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Tripartite interactions between two phase qubits
and a resonant cavity
F. Altomare1†, J. I. Park1†, K. Cicak1, M. A. Sillanpää1‡, M. S. Allman1‡, D. Li1, A. Sirois1‡, J. A. Strong1‡,
J. D. Whittaker1‡ and R. W. Simmonds1*
Multipartite entanglement is essential for quantum
computation1 and communication2–4, and for fundamental tests
of quantum mechanics5 and precision measurements6. It has
been achieved with various forms of quantum bits (qubits),
such as trapped ions7,8, photons9 and atoms passing through
microwave cavities10. Quantum systems based on supercon-
ducting circuits, which are potentially more scalable, have
been used to control pair-wise interactions of qubits11–16 and
spectroscopic evidence for three-particle entanglement was
observed17,18. Here, we report the demonstration of coherent
interactions in the time domain for three directly coupled
superconducting quantum systems, two phase qubits and one
resonant cavity. We provide evidence for the deterministic
evolution from a simple product state, through a tripartite
W state, into a (bipartite) Bell state. The cavity can be thought
of as a multiphoton register or an entanglement bus, and
arbitrary preparation of multiphoton states in this cavity
using one of the qubits19 and subsequent interactions for
entanglement distribution should allow for the deterministic
creation of another class of entanglement, a Greenberger–
Horne–Zeilinger state.

With the development of quantum information science1,
entanglement of multiparticle systems has become a resource for
a new information technology. In particular, three-particle or
tripartite entanglement allows for teleportation2, secret sharing4
and dense coding20, with connections to cosmology21. Over the past
decade, the development of exquisite control over quantum systems
has led to various demonstrations of tripartite entanglement8–10.
Genuine tripartite entanglement is delineated by two inequivalent
classes of states22: Greenberger–Horne–Zeilinger and W, where the
W state involves only a single photon shared amongst three systems.
Using multipartite entanglement in a solid-state-qubit system
has only recently received theoretical attention23–25. Thus far in
superconducting systems, bipartite entanglement has been verified
by two-qubit quantum state tomography13 and used to carry out
a quantum algorithm15. Spectroscopic evidence for three-particle
entanglement was observed for two current-biased phase qubits
coupled to a lumped element consisting of an inductor–capacitor
circuit and a cavity as well as for transmon qubits17,18. In the
experiments described below, we first verified the spectroscopic
signature of three coupled systems.Next, we demonstrated coherent
interactions. Frequency detuning of the third system was used
to verify the proper change in the time evolution of two versus
three coupled systems. Finally, we describe a free-evolution process
as a means of deterministically preparing arbitrary single-photon
tripartite entangled states and a corresponding visualization
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technique. We present evidence for the proper operation of this
protocol by measuring the time-dependent behaviour of the two
phase qubits. Here, entanglement is not verified directly, but the
data are consistent with theoretical predictions. Proper execution
of this protocol can prepare the system in a Bell or W state, as well
as arbitrary entangled states.

In Fig. 1a, we show an optical micrograph of two qubits,
qubit 1 and qubit 2, capacitively coupled to either end of an
open-ended coplanar waveguide cavity with a half-wave resonant
mode frequency of ωc/2π≈ 8.9GHz. These cavities have shown
coherent properties at the single-photon level14. Flux-biased phase
qubits26 can be thought of as anharmonic inductor–capacitor
oscillators in which a single Josephson junction provides enough
nonlinearity to address the two lowest oscillatory phase states
|g 〉 and |e〉. The energy-level separation h̄ωj ≡ Ee − Eg can be
independently tuned over a range ∼7–10GHz on the jth qubit by
use of inductively coupled flux bias coils. Another coil allows us to
apply microwave pulses and fast bias shifts, also used for single-shot
state measurement14. Independent state readout on the jth qubit is
accomplished by use of an inductively coupled d.c. superconducting
quantum interference device. We describe this system using a
two-qubit Jaynes–Cummings or Tavis–Cummings model27. In a
frame rotating at reference frequency ωµ, we approximate the
Hamiltonian of the system as

H = h̄1ca†a+
∑
j=1,2

[h̄1jσj
+σj
−
+ ih̄gj(σj+a−a†σj

−)] (1)

where the mode operators σj± and a(†) refer to the qubits and the
cavity, respectively, with corresponding detunings 1j/h̄≡ωj−ωµ
and 1c/h̄ ≡ ωc −ωµ. Capacitive coupling Cc between the qubits
and the cavity results in an effective coupling frequency of 2g/2π≈
(ωc/2π) Cc/

√
CCJ ∼ 90MHz for both qubits. The system exhibits

decay rates of γ1/2π∼ 7MHz, γ2/2π∼ 10MHz and κ/2π∼ 1MHz
for each qubit and the cavity, respectively. We denote the product
of two-qubit/cavity states as |ηη′n〉 ≡ |η〉1⊗|η′〉2⊗|n〉c, where |η〉j
label the jth qubit state (|g 〉or |e〉) andn labels the cavity Fock state.

The first signature of tripartite interactions is revealed by
spectroscopic measurements17,18 as a function of the detuning
11,c/h̄=ω1−ωc of qubit 1 when qubit 2 and the cavity are resonant
(ω2 = ωc). In the case of a single-qubit/cavity system, the Jaynes–
Cummings model predicts a single vacuum Rabi-mode splitting of
the qubit state14. Here, the single-qubit states are split twice by the
mutual interaction of all three systems, as shown in Fig. 1b. We can
interpret this as being due to the coupling between the bare qubit
1 and the antisymmetric pair of maximally entangled Bell states
between qubit 2 and the cavity. The two avoided crossings in the
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Figure 1 | Circuit and spectroscopy. a, Optical micrograph of the electrical circuit with two Josephson phase qubits (qubit 1 inset overlay right), each with
loop inductance∼700 pH and critical current∼0.91 µA (junction areas∼7 µm2) shunted by use of interdigitated capacitors (CJ∼0.7 pF, including
junction capacitance) with vacuum gap crossovers (inset overlay left), capacitively coupled (Cc∼6.2 fF) to a coplanar waveguide resonant cavity (of full
length∼7 mm). The device was fabricated with standard optical lithography with Al/AlOx/Al junctions on a sapphire substrate, with SiO2 as an insulator
surrounding the junctions. b, Microwave spectroscopy of qubit 1 as a function of detuning11,c=ω1−ωc with ω2=ωc.11,c is varied through the d.c. flux
bias coils and qubit 1 is excited by microwaves applied through the m.w. (microwave) coil (seen in a). The intensity colour scale represents the probability
of qubit 1 tunnelling after the measure pulse. The dashed diagonal line shows the bare qubit 1 transition frequency. The dashed horizontal lines represent
the energies of the two maximally entangled Bell states between qubit 2 and the cavity in the absence of coupling to qubit 1.

spectrum occur along the qubit 1 detuning curve, symmetrically
displaced about the tripartite resonance (ω1 = ω2 = ωc). These
measured curves agree well with a full analysis of the two-qubit
Jaynes–Cummings or Tavis–Cummings18 model.

With independent control over both qubits, we can easily explore
a convenient state-space whereby a single photon of energy h̄ωc is
shared by our tripartite system. Using a similar technique estab-
lished for inducing coherent interactions between a single qubit and
a cavity14, we investigate the evolution of vacuum Rabi oscillations
between qubit 1 and the cavity as a function of the detuning
12,c/h̄= ω2−ωc of qubit 2 from the joint qubit 1–cavity system
(ω1 =ωc). For simplicity, we use the term ‘photon’ even when de-
scribing a single excitation in the qubit. We begin with both qubits
in their ground state and qubit 1 far off-resonance from the cavity
(see pulse diagram in Fig. 2a); then we excite qubit 1 with a photon
using a π pulse and bring it onto resonance with the cavity (using a
shift pulse) for a given evolution time period te followed by simul-
taneous measurement of both qubits12. When qubit 2 is far enough
off-resonant, the resultant vacuum Rabi oscillations are character-
ized by the frequency Ω0 ≡ 2g , as seen on either side of Fig. 2b,c.
Here, the exchange between qubit 2 and the qubit-1–cavity system
is energetically prohibited, so that qubit 1 undergoes basic vacuum
Rabi oscillationswith the cavity alone.When all three systems are on
resonance, the photon appears to oscillate between the two qubits
through the cavity. Beginning in qubit 1, the photon ‘spreads out’
to the cavity, also becoming shared with qubit 2, then it moves com-
pletely to qubit 2, eventually returning back to qubit 1. In this anti-
symmetric mode (also see Fig. 2f), the oscillation frequency is given
by Ωa =Ω0/

√
2. As the system evolves, the photon is never com-

pletely transferred to the cavity. There are times when the photon is
entirely in qubit 1 or entirely in qubit 2, otherwise the system occu-
pies a continuum of entangled states of both qubits and the cavity.
By measuring the two qubits simultaneously12, we can extract the
joint probabilities Peg0 and Pge0 for single-photon states |eg0〉 and
|ge0〉, respectively. The experimental data agree well with the theo-
retical simulations (Fig. 2d–f) described in theMethods section.

The above experiment lends itself to a simple geometric
description that can help us visualize the system dynamics. Using
equation (1), we can identify the unitary evolution U (t )= e−iHt/h̄

of the system with a three-dimensional rotation Rn(ϕ) = e−in·Xϕ
about n ≡ (0, g2,−g1)/

√
g12+g22 with ϕ =

√
g12+g22 t and

X≡ (X1,X2,X3). Here, (Xk)ij =−iεijk helps generate the rotation,
and εijk is the totally antisymmetric Levi-Civita tensor. Time
evolution of the system then corresponds to orbits on a unit sphere
azimuthal to the vector n, where (x,y,z)⇔ (|gg1〉,|eg0〉,|ge0〉), as
shown in Fig. 2g,h. By taking the amplitudes of the three coupled
states as real, absorbing any overall phase into a redefinition of
the states, we can construct a (unit) state vector analogous to that
used for a single spin-1/2 system on the Bloch sphere. In this
case, as the state vector precesses about n and away from any
of the coordinate axes, entanglement evolves over time between
all three systems. For the experiment described above, we start
with an initial condition corresponding to the state |eg0〉. When
qubit 2 is far off-resonance (Fig. 2g), the system precesses at Ωo
about n = (0,0,−1), showing simple vacuum Rabi oscillations
between qubit 1 and the cavity involving the states |eg0〉 and |gg1〉,
generating bipartite entanglement. However, when all three systems
are on-resonance (ω1 = ω2 = ωc), H = g2X2− g1X3 = g (X2−X3),
n= (0,1,−1)/

√
2 and ϕ=

√
2g t , leading to a ‘tripartite evolution’.

Now the initial-state vector |eg0〉 precesses about n so that the
trajectory passes from the |eg0〉 axis into a region where the
photon is shared with the cavity and then through the −|ge0〉 axis
(see Fig. 2h). The oscillations in the two qubits then follow the
antisymmetric mode frequencyΩa. In this case, the local operations
are two- and three-particle vacuum Rabi oscillations that occur
during the system’s evolution. We can see that any arbitrary
single-photon tripartite state can be created and subsequently
transformed into any other state on the tripartite sphere, much like
unitary operations and rotations on the Bloch sphere. Of particular
interest is the fact that a specific initial state will follow a specific
trajectory under tripartite evolution, transforming the amount of
entanglement continuously. Below,we determine the conditions for
directly demonstrating transformations between Bell and W states,
starting from an initially pure state.

We begin with a single photon in qubit 1 or qubit 2. As shown
above, vacuum Rabi oscillations represent arbitrary rotations in
the |gg1〉–|eg0〉 plane (between the cavity and qubit 1) or the
|gg1〉–|ge0〉 plane (cavity and qubit 2). These two operations in
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Figure 2 |Demonstration of basic tripartite interactions. a, Description for creating a photon in qubit 1 by use of a π pulse, then shifting (solid line) onto
resonance with the cavity and qubit 2 for various qubit 2 detunings (dashed line). After an evolution time period te the qubits are measured
simultaneously12. b,c, Measured excited-state joint probabilities Peg0 and Pge0 for states |eg0〉 and |ge0〉, respectively, during tripartite interactions after
qubit 1 has been excited by a π pulse and shifted onto resonance with the cavity as a function of the detuning12,c=ω2−ωc of qubit 2. d,e, Theoretical
predictions including energy relaxation and the finite rise time of the shift pulse (see the Methods section). f, Line cut of the on-resonance tripartite
interactions with corresponding theoretical prediction (solid line). The red arrow in g,h provides a visual cue to the circular trajectory of the tripartite
vector. g, Tripartite sphere representation during simple vacuum Rabi oscillations of qubit 1. h, Tripartite sphere representation during the tripartite
evolution from the initial state |eg0〉.

succession allow us complete access to the |eg0〉–|ge0〉 plane,
and, thus, the ability to prepare any initial state on the entire
single-photon tripartite sphere. To generate Bell and W states, we
can start with the photon in the cavity, |gg1〉. Under tripartite
evolution the system passes first through the W state, |W〉 ≡
(+|gg1〉 − |eg0〉 − |ge0〉)/

√
3, and then through the Bell state,

|Bell〉 ≡ −(|eg0〉 + |ge0〉)/
√
2, as the system vector rotates about

the n vector, n= (0,1,−1)/
√
2 as shown in Fig. 3b. In total, the

systemwill pass through twoBell states and fourWstates for one full
revolution about n. The frequency Ωs=

√
2Ω0 of qubit oscillations

follows from the definition of ϕ and the arc traced out by the system
trajectory. In this symmetric mode (Ωs = 2Ωa) the cavity photon
‘splits’, having an equal probability for going to qubit 1 or qubit 2,
and subsequently returning completely to the cavity.

Experimentally, we sample a variety of initial states by allowing
qubit 1 (which starts with the photon) to undergo vacuum Rabi
oscillations with the cavity for a delay time period td before we bring
qubit 2 into tripartite resonance. Figure 3c–e shows a prediction
for the unitary evolution of the system for nearly a continuum of
values for td. Here, the joint probabilities are Pgg1, Peg0 and Pge0 for
states |gg1〉, |eg0〉 and |ge0〉, respectively. Notice that for td=2π/Ω0,
the system will exhibit the antisymmetric mode (indicated along
the dashed line) as described earlier. However, when td=π/Ω0, we
prepare (the initial state) |gg1〉, allowing for a tripartite evolution
of the symmetric mode. After a period of time te = π/4Ωs, the
excited-state probability for both qubits is 1/3 and the system is in
the |W〉 state, with the photon equally distributed among the two

qubits and cavity. After a period of time te=π/2Ωs, the excited-state
probability for both qubits is 1/2 and the system is in the bipartite
|Bell〉 state. These points are indicated in Fig. 3c–e, with the first
three states shown as vectors on the tripartite sphere in Fig. 3b. Here
the simulations include energy relaxation and the finite rise time of
the shift pulses (see theMethods section).

We simultaneously measure both qubits and observe the
occupation probabilities of the two qubits over time as they evolve
from a continuum of initial states, superposition states of qubit
1 and the cavity. Although possible, as explained later, we do
not measure the cavity state directly. Figure 4c,d shows extracted
line cuts from Fig. 4a,b for two initial conditions (dashed lines)
corresponding to the symmetric and antisymmetric modes. As
can been seen from Fig. 3d,e, the theoretical predictions for the
evolutions agree with the measurements. For the symmetric mode
we find in-phase oscillations of the two qubits at Ωs ∼

√
2Ω0,

whereas for the antisymmetric mode, we find that the two qubits
oscillate out of phase with each other with the antisymmetric
mode frequency Ωa ∼ Ω0/

√
2, where Ω0 is the frequency of the

vacuum Rabi oscillations that occur during the delay time period
td (lower right-hand corner of Fig. 4a). The measured frequencies
agree within∼15% of the ideal case, owing to the finite rise time of
the shift pulses and some residual non-zero detuning of each qubit
frequency. Theoretical simulations including these imperfections
(solid lines) agree well with the data.

In the present experiment, we improved the previous design14,28

by reducing the qubit junction areas to reduce the number
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(4) Both qubits are measured simultaneously. b, Tripartite sphere representation of the tripartite evolution for the initial state |gg1〉 prepared during a delay
time period td=π/Ω0. The red arrow provides a visual cue to the circular trajectory of the tripartite vector. c, Predicted state occupation of one photon in
the resonant cavity. d,e, Predicted joint state probabilities Peg0 and Pge0 for measurement of qubit 1 and 2 as functions of both td and te.
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Figure 4 | Experimental demonstration of arbitrary tripartite interactions between both phase qubits and the cavity along with theoretical predictions.
a,b, Measured joint state probabilities Peg0 and Pge0 for measurement of qubit 1 and 2 as functions of both td and te. c, Extracted curves (along dashed line
in a) for the initial state |gg1〉 producing a tripartite evolution of the symmetric mode, showing in-phase oscillations along with theoretical predictions (solid
lines) from Fig. 3d,e. During this evolution, the system’s entanglement continuously transforms starting from a pure state |gg1〉. In the ideal case, the
system evolves through W and Bell states. d, Extracted curves (along dashed line in b) for the initial state |eg0〉 producing a tripartite evolution of the
antisymmetric mode, showing out-of-phase oscillations along with theoretical predictions (solid lines) from Fig. 3d,e.

of two-level system defects. This more than doubled the qubit
visibility and provided the necessary ‘clean’ cavity region for
observing tripartite interactions. However, it was not possible
to carry out two-qubit state tomography over the required
timescales owing to short relaxation times29 matched with the
continued presence of two-level system defects that limited the
qubit visibility30. With further reductions in junction size, we can
raise the single-qubit visibility to 90%, allowing full tomographic
characterization of both qubits13.

In the future, we intend to carry out correlated measurements
and tomography of this tripartite system. This requires a fast,
single-shot dispersive measurement and readout of the qubits to
solve three difficulties. First, the tunnelling-based measurement of
either qubit will populate the cavity with unwanted photons owing
to a crosstalk process12. Second, a dispersive measurement will
increase qubit visibility, ensuring clear tomography. Third, after
measurement of the two qubits, subsequent qubit rotations will
ensure proper state preparation for one of the qubits, making it
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ready for re-interaction with the cavity. In this way, we can reuse
one of the qubits through state transfer14, to fully determine the
cavity state19. Improvements are now underway to modify our slow
switching-current superconducting quantum interference device
readout to a fast, dispersive resonant readout.

Note added in proof: Recently, three-qubit entanglement has been
demonstrated in two other superconducting systems32,33.

Methods
The simulations in Figs 2d–f, 3c–e and 4c,d have been carried out by solving
the master equation for this system. The master equation describing energy
relaxation and dephasing within the Born and Markov approximations can be
cast in the Linblad form

ρ̇=Lρ=−i[H ,ρ]+
∑
k

D[Lk ]ρ

where L is the Liouvillan and D are superoperators defined by

D[O]ρ≡OρO†
−

1
2
(O†Oρ+ρO†O)

Lk are jump operators describing the (environmental) measurement processes,
corresponding to qubits and cavity relaxation and dephasing. For the two-qubit
and cavity Hamiltonian under investigation, relaxation and dephasing rates are
characterized by the respective spontaneous decay rates, γi for qubits i= 1,2 and κ
for the cavity, and dephasing rates, γ ′i and κ

′. The jump operators corresponding to
energy relaxation are defined, in dimensionless units, by

Lc=
√
2κa

Li=
√
γiσ
−

i

For the simulations reported here, the dephasing rates have been taken to
be zero because the dominant effect of the environment is energy relaxation.
The lifetimes of the two qubits and the cavity were measured individually and
independently by excitation and subsequent decay using an exponential fit. We
solve the time-dependent master equation using a Crank–Nicholson integration
scheme. The time steps are taken to be much smaller than the characteristic
interaction times from the qubit–cavity couplings (that is, dt � 1/g � 1 in the
dimensionless case) and slower than the rate of change of any relevant dynamic
systems parameters (typically dt ≈0.001–0.0001 were sufficient and little difference
was seen beyond dt = 0.01) and the infinite harmonic oscillator states of the cavity
are truncated at N = 7, where N needs to be more than the number of quanta in
the systems (for the experiments considered typically little difference is seen above
N = 3). Similar numerical analysis has been used in a variety of quantum optical
and circuit quantum electrodynamics settings31.

Using the measured contrast for each qubit, we determine a scale factor that is
applied to the results of the simulation to match the visibility of the experiment. To
incorporate the shift pulse into the simulations, we have assumed an exponential
rise time of the form 1−e−t/τRC (as in a resistor–capacitor circuit) instead of a linear
ramp, with τRC ∼ 10 ns. This seems reasonable considering there is some stray
capacitance in the feed lines and room-temperature measurements have shown
this behaviour. In any case, the results of the simulation were relatively insensitive
to the exact shape of the shift pulse and more sensitive to the timescales of the rise
time with respect to characteristic interaction time of the systems. The asymmetry
in Fig. 2d–f can be attributed to extra interference resulting from a residual finite
detuning of qubit 1 (∼0.3g). Qubit 1 was detuned by the same amount in the
simulations of Figs 3c–e and 4c,d.
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