
converged?  

3. Operational validity answers the questions: Are we able to 
predict the experiment(s) in sufficient detail? How do we 
formulate quantitative validation metrics given a specific 
application? 

4. Data validity answers the questions: Is the experimental 
data used in the comparisons a sufficiently accurate 
description of reality? How do experimental uncertainties 
affect predictive performance? Are the experiments used 
in the validation exercise appropriate?  

 
To perform a complete validation of the model, appropriate 
validation techniques need to be applied to each step. Figure 
2 shows the simulation modeling process steps and each of 
them may be a source of errors that will influence the 
validity of the model. For example, incorrect conceptual 
modeling will make the model invalid for the intended use. 
Lack of calibration of the parameters will not produce an 
accurate function that sufficiently describes the problem.  
Implementation error will make the simulation model invalid 
even if the conceptual model is valid. The use of poor 
quality input data will increase the risk of providing 
incorrect results to the users, i.e. trash in will have trash out. 
Unsatisfied operational conditions will cause wrong 
estimates. Results comparison is to compare the observed 

data and the simulation outputs.  A large number of data are 
needed to have a meaningful evaluation of model 
performance in statistical terms. We should note that the 
model predictions and measured data will never match 
exactly; treads over time are one of the most useful tools to 
evaluate model performance (Donatelli and Stockle 1999). 

 

 
 

Figure 1. Simulation modeling and validation process 
(Sargent’s circle) (Sargent 2007) 
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Figure 2. Simulation modeling and executing steps  
 

RELATED WORK AND TECHNIQUES 
 
This section discusses the related research work, techniques, 
and tools for the proposed methodology. 
 

 



 

Law and Kelton suggested that quantitative techniques 
should be used whenever possible to test the validity of 
various components of the overall model (Law and Kelton 
2000). An important technique for determining which model 
factors have a significant impact on the desired measures of 
performance is sensitivity analysis, the factors may be the 
value of the parameters, or the choice of a distribution, etc. 
One approach to determine the sensitivity of the factors is to 
use statistical experimental design. In experimental-design 
terminology, the input parameters and structural 
assumptions composing a model are called factors; the 
output performance measures are called responses. Factors 
can be quantitative or qualitative, controllable or 
uncontrollable (Law and Kelton 2000). 
 
In (Doebling and Hemez 2007), model validation is also 
defined as “The process of assessing and improving 
confidence in the usefulness of computational predictions 
for a particular application” and “Solving the right 
equations.” Model validation is an application-specific 
process. Fidelity of the model relates to agreement with real 
world/test data, validity relates to suitability for the specific 
application. Validity of a model is defined over a region of 
the parameter space. 
Model validation supporting technologies include: 
 Metamodeling  - simplified relationship between model 
parameters and response features, 
 Design of Experiments - generate metamodels & plan 
validation tests, 
 Parameter Optimization - quantify unmeasured variables, 
calibrate surrogate mechanics models, and 
 Data Compression - extracting features from simulation 
and test data. 

 
Machine learning techniques enable us to estimate the 
system parameters with specified confidence intervals using 
historical data, predict the outcome by given a new input, 
identify adjustment to the system parameters to meet 
performance requirements (Zabaras 2003).  
 
Brodsky, Luo and Nash proposed and implemented the 
language CoReJava, which extends the programming 
language Java with Regression Analysis (RA), i.e. the 
capability to perform parameter estimation for a function. In 
a Java program, some parameters are not a priori known, but 
can be learned from training sets provided as input. Existing 
RA software typically requires inputting a data structure that 
describes the parametric functional form, or assumes this 
data structure to be fixed.  The problem, however, is that in 
many applications, a functional form is not explicitly 
available.  CoReJava allows the user to encode complex 
computational processes in Java, in which some parameters 
used are not a priori known. Unknown parameters can be 
learned from a training data set.  The CoReJava compiler 
analyzes the structure of the learning function method to 
automatically generate a constraint optimization problem, in 
which constraint variables correspond to parameters that 
need to be learned. The objective function to be minimized 
is the summation of squares of errors with respect to the 
training set, and then solves the optimization problem using 
the non-linear optimization solver - A Mathematical 
Programming Language (AMPL)/SNOPT. (Brodsky, et  al. 

2008) provides detail descriptions of language syntax, use, 
and semantics of CoReJava.  
 
AMPL is a comprehensive and powerful algebraic modeling 
language for linear and nonlinear optimization problems, in 
discrete or continuous variables. A few solvers such as 
CPLEX 11,  SNOPT, and MINOS are free to download 
from (Bell 2008). 
 
PROPOSED PARAMETER CALIBRATION AND 
VALIDATION METHODOLOGY 
 
The proposed novel validation methodology will focus on 
the parameter calibration and validation as shown in Figure 
2. A validated set of system parameters for a specific 
problem function will allow users to properly characterize 
the system under study. There is no universal model that 
would work with an unaltered set of parameters for all 
conditions. Adjustment of parameter values must be done 
within the range known for the parameters. Calibration 
assumes the availability of observed data to adjust model 
parameters in order to match model outputs to measured 
data.  
 
Depicted in Figure 3 is the model parameter calibration and 
validation approach. In practice, most of the validation 
processes do not start until the completion of M&S 
development. In our proposed methodology, the validation 
of the simulation model can be parallel to the development. 
First we build the simulation template with unknown key 
parameters included. We can think of it as a black-box 
model. To do this, we need to first analyze the data available 
and decide what we should measure and what parameters we 
do not know and need to be estimated. Then we start the 
parameter validation process, that is to find out the “correct” 
model parameters. This can be done by applying an RA tool. 
The RA module will find the best estimate of the unknown 
parameters by learning from the available training data sets. 
The training data sets may be either real world historical 
data or experiments data. RA is one of the metamodeling 
techniques for investigating and modeling the relationship 
between variables.  As input to RA, a parametric functional 
form can be either linear or non-linear, 
e.g., 332211321 ),,( xpxpxpxxxf  , and a set of training 

examples, e.g., tuples of the form , where is 

an experimental observation of the function f value for an 
input . The goal of RA is to find the unknown 

parameters, e.g.,  that “best approximate” the 

training set.  Once we find the optimal set of the parameters, 
we replace the variables in the simulation template with the 
parameters values. The simulation model then becomes a 
deterministic model or a white-box model. By feeding in 
new inputs, the simulation can produce and predict valid 
outputs.  When compare the simulation results to the 
historical data, we hope that the simulation will duplicate as 
closely as possible the collected data within a confident 
interval. If the comparison results are not satisfied, 
simulation template needs to be verified, or the parameters 
needs to be re-estimated using more data or new data, even 
the simulation model execution condition including input 
data needs to be checked to make sure sufficient runs are 
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performed. After iteratively comparing with the training data 
and modifying the model, we can eventually obtain a more 
validated model over that particular parameter domain and 
valid data range.  
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 Figure 3. Simulation model parameter validation 

 
ALIDATION METHOD FOR THE PROPOSED 

 order to validate the proposed technique, we need large 

e use a simple example to explain the proposed 

he manufacturer produces three products using three 

approach  

V
TECHNIQUE 
 
In
sets of historical data. Based on the different category of the 
collected data, we can divide the data into at least two 
groups, for example, use one set of data to train and next set 
of data to validate the result. We should use one of the 
groups as the RA training data, once we derived the best 
estimate model parameters values, the other data sets can be 
used to verify the result.  We can check if the differences 
between the simulation outputs and the real collected data 
are within a confident interval.  
 
W
methodology. Figure 4 depicts a simplified supply chain cost 
model, a functional form may be given that computes the 
total cost of manufacturing, given three products to be 
produced. This functional form may have unknown 
parameters, e.g., the unit costs and the required quantities of 
component materials to produce specific products. 
 
T
components. The quantities of component materials needed 
are functions of the required quantities of products. The cost 
of the produced products is the total cost of the required 
components. Thus, the cost of manufacturing is a function of 
the required quantities of products. However, the 
coefficients of this function, i.e. the unit cost of each 

component and the amount of each component material to 
produce 1 unit of each product may be unknown and subject 
to RA, which is provided by CoReJava. 
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Figure 4. A Simple supply chain cost example  
 

he example historical data as training data set is listed in 

 

  Table 1. Input learning set 

Product 1 Product 2 Product 3 Actual Total 

T
Table 1.  Each row is a learning set.  Each learning set 
includes three product quantities and the actual total cost 
recorded. The size of the table is decided by the 
information the user has collected (Brodsky, et al. 2008). 
 

 

Quantity Quantity Quantity Cost 
8 5 9 20 
9 7 6 18 
7 6 14 25 
10  11 12 29 
5.5 12.1  9.8 31.1
… … … … 
11.2 3 9.6 6.5 25.3
 

Figure 5 shows the simulation result using CoRejave for a 

For comparison purpose, a s ulation model of the same 

product set of (64.2, 50.4, 35.5) as inputs, i.e. the product1 
quantity is 64.2, product2 quantity is 50.4, and product3 
quantity is 35.5. We need to determine the actual total cost 
for this set of products. In Figure 5, the two-dimensional 
array reqMatQty represents the quantity of each required 
material to produce one unit of every product.  The array 
matUnitCost represents the unit cost of every material. The 
data includes the values of coefficients (matUnitsCost and 
reqMatQty arrays) and the total cost (Brodsky, et  al. 2008).  

 
im

problem was also developed using a simulation software, 
which does not have a RA module.  Data in Table 1 alone is 
not sufficient for constructing the model. Important data 
such as component unit price, and amount of components 
material needed is not available. A triangular distribution is 
typically used in a model for a source of randomness when 
no system data are available.  T (0.3, 1, 3) is chosen for that, 
we used the min_Bound value in CoReJava example as the 
minimum value of the triangular distribution, which is 0.3 
and used the max_Bound value in CoReJave example as the 
maximum value, which is 0.3, for the triangular distribution, 
then arbitrarily choose a mode value as 1. From the results 
showed in Figure 6, we can see that the results are far apart 
from the results of CoReJava. This is because the model did 

 



 

 

 
 

not incorporate the existing data sets. From the results 
comparison, we can see this model did not accurately 
describe the problem. By using the proposed technique, the 
parameters are ensured to be learned based on the past 
historical data. The model will properly represent the 
problem. The results will be within a confident interval of 
the existing data. That makes the proposed model more valid 
for the specific application.   
 

 
 
 
 
 
 
 
 
 

 
Figure 6. Same example modeled using distribution 

CONCLUSION 

&S techniques are increasingly used to solve problems 

his paper demonstrated a novel approach of unknown 
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