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ABSTRACT
In a 2007 paper entitled "Application of Failure Event Data to
Benchmark Probabilistic Fracture Mechanics (PFM) Computer
Codes" (Simonen, F. A., Gosselin, S. R., Lydell, B. O. Y.,
Rudland, D. L., & Wikowski, G. M. Proc. ASME PVP Conf.,
San Antonio, TX, Paper PVP2007-26373), it was reported that
the two benchmarked PFM models, PRO-LOCA and PRAISE,
predicted significantly higher failure probabilities of cracking
than those derived from field data in three PWR and one BWR
cases by a factor ranging from 30 to 10,000. To explain the
reasons for having such a large discrepancy, the authors listed
ten sources of uncertainties: (1) Welding Residual Stresses. (2)
Crack Initiation Predictions. (3) Crack Growth Rates. (4)
Circumferential Stress Variation. (5) Operating temperatures
different from design temperatures. (6) Temperature factor in
actual activation energy vs. assumed. (7) Under reporting of
field data due to NDE limitations. (8) Uncertainty in modeling
initiation, growth, and linking of multiple cracks around the cir-
____________________
(*) Contribution of the U.S. National Institute of Standards and
Technology (NIST). Not subject to copyright.

cumference of a weld. (9) Correlation of crack initiation times
and growth rates. (10) Insights from NUREG/CR-6674 (2000)
fatigue crack growth models using conservative inputs for
cyclic strain rates and environmental parameters such as
oxygen content. In this paper we design a Python-based plug-in
that allows a user to address those ten sources of uncertainties.
This approach is based on the statistical theory of design of
experiments with a 2-level factorial design, where a small
number of runs is enough to estimate the uncertainties in the
predictions of PFM models due to some combination of the
source uncertainties listed by Simonen et al (PVP2007-26373).
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Disclaimer: The views expressed in this paper are strictly
those of the authors and do not necessarily reflect those of their
affiliated institutions. The mention of names of all commercial
vendors and their products is intended to illustrate the
capabilities of existing products, and should not be construed
as endorsement by the authors or their affiliated institutions.

I. INTRODUCTION

Over the last thirty years following the 1979 nuclear accident at
Three Mile Island [1]1, much research has been done on the
development and application of inservice inspection (ISI),
failure event databases, and risk-informed fatigue modeling of
defect management for pressure vessels and piping [2-37]. The
good news is reflected in Figure 1, where Pietrangelo

_________________
1Figures in square brackets denote references listed at the end
of this paper.

[38, 39] showed in 2008 that the U.S. nuclear powerplant
average capacity factor increased from 66 % in 1990 to an
astonishingly high 91.8 % in 2007, resulting in a huge 39%
increase in the annual energy production of 104 power reactors
over a span of 17 years -- from 580 to 807 billion kilowatt-
hours per year -- without building since 1979 a single new
commercial reactor. On the other hand, some not-so-good
news was hinted in 2004 by Teather [40], who reported that

" . . . The fleet of reactors in the U.S. is aging,
however, and many are now applying for licences to
extend their lives.
"By the end of this year (2004), a third of the
existing plants, built to last for 40 years, will have
applied for licences to continue operating for
another 20."

Figure 1. U.S. Nuclear Plant Average Capacity Factor (1990 - 2007), after Pietrangelo [39].
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I. INTRODUCTION (CONT'D)

The problem of maintaining and safely operating an aging
equipment or structure is not unique to a nuclear powerplant, as
reported recently in a New York Times article by Cooper [41]:

" . . . More than a quarter of the nation's bridges
are structurally deficient or functionally obsolete.
Leaky pipes lose an estimated seven billion gallons
of clean drinking water every day. And aging
sewage systems send billions of gallons of
untreated wastewater cascading into the nation's
waterways each year."

Getting back to the highly-researched and heavily-regulated
problem of permitting a 40-year-old nuclear power plant to
operate for another 20 years, we show in Fig. 2 a specific result
of a Probabilistic Fracture Mechanics (PFM) simulation

using a computer code named "PC-PRAISE" for the surge-line
elbow of a Combustion Engineering plant in terms of
probabilities of crack initiation and through-wall cracks as a
function of time (after a 2000 NUREG/CR6674 report by
Khaleel, Simonen, Phan, Harris, and Dedhia [17]). In that
report, the authors [17, p. 9.7] stated:

" . . . It is seen that cracks initiate rather early in the
plant life. There is about a 50-percent probability of
initiating a fatigue crack after only 10 years of
operation.
" . . . Over this 10 years, about 50 percent of these
initiated cracks are predicted to grow to become
leaking cracks.
" . . . The frequency of through-wall cracks (lower
curve) increases significantly over this 10 years and
then remains relatively constant over the remainder
of the 60-year plant life."

Figure 2. Calculated Probabilities of Crack Initiation and Through-Wall Crack for the Surge-Line Elbow of the
Newer Vintage Combustion Engineering Plant (after Khaleel, Simonen, Phan, Harris, and Dedhia [17]).
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I. INTRODUCTION (CONT'D)

In that same report [17, p. 10.1], the authors concluded that,

" . . . The calculations gave a wide range of failure
probabilities for the selected components, with some
components having end-of-life probabilities of
through-wall cracks of nearly 100 percent and
others with probabilities of less than 10-6.

" . . . It is recognized that there are uncertainties in
these calculated failure probabilities and core
damage frequencies. Sources of the uncertainties
come from assumptions made in the fracture
mechanics and probabilistic risk analysis models
themselves and from the inputs to the models.

" . . . In particular, the inputs for cyclic stresses were
based on design-basis data, which could differ from
the stresses occurring during the actual plant
operation."

On the role of failure data in plant aging management, Chockie
and Gregor [29] presented in 2008 an assessment and a more
rational approach to the complex problem of failure event and
inservice inspection data collection, analysis, interpretation and
life extension decision making:

" . . . After almost forty years there is a vast amount of
data on operational performance of nuclear plants and
their systems, structures, and components (SSCs).

" . . . By understanding some of the key limitations of
the data sources, more effective use can be made of
the information gained from the analysis of the data.

" . . .This operational performance data and the resulting
information, in combination with an economic
assessment of the benefits and costs of various
options, is essential for effective aging management
and life extension decisions of the nuclear power
plants."

(boldface furnished by authors of this paper.)

Figure 3. A conceptual representation (after Fong and Marcal [30] and Fong, Ranson, Vachon, and Marcal [33])
of the information flow plus the uncertainties and potential errors associated with and inherent in Failure
Event Database-1 (Uncertainty-1, or, e1 ), Flaw Detection, Location & Sizing Database-2 (Uncertainty-2, or,
e2 ), Material Property Database-3 (Uncertainty-3, or, e3 ), Deterministic or Probabilistic Damage Models
(Uncertainty-M, or, eM ) and Remaining Life Estimates (Uncertainty-4, e4 ). Photo at the upper left corner is
from the 70-year-old Jonathan Hulton Bridge, built in 1909, of Pittsburgh, PA, courtesy of reference [42].
Photo at the lower left corner was taken by the first author (Fong) during a site visit to the bridge in 2006.
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I. INTRODUCTION (CONT'D)

As shown in Figure 3 (after Fong and Marcal [30] and Fong,
Ranson, Vachon, and Marcal [33]), the complex flow of
information, both qualitative and quantitative, from (1) failure
event reports, (2) ISI and NDE reports, (3) material testing
reports, (4) computer modeling simulations, and (5) remaining
life estimates for decision making, is associated with all sorts of
uncertainties and potential errors due to data collection,
interpretation, analysis, and modeling. For our purposes here,
let us associate each of the first three information categories
with the notion of a database plus a generic term of uncertainty
as follows:

DB-1: Failure Event Database with uncertainty e1

(global and local).

DB-2: Inservice Inspection (ISI) and NDE Database
with uncertainty e2 (local).

DB-3: Material Property Database with uncertainty
e3 (both global and local).

Two more sources of uncertainty, which should be but had not
been included yet in our representation map of Figure 3, need
to be identified and discussed. In Table 1, we introduce a
notation for all factors suspected of contributing uncertainties
to a class of fatigue life prediction models of an aging
structure:

Table 1. A List of Uncertainty-Contributing
Factors in 5 Categories of Databases

Nature of Symbol of Database
Factors Factors (Uncertainty)

Failure
mechanisms Fi , i = 1, 2, ... nF DB-1 (e1 )

NDE flaw
geometry Nj , j = 1, 2, ... nN DB-2 (e2 )

Material
property Mk , k = 1, 2, ... nM DB-3 (e3 )

Loadings and Important, but
constraints Lu , u = 1, 2, ... nL not treated here.

Physical-chemical Important
composition Pv , v = 1, 2, ... nP but not

(incl. dimensions)
treated here.

It is worth noting that engineers who manage the integrity of an
aging structure need to learn how to collect, analyze, and
interpret both the "global" and the "local" types of information
about the "health" of that structure, much as the way a medical
doctor has been doing for years in treating an elderly patient
using published health statistics (global) from a well-defined
population, and the hematology, blood chemistry, bone density,
and urinalysis data (local) of a patient over a period of time.

In Figure 3, we have also introduced a notation for a
mathematical model, M . In general, M is made up of (1)
governing equations based on known or plausible physical,
chemical, and biological laws, (2) geometric parameters,
material property coefficients and physical constants (also
known as factors), (3) loadings and constraints in the form of
initial and boundary conditions, and (4) discretization and
computational algorithm parameters including software and
hardware specifics if the model is solved numerically on a
computer.

If we consider M as a black box, and if we know that the
governing equations are not fully understood and the list of
parameters that define M contains some not yet identified in
Table 1, it is incumbent upon us to introduce another
uncertainty source, eM , that is intrinsic to M and collectively
represents all additional uncertainties inside the black box.

In Figure 3, we have also introduced a result uncertainty, e4 ,
that should depend on the four source uncertainties identified
so far, i.e.,

e1 - associated with failure event database-1 ,

e2 - associated with flaw detection/location/sizing-2 ,

e3 - associated with material property database-3 ,

eM - associated with crack-growth/damage modeling ,

such that the fatigue remaining life estimates of an aging
structure will have a result uncertainty denoted by

e4 - associated with remaining life estimates .

In other words, we assume the existence of an explicit (or
implicit as the case may be) functional representation of e4

as follows:

e4 = f ( eM , e1 , e2 , e3 , . . . ), (1)

where the three dots represent uncertainties due to those factors
listed in Table 1 but not treated in this paper.
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I. INTRODUCTION (CONT'D)

To address and estimate the five types of uncertainties
identified above, we have developed an approach based on the
statistical theory of design of experiments (see, e.g., Box,
Hunter, and Hunter [43], Croarkin, et al. [44]) and implemented
with a public-domain software package named DATAPLOT
(see Filliben and Heckert [45], Fong, et al. [46-49]). To report
our findings, we have prepared a series of four papers for
presentation at the July 27-30, 2009 ASME PVP Conference in
Prague. Those four papers are:

e1 - Fong-Marcal-Yamagata [50].

e2 - Fong-Marcal-Hedden-Chao-Lam [51].

e3 - Fong-Marcal [52].

eM and e4 - Fong-deWit-Marcal-Filliben-Heckert-
Gosselin [ This paper ].

The goals of this paper are two-fold:

(a) To present a summary of the findings of the first three
papers [50, 51, 52] as an introduction to this paper.

(b) To present an uncertainty estimation plug-in tool named
PD-UP [49, 53] with four examples of learning something
about the function f in Eq. (1) such that one may rank
the relative importance of all possible factors and their
interactions as contributors to the result uncertainty, e4 ,
and, if two or three factors were found "dominant," one
might use a simple linear least square fit algorithm to
estimate e4 .

In Sect. II, we address the problem of better managing a failure
event database, DB-1 , and estimating its e1 by briefly
describing a new artificial intelligence (AI) tool named ANLAP
(abbrev. for automatic natural language abstracting and
processing). As described more fully in [50] by Marcal, Fong,
and Yamagata, this information extracting tool and its computer
linkage with statistical and finite element analysis packages
may minimize chances of human errors when a time-critical
operating decision had to be made involving the mining of a
massive amount of technical reports and a probabilistic
modeling of the aging behavior of a complex system such as a
nuclear power plant.

In Sect. III, we address the problem of better managing an ISI
and NDE database, DB-2 , and estimating its e2 by briefly
describing the use of a DEX-based and DATAPLOT-
implemented 10-step analysis tool due to Filliben and Heckert
[45]. Again, as described more fully in [51] by Fong, Marcal,
Hedden, Chao, and Lam, this analysis tool allows a user to rank

the relative importance of field-based NDE processing factors
and obtain a quantitative estimate of the uncertainty of ISI-
generated information such as crack detection, location, and
sizing.

In Sect. IV, we address the problem of better managing a
material property database, DB-3 , and estimating its e3 by
briefly describing a PYTHON-based link-up of the two new
tools, ANLAP and DATAPLOT-10-Step-Analysis. Again, as
described more fully in [52] by Fong and Marcal, the design of
a new plug-in named PDA (Python-Dataplot-Anlap) is reported
and illustrated with an application to a high temperature
mechanical property database for modeling fire-structure
interactions. This completes our goal (a) for summarizing the
findings of Refs. [50, 51, 52].

In Sect. V, we describe the design and implementation of an
uncertainty estimation plug-in named PD-UP that has been
reported elsewhere by Fong, et al. [49] . We will use
extensively this plug-in in subsequent examples involving a
probabilistic fracture mechanics (PFM) model, its
computational code named PC-PRAISE [17, 27], and the
calculation of a quantity named "Cumulative Average Leak
Probability (CALP)" over a period of 60 years for a 40.0-cm
(15.75-in) diameter, 6.35-cm (2.50-in) wall thickness, 316-NG
grade stainless steel pipe hot leg in a water environment with a
heat-up-and-cool-down transient event of a maximum
temperature surge of 588.56 K (600 F) every 20 years.

In Sect. VI, we present the input and output details of a typical
Monte-Carlo-based PFM run using PC-PRAISE [17, 27] to
calculate CALP, where the distributions of four of the twenty-
plus factors identified in the computational model are specified
with estimated mean and standard deviation. We adopt the
conventional practice of changing one factor at a time to all
factors other than those four with distribution parameters to see
how the results are affected. Such practice also entails a
design of experiment, but the resulting DEX is not orthogonal
and has been shown to yield incorrect results (see Ref. [43, p.
312]).

In Sections VII through X, we describe four case studies where
we apply the DEX approach and use PD-UP to conduct a new
benchmarking exercise on PC-PRAISE. This exercise allows
us to rank the importance of any choice of model parameters
suspected of being the major sources of uncertainty [27], and to
obtain new estimates of the mean and 95% confidence intervals
of CALP that are significantly different from those predicted by
PC-PRAISE [17, 27].

A discussion of the significance of our results, some concluding
remarks, and a list of references appear in Sections XI, XII,
and XIII, respectively. A truncated version of an output file of
a typical PC-PRAISE run with key distributional parameter
information is given in Appendix A.
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II. FAILURE EVENT DATABASE DB-1

Failure event reports and their summaries, e.g., a weekly report
of the U.S. Department of Energy (DOE) - Office of Nuclear
and Facility Safety [14], are usually written in a natural
language such as English or Japanese, with data buried in
unstructured text. Extraction of information from such text is
usually done by engineers to create failure event databases
(DB-1 ) for analysis and uncertainty (e1 ) estimation. The
extraction process is slow, costly, and prone to human errors,
which can cause a reduced effectiveness of DB-1 as a critical
tool for managing aging structures.

In the first of a series of papers on managing database
uncertainties, Marcal, Fong, and Yamagata [50] describes an
artificial intelligence (AI) tool named ANLAP [53], which is
based on a semantic parsing of a natural language text
originally due to Schank [54, 55]. ANLAP is interactive in
the sense that a user is first prompted to specify the headings of
a table of the extracted information desired by the user. ANLAP

is then linked to a public-domain statistical analysis package
named DATAPLOT [45] to produce report-quality graphics and
data analysis at any level of sophistication.

To illustrate this capability, we show in this paper the results of
an exercise based on a 1998 DOE report [14], Section 1 on
Spread of Contamination at Hanford (see Figures 4 and 5).

In Figures 6 and 7, we present the printout of ANLAP output
files using two DATAPLOT codes named "pedro9.dp" and
"pedro9pie.dp." The full text of the specific section of that
report is given in [49]. Before linking up with DATAPLOT, the
ANLAP output file is a table of two rows of information,
namely, a row of headings specified by the user, followed by a
second row of data as presented in Figures 6 and 7.

In Figure 8, we add a fictitious set of data for a period prior to
that of the real data in order to demonstrate some data analysis
capability of the ANLAP-DATAPLOT link, because one needs
two rows of data to compute mean and standard deviation).
The result is given in Figure 9.

Figure 4. Cover Page of a 1998 DOE weekly report
on operating experience of nuclear facilities [14].

Figure 5. Table of Content Page of a 1998 DOE
weekly report on operating experience [14].
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II. FAILURE EVENT DATABASE DB-1 (CONT'D)

Figure 7. Printout of an ANLAP output file, c:\CD_data\fong202.pdf, using a DATAPLOT code, "pedro9pie.dp."

Figure 6. Printout of an ANLAP output file, c:\CD_data\fong201.pdf, using a DATAPLOT code, "pedro9.dp."
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II. FAILURE EVENT DATABASE DB-1 (CONT'D)

Figure 9. Printout of an ANLAP output file, c:\CD_data\fong204.pdf, using a DATAPLOT code, "pedro11.dp."

Figure 8. Printout of an ANLAP output file, c:\CD_data\fong203.pdf, using a DATAPLOT code, "pedro10.dp."
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III. ISI AND NDE DATABASE DB-2
In a 2008 PVP conference paper by Fong, Hedden, Filliben,
and Heckert [32], a prototype web-based NDE data analysis
methodology to estimate the reliability of weld flaw detection,
location, and sizing was described with an example application
to the 1968 ultrasonic testing (UT) data of weld seam in PVRC
test block 251J and the 1984 sectioning data of the same block
implanted with 15 flaws of 4 types.

The methodology was based on the statistical theory of design
of experiments (see Box, Hunter, and Hunter [43] and Fong et
al [46-49]). A user needs to identify a number of possible
factors contributing to the uncertainty of a UT procedure, and
to run a few well-designed experiments to rank the relative
importance of those factors and find a relationship between the
source uncertainties and the result uncertainty.

In that 2008 example [32], five factors were identified as
potential contributors of uncertainty to the UT process of Team
A in finding an implanted 2-inch crack. They were: (X1)
Operator's experience. (X2) UT machine age. (X3) Cable

length. (X4) Transducer Probe Angle. (X5) Plastic shoe
thickness. As shown in Figures 10 and 11, the resulting
analysis using judgment-based fictitious data concluded that the
UT operator's experience (X1) and the transducer probe angle
(X4) are the two dominant factors contributing to the
uncertainty of the Team A's UT results. Again, using the best-
judgment-based but fictitious design of experiments (DEX)
data, one can rank the relative importance of a large number of
factors, identify the two or three dominant ones, and apply a
linear least square fit model to estimate the mean and 95%
confidence intervals of the crack size as shown in Figure 12.

As a follow-up of that 2008 paper, Fong, Marcal, Hedden,
Chao, and Lam [51] extended a recently developed Python-
Dataplot Uncertainty Plug-In (PD-UP, see [49]) as a Web-based
Uncertainty Plug-In (WUPI) to automate the 2008
methodology such that, for a given NDE database. DB-2 , a
user can quickly obtain its uncertainty, e2 , as one of three
types of input to fatigue crack growth models. This specific
application to a probabilistic fracture mechanics model is
described in Sect. VI.

Fig. 10. Step 3 of a 10-step analysis showing the main effects of a 5-factor, 8-run, 2-level fractional factorial
design-of-experiments-based exercise (k = 5, n = 8). Note X1 and X4 are dominant (after Fong, et al [32]).
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III. ISI AND NDE DATABASE DB-2 (CONT'D)

Fig. 11. Step 7 of a 10-step analysis showing the main and interaction effects of a 5-factor, 8-run, 2-level
fractional factorial design-of-experiments-based exercise (k = 5, n = 8). Note X1 and X4 are dominant (after Fong,

et al [32]).

Fig. 12. Step 10 of a 10-step analysis showing a contour plot of the two dominant factors, X1, and X4. The plane
behavior of the plot confirms that the 2-term interactions are negligible. The two-parameter least square fit

model gives an estimated crack size with 95% confidence half-interval as 2.045 (0.535) in. (after Fong, et al [32]).
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IV. MATERIAL PROPERTY DATABASE DB-3
As mentioned in Sect. I, material property databases, DB-3,
contain both global and local information, and it is essential to
report with care its uncertainty, e3 . By and large, most DB-
3's are global, and there is a long history of research in
computer-assisted DB-3 dating back to the early 1970s with
advances in structural English query languages [56-58] and to
the early 1980s with the arrival of PC's and expert systems [59-
66].

Again drawing on the medical analogy of distinguishing health
statistics databases (global) that set the "normal" ranges of a
healthy person, from the historical data of a patient's blood
chemistry, etc. (local), engineers need to know how to interpret
uncertainty e3 of a global DB-3 in the context of a "usable"
uncertainty of a local one, when such input is needed for
predictive fatigue life models such as PC-PRAISE. To
illustrate this point, we offer three examples from recent papers
[33, 68, 69] and a new tool in the third of this 4-paper series by
Fong and Marcal [52] as detailed below:

4.1. In a global DB-3 reported by Gerberich and Moody [70]
and discussed by Fong, Ranson, Vachon, and Marcal [33], a
strong variation of the crack growth law exponent m with test

temperature for iron and various steels at R-ratios near zero is
shown in Figure 13. Note the spread of m at 300 K is about a
factor of two.

4.2. In a local DB-3 reported by Interrante and Hicho [67]
and benchmarked by Interrante, Fong, Filliben, and Heckert
[68], a strong variation of the Charpy V-notch energy with test
temperature for an ASTM A517 Grade H steel plate is shown in
Fig. 14. That in turn caused a strong variation of the estimated
static crack initiation toughness value as shown in Fig. 15.

4.3. In a local DB-3 reported by Sherry, Lidbury, and
Beardmore [72] and benchmarked by Chao, Fong, and Lam
[69], a global uncertainty e3 estimated for the static crack
initiation toughness, as shown in Fig. 16, takes the value of
13.68 as the 95% confidence half-interval, whereas the local
e3 estimated by a tolerance-interval-based approach [69] for a
99% coverage and 95% confidence takes the value of 23.10,
which is about 70% higher than the global one.

4.4. The extrapolation of e3 in a global DB-3 to a local
one is automated by Fong and Marcal [52] in the design of a
Dataplot-Python-Anlap (DPA) plug-in with an application in
modeling fire-structure interactions using a high-temperature
mechanical property database created by NRIM in Japan [73].

Fig. 13. Variation of the exponent m with test temperature for iron and various steels at R-ratios
near zero (after Gerberich and Moody [70]). Note that for Fe-2.4%Si (solid diamond), the spread of m
is wide, ranging from 21 at 120 K to 5 at 293 K. After Fong, Ranson, Vachon, and Marcal [33].
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IV. MATERIAL PROPERTY DATABASE DB-3 (CONT'D)

Fig. 14. Comparison of an estimated Charpy V-notch energy at 120 oF (48.9 oC) based
on a DEX-generated fictitious data set for an ASTM A517 Grade H steel plate (620 MPa
min. room temperature yield strength), with the same experimental data reported by
Interrante and Hicho [67] in 1973. After Interrante, Fong, Filliben and Heckert [68].
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IV. MATERIAL PROPERTY DATABASE DB-3 (CONT'D)

Fig. 15. Plot of an estimated static crack initiation toughness ( KIc ) value with an expression of uncertainty
(error bar in red) based on fictitious design-of-experiments-generated results at 120 oF (48.9 oC), in a K vs. (T -
RTNDT) diagram where KIc and KIa data from three thermal shock experiment (TSE) test cylinders, TSE-5, 5A,
and 6, and ASME Section XI KIc and KIa curves over a broad range of temperature shift, (T - RTNDT), were
plotted by Cheverton et al [71]. Note that all experimental data or design curves are for comparable steels
having an room temperature yield strength of about 90 ksi (620.6 MPa). After Interrante, Fong, Filliben and
Heckert [68].

Fig. 16. Comparison of the estimated mean and standard deviation of KIc at -90 C based on a 8-
factor, 17-run DOE-generated fictitious test data for ASTM A533 Grade B-1 steel plate (580.6 MPa yield
strength at -90 C), with KIc data of a validation experiment using same grade of steels of comparable
yield strength (see Sherry, Lidbury, and Beardmore [72]). After Chao, Fong, and Lam [69].
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V. A PYTHON-DATAPLOT UNCERTAINTY PLUG-IN
Before introducing an uncertainty estimation plug-in, we offer
a a brief introduction of the theory of Design of EXperiments
(DEX) and the 10-step DATAPLOT-based analysis [45] to
readers unfamiliar with those tools. Those familiar with them
may wish to skip and go directly to a description of PD-UP.

5.1 What is DEX ?
Ans. Given a model with well defined input variables,
parameters, and response variables, we conduct a virtual
experiment by changing one or more physical process variables
(to be called factors) in order to observe the effect the changes
have on one or more response variables. A design of such
virtual experiment (DEX) begins with determining the
objectives of such experiment and selecting the process factors
for the study. An experimental design is the laying out of a
detailed experimental plan in advance of doing the experiment.
The statistical theory underlying DEX begins with the concept
of process models. A process model of the 'black box' type is
formulated with several discrete or continuous input factors
that can be controlled, and one or more measured output
responses. The output responses are assumed continuous. Real
or virtual experimental data are used to derive an empirical
(approximate) model linking the outputs and inputs. These
empirical models generally contain first-order (linear) and
second-order (quadratic and interactions) terms.

5.2 What is a first order model ?
Ans. A first-order model with only three factors, X1, X2 and
X3 , can be written as

Y= X1+2X2+3X3+12X1X2+13X1X3+23X2X3 + errors (2)

Here, Y is the response for given levels of the main effects X1 ,
X2 and X3, and the X1X2 , X1X3 , X2X3 terms are included to
account for a possible interaction effect between X1 and X2 , X1

and X3 , X2 and X3 , respectively. The constant 0 is the

response of Y when both main effects are 0. In one of the
examples that follows, we use a linear model with five factors
and one response variable, and the total number of terms on the
right hand side of eq. (2) is 25 , or 32.

5.3 How does one selecte factors and responses ?
Ans. Process variables of an experiment include both inputs
(factors) and outputs (responses). The selection criteria are:

(a) Include all important factors (based on judgment).
(b) Be bold in choosing the low and high factor levels.
(c) Check the factor settings for impractical or

impossible com-binations, such as very low
pressure or very high gas flows.

(d) Include all relevant responses.
(e) Avoid using only responses that combine two or

more measurements of the process. For example, if
interested in the ratio of two rates, measure both
rates, not just the ratio.

We have to choose the range of the settings for input factors,
and it is wise to give this some thought beforehand rather than
just try extreme values.

5.4 How does one select an experimental design?
Ans. The most popular experimental designs are two-level
designs. Why only two levels? There are a number of good
reasons why two is the most common choice amongst
engineers; one reason is that it is ideal for screening designs,
simple and economical; it also gives most of the information
required to go to a multilevel response surface experiment if
one is needed. The standard layout for a 2-level design uses +1
and -1 notation to denote the "high level" and the "low level"
respectively, for each factor. For example, the matrix below

Factor 1 (X1) Factor 2 (X2)
Trial 1 - 1 - 1
Trial 2 +1 - 1
Trial 3 - 1 +1
Trial 4 +1 +1

Fig. 17. (left) A full-factorial 8-run orthogonal design for 3 factors.
(right) A fractional factorial 4-run orthogonal design for 3 factors.
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V. A PYTHON-DP UNCERTAINTY PLUG-IN (CONT'D)

describes an experiment in which 4 trials (or runs) were
conducted with each factor set to high or low during a run
according to whether the matrix had a +1 or -1 set for the
factor during that trial. If the experiment had more than 2
factors, there would be an additional column in the matrix for
each additional factor. For example, a 3-factor full factorial
design is represented by the following matrix:

Order of Run X1 X2 X3
1 - 1 - 1 - 1
2 +1 - 1 - 1
3 - 1 +1 - 1
4 +1 +1 - 1
5 - 1 - 1 +1
6 +1 - 1 +1
7 - 1 +1 +1
8 +1 +1 +1

5.5 What is a 2-level full factorial DEX?
Ans. A common experimental design is one with all input
factors set at two levels each. These levels are called 'high' and
'low', or '+1' and '-1', respectively. A design with all possible
high/low combinations of all the input factors is called a full
factorial design of experiments in two levels. If there are k
factors, each at 2 levels, a full factorial DEX has 2k runs. Fig.
17 (left) is a graphical representation of a 2-level, 3-factor, 23

or 8-run full factorial DEX. This implies eight runs (not
counting replications or center point runs). The arrows show
the direction of increase of the factors. The numbers '1'
through '8' at the corners of the design box reference the
"Standard Order" of runs (also referred to as the "Yates Order",
see Croarkin, et al [51]). When the number of factors is 5 or
greater, a full factorial DEX requires a large number of runs
and is not very efficient. This is where a need for a fractional
factorial DEX comes in.

5.6 What is a Center Point in a 2-level design?
Ans. To introduce the concept of a center point, we again
refer to Fig. 17 (left), a graphical representation of a two-level,
full factorial design for three factors, namely, the 23 design. As
mentioned earlier, we adopt the convention of +1 and -1 for
the factor settings of a two-level design. When we include a
center point during the experiment, we mean a point located in
the middle of the design cube, and the convention is to denote a
center point by the value "0".

5.7 What is a 2-level fractional factorial DEX?
Ans. A fractional factorial DEX is a factorial experiment in
which only an adequately chosen fraction of the treatment
combinations required for the complete factorial experiment is
selected to be run. In general, we pick a fraction such as ½, ¼,
etc. of the runs called for by the full factorial. We use various
strategies that ensure an appropriate choice of runs. Properly
chosen fractional factorial designs for 2-level experiments have

the desirable properties of being both balanced and orthogonal.
For example, the following matrix represents a 3-factor half-
factorial design:

Order of Run X1 X2 X3 (X1*X2)
1 (new), 5 (old) - 1 - 1 +1
2 (new), 2 (old) +1 - 1 - 1
3 (new), 3 (old) - 1 +1 - 1
4 (new), 8 (old) +1 +1 +1

A comparison of the half-fractional factorial design, as shown
in Fig. 17 (right), with that of the full factorial design shown in
Fig. 17 (left), reveals the balanced and orthogonal nature of the
DEX concept.

5.8 What is a 10-step DEX-based Exploratory Data Analysis ?
Ans. Let us introduce the so-called Exploratory Data
Analysis (EDA_ approach of DATAPLOT to a screening
problem in experimental design and its 10-step algorithm. In
general, there are two characteristics of a screening problem:
(a) There are many factors to consider. (b) Each of these
factors may be either continuous or discrete. The desired
output from the analysis of a screening problem is:

1. A ranked list (by order of importance) of factors.
2. The best settings for each of the factors.
3. A good model.
4. Insight.

The essentials of the screen problem are:

1. There are k factors with n observations.
2. The generic model is

Y = f (X1, X2, ..., Xk) (3)

In particular, the EDA approach implemented in DATAPLOT is
applied to 2k full factorial and 2k-p fractional factorial designs.
Let us introduce a 10-step EDA process for analyzing the data
from 2k full factorial and 2k-p fractional factorial designs as
follows:

Step 1. Ordered data plot.
Step 2. DEX scatter plot.
Step 3. DEX mean plot.
Step 4. Interaction effects matrix plot.
Step 5. Block plot.
Step 6. DEX Youden plot.
Step 7. |Effects| plot.
Step 8. Half-normal probability plot.
Step 9. Cumulative residual standard deviation plot.
Step 10. DEX contour plot of two dominant factors.

Each of these plots will be presented with the following format:

1. Purpose of the plot. 2. Output of the plot.
3. Definition of the plot. 4. Motivation for the plot.
5. An example of the plot. 6. An interpretation of the plot.
7. Conclusions we can draw from the plots. [THE END].
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V. A PYTHON-DP UNCERTAINTY PLUG-IN (CONT'D)

In Fig. 18, we show a conceptual design of a DEX-based
uncertainty plug-in, PD-UP, where a user is required to have
access to a well-defined computational model such as an
ABAQUS input file [46] or a Fortran code named PC-PRAISE
[17]. In addition, the user is required to have identified k
number of factors, X1, X2, . . ., Xk, with a known set of base
values that defines the center point of a 2-level DEX.

As shown in Fig. 19, the user is prompted by Button_1 of PD-
UP (v. 1.0) to answer a few questions on the nature of the k
factors and their individual percentage variations. All factors
are assumed to be continuous variables in the first version of
PD-UP. Discrete variables will be allowed in a future version
of the plug-in. A typical output file created by PD-UP for a 3-
factor, 2-level design is given in Fig. 20. Button_1 is also
known as the k-button, because it requires a user's input of k .

The second button, also known as the n-button or Button_2,
provides the user with a choice of either a full factorial DEX, in
which case, n = 2k , or a number of fractional factorial DEX,
with n ranging from 2k-1, down to 2k-2, etc. until n reaches its
lowest possible number that must be at least one greater than k.
.

Once the user specifies a value of k in Button_1 (Fig. 19) and
a value of n in Button_2 (Fig. 21), an orthogonal DEX, either a
full or a fractional factorial one, is created by PD-UP. This is
followed by n number of computer runs plus a center point,
either automatically by a PD-UP adjunct utility code or
manually by the user. The results of the n+1 computer runs
are stored in a file created by Button_2, as shown in Fig. 22 for
a 3-factor, 9-run, 2-level DEX.

The third button, also known as the review and 10-step button
(Button_3), provides the user an opportunity to verify the
intended values of k , n , base values of k factors, percentage
variations of the k factors, names and symbols of the k factors,
and the name, symbol, and n+1 values of the result variable.
This is shown in Fig. 20. The lower left window entitled "DOE
Table for review" uses DOE as an alternative acronym for
DEX, a practice we have discontinued to avoid a confusion
with the official acronym of the U.S. Department of Energy.

After the user approves the three windows, a 10-step analysis
of the DEX-based result data is carried out using a DATAPLOT
code named "pedro7.dp." More details appear in Ref. [46].

Fig. 18. A Conceptual Design of the Python-Dataplot-Uncertainty Plug-In.

Any
Computational

Model with
simulations for

a specific
design of

experiments
(DEX) specific DEX
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V. A PYTHON-DP UNCERTAINTY PLUG-IN (CONT'D)

Fig. 20. A PD-UP Button_1 output file named DpGuiOut_1.txt created for a 3-Factor PC-PRAISE DEX-1 Run.

Fig. 19. Button_1 to define k factors and enter their variability
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V. A PYTHON-DP UNCERTAINTY PLUG-IN (CONT'D)

Fig. 22. A PD-UP Button_2 output file named DpGuiOut_2.txt created for a 3-Factor, 8-RUN+Center-
Point PC-PRAISE DEX-1 Simulation Run for Estimating Mean and Confidence Intervals of CALP-40.

Fig. 21. Button_2 to choose n runs for a ( k, n ) design and enter results.
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V. A PYTHON-DP UNCERTAINTY PLUG-IN (CONT'D)

Fig. 23. Button_3 with two of three output screens.
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VI. A TYPICAL PIPE LEAK PROBABILITY MODEL
In a 2000 landmark study by Khaleel, Simonen, Phan, Harris,
and Dedhia [17] entitled "Fatigue Analysis of Components for
60-Year Plant Life," the authors compared through-wall crack
(TWC) frequencies at the end of a 40-year plant life to those at
the end of a 60-year plant life, and component-failure
probabilities for a reactor water environment with those for an
air environment. The authors concluded from their computer
models using a Fortran code named PC-PRAISE [17] that

". . .the critical components with the highest probabilities
of failure can have through-wall crack frequencies
that are on the order of about 5x10-2 per year.
However, these components show little or no increase
in the failure frequency from 40 years to 60 years.

" ... Calculated core-damage frequencies for the
components with the highest failure frequencies show
essentially no increase in core-damage frequency
from 40 to 60 years."

At a time when nuclear plant operators were requesting license
renewal for extending the permissible plant life from 40 to 60
years [40], those conclusions were most reassuring.

However, Simonen, Gosselin, Lydell, Rudland, and Wikowski
[27] in a 2007 computer model benchmarking study reported
significant differences between the model-predicted proba-
bilities and those derived from field data (DB-1) in three
pressurized water reactor (PWR) and one boiling water reactor
(BWR) cases by factors ranging from 30 to 10,000.

Fig. 24. A plot of the cumulative average leak probability (CALP) versus time based on the output file of a PC-
PRAISE (v. 4.42) run using 4 distributional parameters (red) and 20+ constants as shown in Table 2. Table 2 also
lists a history of the standard deviation, , of CALP, which is quite small and requires magnification for visuals.
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VI. A TYPICAL CALP RUN USING PRAISE (CONT'D)

Table 2. PIPING RELIABILITY ANALYSIS INCLUDING SEISMIC EVENTS (PRAISE)
PC-PRAISE VERSION 4.42

EXECUTED ON 03/17/2009 AT 8:53p
ECHO-PRINT OF INPUT DATA IN FILE X230.DAT

=============================================================================================
1>HOT-LEG FILE=HL0X23 PROB-CALC SIM=10^4 90 CRKS
2> 3 0 90 -4 0 1.100 0 14 688 7225 0 0
3> -100 1 2 0 -0.2 0 0 0 0 0 0 0 0 0 0 0
4> 0 .015 0.01 0.118 0.0789 0.0001 0 0 1.0
5> 60.0 .200E+00 0 0
6> 2.500 14.50 10.0
7> 8.19 1.16 6.327E-07 1.141E-06 1.0
8> .3970E+02 .3970E+01 10.0 25.0 19.4 106.0 25800.0 5.00
9> 60.0 6.0 0

10> .100E+01 .500E+02 -3.50 -1.20
11> 2.08 8.58 2.250 -3.00 .100E+01 .000E+00
12> 6 9 100 100
13> .010 .100 .200 .300 .400 .500 .600 .700
14> .800
15> 1.000 2.000 3.000 4.000 5.000 6.000
16> 1 20.0 600. HEAT-UP AND COOL-DOWN
17> .001000 1
18> 1000 .00008 590. # 1 HIGH-STR/LOW-CYCLE SEE NOTES BELOW 500000 CYCLES/40 Y
19> .001000 2 37.790

LEAK DETECTION AND DEFINITION PARAMETERS
DETECTABLE LEAK (GPM) = 1.00
BIG LEAK (GPM) = 50.00

- - - HOT-LEG FILE=HL0X23 PROB-CALC SIM=10^4 90 CRKS - - -
- - - RESULTS WITHOUT EARTHQUAKES - - -

SEISMIC CLASS INFORMATION
CLASS SIGEQ SGLCEQ CYCLES COV F-BM
0 .0000E+00 .000 0 .0000

PROBABILITY OF FAILURE FOR UNCRACKED PIPE AND INTERPOLATED VALUES
----------------------------------------------------------------------------------------------------------

TIME AVG LEAK AVG BIG LEAK AVG LOCA SIGMA LEAK SIGMA BIG LEAK SIGMA LOCA
----------------------------------------------------------------------------------------------------------

.000 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
2.000 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
4.000 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
6.000 1.00000E-04 0.00000E+00 0.00000E+00 1.00000E-04 0.00000E+00 0.00000E+00
8.000 4.00000E-04 0.00000E+00 0.00000E+00 1.99970E-04 0.00000E+00 0.00000E+00

10.000 2.40000E-03 1.10000E-03 0.00000E+00 4.89334E-04 3.31497E-04 0.00000E+00
12.000 1.49000E-02 9.10000E-03 0.00000E+00 1.21159E-03 9.49636E-04 0.00000E+00
14.000 5.52000E-02 4.08000E-02 0.00000E+00 2.28382E-03 1.97836E-03 0.00000E+00
16.000 1.29000E-01 1.02500E-01 1.00000E-04 3.35217E-03 3.03320E-03 1.00000E-04
18.000 2.27500E-01 1.86600E-01 1.00000E-03 4.19239E-03 3.89610E-03 3.16085E-04
20.000 3.11800E-01 2.54600E-01 2.20000E-03 4.63252E-03 4.35658E-03 4.68549E-04
22.000 3.83700E-01 3.09000E-01 2.60000E-03 4.86311E-03 4.62104E-03 5.09264E-04
24.000 4.47400E-01 3.56700E-01 2.80000E-03 4.97250E-03 4.79049E-03 5.28435E-04
26.000 5.01100E-01 3.92900E-01 2.90000E-03 5.00024E-03 4.88419E-03 5.37762E-04
28.000 5.45800E-01 4.21900E-01 3.00000E-03 4.97923E-03 4.93887E-03 5.46928E-04
30.000 5.85600E-01 4.46000E-01 3.00000E-03 4.92643E-03 4.97100E-03 5.46928E-04
32.000 6.22000E-01 4.68100E-01 3.00000E-03 4.84912E-03 4.99006E-03 5.46928E-04
34.000 6.53300E-01 4.85000E-01 3.00000E-03 4.75943E-03 4.99800E-03 5.46928E-04
36.000 6.82200E-01 4.99300E-01 3.00000E-03 4.65645E-03 5.00025E-03 5.46928E-04
38.000 7.07500E-01 5.10900E-01 3.00000E-03 4.54933E-03 4.99906E-03 5.46928E-04
40.000 7.31300E-01 5.22600E-01 3.00000E-03 4.43306E-03 4.99514E-03 5.46928E-04
42.000 7.50600E-01 5.31800E-01 3.00000E-03 4.32687E-03 4.99013E-03 5.46928E-04
44.000 7.71900E-01 5.39300E-01 3.00000E-03 4.19628E-03 4.98478E-03 5.46928E-04
46.000 7.87300E-01 5.45700E-01 3.00000E-03 4.09238E-03 4.97932E-03 5.46928E-04
48.000 8.02100E-01 5.50800E-01 3.00000E-03 3.98436E-03 4.97438E-03 5.46928E-04
50.000 8.15500E-01 5.56600E-01 3.00000E-03 3.87911E-03 4.96811E-03 5.46928E-04
52.000 8.28600E-01 5.61600E-01 3.00000E-03 3.76877E-03 4.96216E-03 5.46928E-04
54.000 8.41100E-01 5.65400E-01 3.00000E-03 3.65601E-03 4.95729E-03 5.46928E-04
56.000 8.50000E-01 5.68200E-01 3.00000E-03 3.57089E-03 4.95352E-03 5.46928E-04
58.000 8.60500E-01 5.71200E-01 3.00000E-03 3.46485E-03 4.94929E-03 5.46928E-04
60.000 8.68200E-01 5.73800E-01 3.00000E-03 3.38290E-03 4.94548E-03 5.46928E-04

N2: crack shape ellipticity (b-a)

M2: crack growth law exponent (m)

M5: mean flow stress

M6: Ultimate tensile
strength

Cumulative Average Leak
Probability (CALP)

Sigma Leak
( leak-)
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VI. A TYPICAL CALP RUN USING PRAISE (CONT'D)
In Fig. 24, we show a plot of the cumulative average leak
probability (CALP) of a 316-NG stainless steel pipe hot log vs.
time based on the output file of a PC-PRAISE run using 4
distributional parameters, N2, M2, M5, M6 , with values
given in Table 2. We also plot the 2confidence intervals,
magnified 5 times for visual effects, using the leak-data also
listed in Table 2.

In computing failure probabilities including CALP, the authors
of PC-PRAISE assumed the crack propagation to start from a
3-mm (0.118-in) deep initiated flaw, and stated in their 2000
report [17, p.3.2] ". . . not to include the initial crack depth as a
variable to be simulated by the probabilistic model." Many
NDE studies including ours [10, 11, 20, 21, 24, 28, 32, 33]
showed the uncertainty in the size of a detected crack to be

somewhat large, so we decided to run the same PC-PRAISE
code with a simple, straight 20% increase in N1, the initial
crack depth parameter that were held constant in all previous
calculations.

Our result is plotted in Fig. 25. The differences in the two
calculations for CALP are almost non-existent as shown in the
follwoing table:

N1 = 3.0 mm (0.118 in) 3.6 mm (0.1416 in)

CALP-40 = 0.7313 (0.0088) 0.7269 (0.0089)

CALP-60 = 0.8682 (0.0068) 0.8620 (0.0069)

As a matter of curiosity, we made one factor at a time change to
all other parameters that were held constant in PC-PRAISE,
and found similar result, i.e., the difference was practically nil.

Fig. 25. A plot of the cumulative average leak probability (CALP) versus time based on the output file of a PC-
PRAISE (v. 4.42) run using 4 distributional parameters, N2, M2, M5, and M6, and a non-distributional but 20%-
increased parameter, N1, to compare with the same input without the 20% increase in N1.
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VII. DESIGN OF EXPERIMENTS: DEX-1 (3 FACTORS)
The results of our last section using the so-called "one-factor-
at-a-time" method prompted us to recall a statement made by
Box, Hunter, and Hunter [43, p. 513], which reads as follows:

" . . . the one-variable-at-a-time strategy fails . . . because
it tacitly assumes that the maximizing value of one
variable is independent of the level of the other.
Usually this is not true."

In a complex model for crack growth involving close to 30
parameters, there are bound to be many possibilities of
interaction and nonlinear effects when one attempts to find a
relationship between source uncertainties and result
uncertainty (see Eq. (1)). This is when we find the 2-level
orthogonal factorial design of experiments approach attractive,
because with only a few runs, not 10,000 in the case of PC-
PRAISE, we will learn something about the f in Eq. (1).

So we set out to illustrate our approach with a design, to be
called DEX-1, with three factors (k = 3) and full factorial (n =
23 = 8) with a center point making a total of 9 runs. Details of
the complete design is shown in Table 3, where we vary by
10% each of the three factors, X1 (initial crack depth), X2
(crack growth law exponent), and X3 (crack growth law
threshold K). The results of our 9 runs for five values of CALP
are listed in Table 3 in red.

For each of the 5 columns of 9 red numbers in Table 3, we use
our uncertainty plug-in, PD-UP, to run the DATAPLOT-10-
Step-Analysis to obtain an estimated mean and 95% confidence
bounds for each of the 20-, 30-, 40-, 50-, and 60-year times.
Five of the10 plots generated by DATAPLOT for CALP-40 and
the final result plot of uncertainty estimates are given in Figs.
26-31. In Fig. 32, we show a comparison of our DEX-1 run
with similar PC-PRAISE run without the 10% perturbation,
and the differences in leak-sigmas vary from a factor of 4 for
CALP-60 to 6 for CALP-40.

Fig. 26. First of 10 plots by the DATAPLOT-10-Step-Analysis [45] showing a plot of an ordered set of 8 values of
CALP-40 without center point, as listed in Table 3 in red. Note the table at the bottom of the plot being the
transposed DEX matrix with re-ordered columns as shown in Table 3.

Run No. 5 1 6 2 8 4 3 7



25 Copyright © 2009 by ASME

VII. DEX-1: K = 3, N = 8 (CONT'D)

Table 3. Details of a 3-Factor Full-Factorial Design (DEX-1) with
9 rows of PC-PRAISE results of CALP vs. Time (in red) and

five columns of PD-UP Uncertainty Analysis results (in black)

PD-UP Uncertainty Analysis Result for CALP-40

PC-PRAISE Result for Run-1
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VII. DEX-1: K = 3, N = 8 (CONT'D)

Fig. 28. Fourth of 10 plots by the DATAPLOT-10-Step-Analysis [45] showing the interaction matrix of a first order
3-parameter model. The boxes on the main diagonal are re-plots of the results of Fig. 27. Interactions are small.

Fig. 27. Third of 10 plots by the DATAPLOT-10-Step-Analysis [45] showing the main effects on CALP-40 due to a 10%
change in each of the three factors, X1, X2, and X3. Note the dominance of factor X2, the crack growth exponent m .
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VII. DEX-1: K = 3, N = 8 (CONT'D)

Fig. 30. Step 10 of the DATAPLOT-10-Step-Analysis shows a contour plot of a linear least-square model of two
dominant parameters, X1 and X2. The relative plane behavior of the plot confirms that the interactions are small.

Fig. 29. Seventh of 10 plots by the DATAPLOT-10-Step-Analysis [45] showing a ranking of the absolute values of
all one-way and two-way effects of the 8-run dataset for a full factorial orthogonal DEX with k=3 and n=8.
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VII. DEX-1: K = 3, N = 8 (CONT'D)

Fig. 32. A plot of CALP vs. time based on a 3-factor, full factorial, 8-run+center-point design (DEX-1) with a 10%
variation in each of three factors, N1, M1, and M2, as compared with the same plot given in Fig. 24. The
estimated mean and confidence half-interval of the DEX-1 run differ sharply from similar PC-PRAISE run of [17].

Fig. 31. A probabiliy plot of CALP-40 based on a linear regression fit of the 9-run results (see Table 3 in red) with
two dominant factors, X1 and X2, selected from the ranking plot of Fig. 27. The results are also tallied in Table 3.
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VIII. DESIGN OF EXPERIMENTS: DEX-2 (3 FACTORS)
In the last section, we conducted a 3-factor, full-factorial design
of experiments (DEX-1) by varying just 10% of each of the
three selected factors, and obtained dramatic changes in the
95% confidence half-intervals of CALP at all time values, as
compared with the baseline results, i.e., the same PC-PRAISE
run without the 10% change. A summary of the comparison is
given in the following table :

Baseline DEX-1 Ratio =
CALP-Year Mean Mean (c-half-int)

(2*leak-) (c-half-int) 2*leak-
CALP-20 0.3118 0.3096

(0.0092) ** (0.1229) 13.4
CALP-30 0.5856 0.5802

(0.0098)** (0.0804) 8.2
CALP-40 0.7313 0.7223

(0.0088) ** (0.0524) 6.0
CALP-50 0.8155 0.8074

(0.0078) ** (0.0371) 4.8
CALP-60 0.8682 0.8608

(0.0068) ** (0.0259) 3.8
** 95% confidence half-interval for baseline is 2*leak-, where

leak-is listed in Table 2.

For a discussion on the size of the changes we impose on the
three factors, let us recall from Table 3 the following
information on the three factors chosen for DEX-1 with their
base values and 2-level changes:

Process Factor Base Incre- DEX-1
(Name of Parameter) Value ment ( - ) ( + )

X1 (initial crack depth) 0.118 10% 0.1062 0.1298

X2 (growth exponent) 1.16 10% 1.044 1.276

X3 (K threshold) 8.19 10% 7.371 9.009

A 10% change in X1 (initial crack depth) varies its value from
3.0 mm (0.118 in) at its center point to a low of 2.7 mm and a
high of 3.3 mm. From our past NDE studies [24, 32, 33], we
believe the change is too small and not realistic. An alternative
amount, say, 40%. that would result in a low of 1.8 mm and a
high of 4.2 mm, seems more reasonable and will be adopted for
our next investigation, i.e., DEX-2.

Fig. 33. Third of 10 plots by the DATAPLOT-10-Step-Analysis [45] showing the main effects on CALP-40 due to a
40% change in X1 (initial crack depth), 40% change in X2 (exponent m), and 20% change in X3 (K threshold).
Note the increased dominance of factor X2 (the crack growth exponent m ) in DEX-2 as compared with DEX-1.
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VIII. DEX-2: K = 3, N = 8 (CONT'D)
Along the same line of argument, a 10% change in X2 (crack
growth law exponent m) varies its value from 1.16 at its center
point to a low of 1.044 and a high of 1.276. From our past
studies [33] and the literature (see, e.g., [70] and Fig. 13 in
Section IV), we believe the change is also too small and not
realistic. An alternative amount, say, 40%. that would result
in a low of 0.70 and a high of 1.62, seems more reasonable and
will be adopted for our next case study, i.e., DEX-2.
Similarly,
a 10% change in X3 (K threshold) varies its value from 8.19
at its center point to a low of 7.37 and a high of 9.10. From
our past studies [68, 69] and the literature (see, e.g. [71, 72]
and Figs. 15 and 16 in Sect. IV), that is also too small. An
alternative amount, say, 20%. that would result in a low of
6.55 and a high of 9.83, will be adopted for DEX-2.

As shown in Figs. 33 & 34, the results of our DEX-based
investigation is quite dramatic. The DEX-2 results not only
drastically changed the ratio of the its confidence half-interval
to that of the baseline at each time year, but also the ratio of the
two estimated means. A list of those two ratios is given below:

CALP-Year Ratio of the Ratio of the
for DEX-2 Means Confidence Half-Interval

CALP-20 (##) (##)

CALP-30 0.83 32.9
CALP-40 0.88 26.3
CALP-50 0.91 22.0
CALP-60 0.94 19.0

(##) DEX-2 run failed to estimate the mean and uncertainty bounds
of CALP-20 because the regression fit using two dominant
factors did not produce a reasonable plane contour plot.

Fig. 34. A plot of CALP vs. time based on a 3-factor, full factorial, 8-run+center-point design (DEX-2) with a 40%
change in N1, 40% change in M1, and 20% change in M2, as compared with the same plot given in Fig. 24. The
estimated mean and confidence half-interval of the DEX-2 run differ sharply from similar PC-PRAISE run of [17].
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IX. DESIGN OF EXPERIMENTS: DEX-3 (5 FACTORS)
In the last two sections, we introduced two full factorial
designs, because for a three-factor experiment (k = 3), a full
factorial design requires n = 23 (= 8), a reasonably small
number for conducting a virtual experiment.

In the next two sections, we will describe an exercise of
pushing our DEX approach to its limit by keeping n to a
maximum of 8 and ask for two different values of k , i.e., 5
and 7. Note that the number of factors, k , is required to be
always less than the number of runs, n , so k = 7 is the most
we can do for n = 8.

In this section, we will work with k = 5 and n = 8 (DEX-3).
In addition to the three factors we already selected in DEX-1
and DEX-2, we need to add two more factors, X4 and X5, to
make k = 5. A full factorial DEX for k = 5 requires 25 (=32)
runs. A 5-factor, 8-run DEX is known as a fractional factorial
orthogonal design, which is more economical but not as
accurate, because a DATAPLOT-10-Step-Analysis will show in
its 7th plot complications due to the confounding of one-way
and two-way effects of a first-order model (see Fig. 29 for an
example of this difficulty and also Ref. [43, p.338] ).

As Box, Hunter, and Hunter said in Ref. [43, p.338], ". . . we
have to give up something to get something." A fractional
factorial design works to one's favor if the two-way effects are
small, and the results of the analysis will be close to those of
the full factorial design (a 32-run vs. the cheaper 8-run
experiment).

Since our crack growth model deals with the formation of a
through wall crack (crack depth greater than wall thickness),
we thought we might choose to vary the parameter, P3, in the
list of parameters exhibited in Fig. 34. We also came to the
conclusion that if P3 (wall thickness), being a measurable
geometric parameter, is allowed to vary by, say, 5%, we should
also expect another geometric parameter, P4 (inner radius), to
vary by the same amount. Our final design for DEX-3 (k = 5,
n = 8) will assume the following form:

X1 X2 X3 X4 X5

Base value = 0.118 1.16 8.19 2.50 14.5
% change = 40 40 20 5 5

low value (-) = 0.0708 0.696 6.552 2.375 13.775
high value (+) = 0.1652 1.624 9.828 2.625 15.225

Fig. 35. Third of 10 plots by the DATAPLOT-10-Step-Analysis [45] showing the main effects on
CALP-40 due to a 40% change in X1 (initial crack depth), 40% change in X2 (exponent m), 20%
change in X3 (K threshold), 5% change in X4 (wall thickness), and 5% change in X5 (inner radius).
Note the continued dominance of factor X2 (the crack growth exponent m ) in DEX-3 as compared
with DEX-2.
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IX. DEX-3: K = 5, N = 8 (CONT'D)
We are now ready to use our uncertainty plug-in, PD-UP, to
take over the task of assigning the various combinations of
low's and high's, i.e., the (-)'s and the (+)'s , to each run
according to the following table (see Fig. 23 for same):

Order of Run X1 X2 X3 X4 X5

1 - 1 - 1 - 1 + 1 + 1
2 +1 - 1 - 1 - 1 - 1
3 - 1 +1 - 1 - 1 + 1
4 +1 +1 - 1 + 1 - 1
5 - 1 - 1 +1 + 1 - 1
6 +1 - 1 +1 - 1 + 1
7 - 1 +1 +1 - 1 - 1
8 +1 +1 +1 + 1 + 1

The reader may wish to verify that the first three columns for
an 8-run table are the same as those of a full factorial one

(see Subsection 5.4), the fourth column is the product of the
first two columns, and the fifth column is the product of the
first and third columns. Such algorithm is to ensure that the
design is orthogonal. With the appropriate values of the five
factors for each run in place, we conduct 8 new runs of PC-
PRAISE and obtain 8 time histories of the values of CALP
similar to a list of red numbers given in Table 3 for DEX-1.
We are now ready to run DATAPLOT-10-Step-Analysis using
PD-UP to obtain CALP mean and 95% confidence intervals as
shown below:

CALP-Year Ratio of the Ratio of the
for DEX-3 Means Confidence Half-Interval

CALP-30 0.83 33.1
CALP-40 0.88 26.4
CALP-50 0.92 22.1
CALP-60 0.94 19.1

The plots of Figs. 35 & 36 show the significance of the 2 ratios.

Fig. 36. A plot of CALP vs. time based on a 5-factor, fractional factorial, 8-run+center-point
design (DEX-3) with a 40% change in N1, 40% change in M1, 20% change in M2, 5% change in
P3, and 5% change in P4, as compared with the same plot given in Fig. 24. The estimated mean
and confidence half-interval of the DEX-3 run differ sharply from similar PC-PRAISE run of [17].
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X. DESIGN OF EXPERIMENTS: DEX-4 (7 FACTORS)
In Fig. 36, we note on its right a list of 18 factors with their
labels identified as four L's, four P's, 2 N's and 8 M's
according to a notation given in Table 1.

For DEX-1 and DEX-2 (k = 3), we chose one factor, N1,
from the NDE database. DB-2, and two factors, M1 and M2,
from the material property database, DB-3.

For DEX-3 (k = 5), we chose two factors, P3 and P4, from
the physical-chemical-composition database, again one factor,
N1, from the NDE database. DB-2, and two factors, M1 and
M2, from the material property database, DB-3.

For the final case, DEX-4 (k = 7), we will add two more
factors from the list of 18 (Fig. 36). Since crack growth is
definitely a function of loads and loading rates, both
mechanical and thermal, we choose L1 (deadweight plus
thermal stress) and L4 (strain rate) from the loading and
constraint database.

We also believe that a 10% variation in both L1 and L4 is
reasonable. The final design for DX-4 (k = 7, n = 8) assumes
the following form:

X1 X2 X3 X4 X5 X6 X7
Base
value 0.118 1.16 8.19 2.50 14.5 8.58 0.001

%
change 40 40 20 5 5 10
10

low (-) 0.0708 0.696 6.552 2.375 13.775 7.722 0.0009

high (+) 0.1652 1.624 9.828 2.625 15.225 9.438 0.0011
_________________________________________________

Once again, we let our uncertainty plug-in, PD-UP, do the work
of assigning the various combinations of low's and high's to
each of the 8 runs according to the following table:

Fig. 37. Third of 10 plots by the DATAPLOT-10-Step-Analysis [45] showing the main effects on CALP-40
due to a 40% change in X1 (initial crack depth), 40% change in X2 (exponent m), 20% change in X3 (K
threshold), 5% change in X4 (wall thickness), 5% change in X5 (inner radius), 10% change in X6
(deadweight plus thermal), and 10% change in X7 (strain rate). Note the continued dominance of factor
X2 (the crack growth exponent m ) in DEX-4 (7-factor, 8-run) as compared with DEX-3 (5-factor, 8 run).
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X. DEX-4: K = 7, N = 8 (CONT'D)

Order X1 X2 X3 X4 X5 X6 X7
of run --------------------------

1 -1 -1 -1 +1 +1 +1 -1
2 +1 -1 -1 -1 -1 +1 +1
3 -1 +1 -1 -1 +1 -1 +1
4 +1 +1 -1 +1 -1 -1 -1
5 -1 -1 +1 +1 -1 -1 +1
6 +1 -1 +1 -1 +1 -1 -1
7 -1 +1 +1 -1 -1 +1 -1
8 +1 +1 +1 +1 +1 +1 +1

Again the reader may wish to verify that the first five columns
of the above are the same as those of DEX-3 (k = 5, n = 8),
the 6th column is the product of the 2nd and 3rd columns, and

the 7th column is the product of the first three columns. With
the appropriate values of the seven factors for each run in
place, we conduct 8 new runs of PC-PRAISE and obtain 8 time
histories of the values of CALP similar to a list of red numbers
given in Table 3 for DEX-1. We are now ready to run
DATAPLOT-10-Step-Analysis using PD-UP to obtain CALP
mean and 95% confidence intervals as shown below:

CALP-Year Ratio of the Ratio of the
for DEX-4 Means Confidence Half-Interval

CALP-30 0.83 33.1
CALP-40 0.88 26.4
CALP-50 0.92 22.0
CALP-60 0.94 19.0

The plots of Figs. 37 & 38 show the significance of the 2 ratios.

Fig. 38. A plot of CALP vs. time based on a 7-factor, fractional factorial, 8-run+center-point design (DEX-
4) with a 40% change in N1, 40% change in M1, 20% change in M2, 5% change in P3, 5% change in P4,
10% change in L1, and 10% change in L4, as compared with the same plot given in Fig. 24. The
estimated mean and confidence half-interval of the DEX-4 run differ sharply from similar PC-PRAISE run
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XI. SIGNIFICANCE OF RESULTS

In this paper, we have developed an economical and efficient
methodology in relating six categories of source uncertainties
in a class of mathematical models to the result uncertainty of a
specific model under investigation.

We have also demonstrated the usefulness of this methodology
by applying it to a probabilistic Monte-Carlo-based model of
fatigue crack growth using a public-domain PC-version [17] of
a Fortran software package named PRAISE (an acronym for
Piping Reliability Analysis Including Seismic Events).

Using an uncertainty estimation plug-in [49] to illustrate our
application with four examples, we have also shown that our
methodology, which is based on the statistical theory of design
of experiments [43], is not only economical in terms of a
minimum requirement for a simulation experiment to obtain the
model result uncertainty, but also more versatile than the
Monte-Carlo method, because our method provides the user a
capability to

(a) study model parametric interactions including two-
term effects,

(b) rank the relative importance of various parameters and
their interactions suspected of significantly
contributing to the model result uncertainty, and

(c) devise a sequential screening strategy to benchmark
and improve model performance.

As an example of capability (c), we have demonstrated that, in
all four case studies involving a fatigue crack growth model,
the leak probabiliity, CALP, of a stainless steel pipe in a nuclear
power plant has a significantly larger uncertainty using our
method than the Monte-Carlo method of PC-PRAISE.
Depending on the magnitude of the two-level variation of
factors in a full or fractional factorial experimental design, the
ratio of the confidence half-interval of our prediction to that of
the PC-PRAISE varies from a low of 4 for CALP (Year 60) to a
high of 33 for CALP (Year 30). Such discrepancy is not
intended to discredit the Monte-Carlo results of PC-PRAISE,
but to shed more light on the performance and efficacy of a
complex model.

Consequently, the methodology presented in this paper is
significant to engineers who will be able to better manage
aging structures with uncertainty-analysis-included models
capable of (a) ranking the relative importance of source
uncertainties, (b) estimating the result uncertainty, and (c)
continuously benchmarking such models with up-to-date
information from failure event databases (DB-1 ).

XII. CONCLUDING REMARKS

This paper concludes a 4-part series on solving a basic question
in computer-aided maintenance engineering. Using the
methodology outlined in this series of papers and supported by
information from five different but inter-related databases as
defined in Table 1, the owner and operator of an aging structure
will be able to estimate the remaining useful life of a structure
or equipment at a level of confidence appropriate to its
designed purpose.

To reiterate, we have shown in Part 1 [50], that an artificial
intelligence (AI) tool named ANLAP [53] and a statistical
analysis package named DATAPLOT [45] can be applied to
automatically extract data from unstructured text in failure
event reports and enhance the value of a failure mechanism
database by minimizing human errors in data entry and
segmentation. This addresses DB-1.

In Part 2 [51], where we address DB-2, a web-based
uncertainty plug-in (WUPI) can link inservice inspection (ISI)
reports with service flaw location and sizing databases such
that properly entered and segmented NDE data can be
statistically analyzed and formatted for dissemination as input
to fatigue life prediction modeling.

In Part 3 [52], where we address DB-3, a Dataplot-Python-
Anlap plug-in can link testing reports with databases such that
properly entered and segmented material property data can be
statistically analyzed and formatted for dissemination as input
to fatigue life prediction modeling.

Using the information on source uncertainties from five
different types of databases, i.e., DB-1, DB-2, DB-3, a
loads/constraints database, and a physical-chemical-
composition database, we show in this paper a methodology to
estimate the result uncertainty of a remaining life prediction
model as an example to solve the aging structure maintenance
problem.
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APPENDIX A

The following is an abbreviated version of the output file created by the PC-PRAISE code after we submit a typical input data sheet
named X230.DAT:

P R A I S E

PIPING RELIABILITY ANALYSIS INCLUDING SEISMIC EVENTS
PC-PRAISE VERSION 4.42

EXECUTED ON 03/17/2009 AT 8:53p
ECHO-PRINT OF INPUT DATA IN FILE X230.DAT

=============================================================================================
1>HOT-LEG FILE=HL0X23 PROB-CALC SIM=10^4 90 CRKS
2> 3 0 90 -4 0 1.100 0 14 688 7225 0 0
3> -100 1 2 0 -0.2 0 0 0 0 0 0 0 0 0 0 0
4> 0 .015 0.01 0.118 0.0789 0.0001 0 0 1.0
5> 60.0 .200E+00 0 0
6> 2.500 14.50 10.0
7> 8.19 1.16 6.327E-07 1.141E-06 1.0
8> .3970E+02 .3970E+01 10.0 25.0 19.4 106.0 25800.0 5.00
9> 60.0 6.0 0
10> .100E+01 .500E+02 -3.50 -1.20
11> 2.08 8.58 2.250 -3.00 .100E+01 .000E+00
12> 6 9 100 100
13> .010 .100 .200 .300 .400 .500 .600 .700
14> .800
15> 1.000 2.000 3.000 4.000 5.000 6.000
16> 1 20.0 600. HEAT-UP AND COOL-DOWN
17> .001000 1
18> 1000 .00008 590. # 1 HIGH-STR/LOW-CYCLE SEE NOTES BELOW 500000 CYCLES/40 Y
19> .001000 2 37.790
20> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
23> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
24> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
26> 42.899 28.242 18.601 13.832 12.454 13.194 15.142 17.920 21.512
27> 54.252 37.518 26.443 20.744 18.732 19.117 21.048 24.061 28.171
28> 58.761 40.702 28.939 23.263 21.571 22.498 25.262 29.486 35.263
29> 60.842 41.666 29.837 24.392 23.022 24.444 27.898 33.082 40.182
30> 62.461 42.846 30.855 25.402 24.141 25.728 29.416 34.878 42.342
31> 63.366 43.470 31.446 26.097 25.014 26.834 30.825 36.755 44.843
32> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
34> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
35> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
36> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
37> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
38> 46.068 36.848 29.280 24.065 20.688 18.677 17.622 17.242 17.351
39> 48.029 37.276 29.397 24.577 21.913 20.808 20.918 21.973 23.924
40> 48.060 37.052 29.264 24.633 22.227 21.416 21.880 23.381 25.916
41> 48.478 37.520 29.799 25.192 22.647 21.753 22.086 23.436 25.716
42> 48.351 37.416 29.715 25.213 22.960 22.357 23.076 24.865 27.760
43> 48.250 37.302 29.615 25.139 22.953 22.377 23.108 24.969 28.021
44>
45>
46>STRESS - RESIDUAL STRESS IS MAXIMUM RESIDUAL STRESS IN WELD/BUTTER
47>
48>DA/DN CONSTANT C PER PROLOCA VALUE FOR A182. The final paragraph of Section 2.8.
49>talks about Alloy 182 at 325C (617F). The log-mean of C is given as -25.47
50>the log-standard deviation of C is stated as 0.46. The mean crack growth rate at
51>da/dt=8.6800x10-12(K-9.0)^1.16 where da/dt in meter/sec and K in MPaSqrt(meter)

================================================================================================
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APPENDIX A (CONT'D)

--- HOT-LEG FILE=HL0X23 PROB-CALC SIM=10^4 90 CRKS ---

CIRCUMFERENTIAL CRACK ANALYSIS

PARAMETERS FOR PSI NON-DETECTION PROBABILITY
EPST = .000E+00
ASTAR = 1.250
TRANSDUCER DIAMETER = 1.00000 INCHES
ANUU = 1.600

ISI NON-DETECTION PARAMETERS SAME AS FOR PSI
FATIGUE-INITIATED CRACKS ONLY
MAXIMUM NO. OF CRACKS = 90
NO. OF REPLICATIONS = 10000
A/H BOUNDARY = 1.1000

Sampling around the circumference - independent
sampling around circumference based zero correlation
Crack growth independent of initiation

FATIGUE CRACK GROWTH ONLY
MATERIAL SELECTED - S316NG
WATER ENVIRONMENT

LEAKERS WILL NOT BE REPAIRED

FAILURE CRITERIA = APPLIED STRESS>FLOW STRESS

PIPE DIMENSIONS
WALL THICKNESS = 2.50 INCHES
INSIDE RADIUS = 14.50 INCHES

L/H RATIO = 58.00
L/R RATIO = 10.00

AREA OF PIPE = 247.40 SQ. INCHES
FLOW AREA OF PIPE = 660.52 SQ. INCHES

CRACK GROWTH LAW PARAMETERS
EXPONENT = 1.160
GROWTH LAW CONSTANT LOG-NORMALLY DISTRIBUTED

MEDIAN = .6327E-06
90-TH PERCENT = .1141E-05

THRESHOLD = 8.190

FATIGUE-INITIATION PARAMETERS
SULFUR (WEIGHT %) = .01500

DISSOLVED OXYGEN(PPM) = .01000
Initiated Crack Depth(in) = .118

Median (b-a),(in) = .078900
SD of ln(b-a) = .000100

Initiation time multiplier = 1.000

SNFACTOR = 1.000000

FLOW STRESS NORMALLY DISTRIBUTED
MEAN = .3970E+02
STANDARD DEVIATION = .3970E+01

DISTRIBUTION PARAMETERS FOR ULTIMATE STRESS IN PIPE
MEAN = .6000E+02
STANDARD DEVIATION = .6000E+01
STANDARD DEVIATION = 0.0 MEANS THE ULTIMATE STRESS IS CONSTANT
INTERPOLATION FLAG = 0 ( IULT ) FOR WHOLE PIPE BREAK PROBABILITY
ABS ( IULT ) IS THE NUMBER OF INTERPOLATION POINTS
IF IULT .GT. 0 LINEAR INTERPOLATION
IF IULT .EQ. 0 NO INTERPOLATION
IF IULT .LT. 0 LOGARITHMIC INTERPOLATION

N2: crack shape ellipticity (b-a)

M2: crack growth law exponent (m)

M5: mean flow stress

M6: Ultimate tensile
strength
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APPENDIX A (CONT'D)

JIC (IN-KIPS/IN.IN) = 10.0000
DJDA (KSI) = 25.0000

YIELD STRESS (KSI) = 19.4000
D (KSI) = 106.0000

YOUNGS MODULUS(KSI) = 25800.0000
EXPONENT, N = 5.0000

PIPE LOADING VALUES
STRESS (KSI) DUE TO COLD DEADWEIGHT = 2.08
STRESS (KSI) DUE TO DWGHT + THERMAL = 8.58
STRESS (KSI) DUE TO THERMAL = 6.50
OPERATING PRESSURE (KSI) = 2.25
STRESS (KSI) DUE TO OPER. PRESSURE = 6.01
STRESS (KSI) DUE TO DWGHT + OP PRESR = 8.09
STRESS (KSI) DUE TO DWT+THML+OP PRES = 14.59

NO HYDROSTATIC PROOF TEST IS MODELLED
VIBRATORY STRESSES (KSI) = 1.00
VIBRATIONAL THRESHOLD (R-STAR) = .00

LEAK DETECTION AND DEFINITION PARAMETERS
DETECTABLE LEAK (GPM) = 1.00
BIG LEAK (GPM) = 50.00
Pathway Loss Coeff. = 3.00
Crack Roughness (in) =.0002441

NO RESIDUAL STRESSES ARE MODELLED
VIBRATORY STRESSES ARE MODELLED
NO PRE-SERVICE ULTRASONIC INSPECTION

================================================================
NO IN-SERVICE INSPECTIONS ARE MODELLED
NO SEISMIC EVENTS EVALUATED

SKIP PARAMETER FOR INDICATOR FUNCTION PRINTOUT IS 0
NORMAL OUTPUT REQUESTED

NUMBER OF TRANSIENT TYPES = 2
TYPE 1 HEAT-UP AND COOL-DOWN

REGULAR AT 20.0000000000 YEARS/EVENT
MAX DELTA TEMP = 600.0
BLOCKING FACTOR = 1.00000000
Transient Type 1: Uniform stress
Strain Rate 1.0000E-03
Uniform Stress range at ID (ksi) = 12.51
Bending Stress range at ID (ksi) = .00
Gradient Stress range at ID (ksi) = .00
Total surface stress (ksi) = 12.51

TYPE 2 # 1 HIGH-STR/LOW-CYCLE SEE NOTES BELOW 500000
REGULAR AT .0000800000 YEARS/EVENT
MAX DELTA TEMP = 590.0
BLOCKING FACTOR = 1000.00000000
Transient Type 4: tiffany Table
Strain Rate 1.0000E-03
Uniform Stress range at ID (ksi) = 37.79
Bending Stress range at ID (ksi) = .00
Gradient Stress range at ID (ksi) = .00
Total surface stress (ksi) = 37.79

** Critical crack sizes input by the user **
Critical crack size for leaks:
INTIME Big Leak Detectable Leak

1 3.5000 in 1.2000 in

- - - UNIFORM MESH - - -
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