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Abstract
For the new definition of the SI unit of mass based on a fundamental constant, a redetermination of
Avogadro’s constant is the goal of an international collaboration of numerous national laboratories and
universities. Since a relative uncertainty of about 2 × 10−8 is aimed at, the macroscopic density, the
isotopic composition and the volume of the unit cell of a silicon single crystal have to be measured
with high precision. One step to improve the precision was the production of a silicon crystal of
highly enriched 28Si. This paper addresses the effect of thermal expansion of that material in order to
account for a possible discrepancy between the coefficient of thermal expansion (CTE) of natural
silicon and that of 28Si. The results of two independent CTE measuring methods are presented and
compared in this paper.

1. Introduction

Almost all the base units of the International System of Units
(SI) have been defined by atomic constants or fundamental
constants of physics. Only the kilogram is still represented by
a prototype, the international kilogram prototype. For a long
time now, experiments to also link the kilogram to fundamental
constants have been running worldwide [1]. Metrologists of
numerous national laboratories and universities have taken
an important step forward with their so-called Avogadro
experiment.

The presupposed final measuring uncertainty of about
2 × 10−8 to the application of the Avogadro constant in a new
definition of the mass unit is a challenge for the experimental
determination of all quantities involved: macroscopic density,
isotopic composition and unit cell volume of a silicon crystal.
A value of the Avogadro constant with a relative measurement
uncertainty of 3 × 10−7 has been obtained by using single
crystals of silicon with a natural isotopic composition [2].
For the final result all measured quantities have to be referred
to a common temperature, e.g. 20 ◦C, which needs a precise
knowledge of the coefficient of thermal expansion (CTE) of
silicon. But the overall uncertainty attained was close to a
practical limit.

To achieve a further reduction in the uncertainty of NA, an
improvement in the molar mass determination was demanded.
This could be realized by fabricating an isotopically pure

silicon single crystal of �99.99% enriched 28Si [3], which
means 29Si and 30Si abundances of the order of only 0.005%,
resulting in (very) small corrections to the molar mass value
of 28Si, known to a relative combined uncertainty of �10−9.
These corrections will be directly measured.

This concept has become feasible because of a source
of very highly enriched Si isotopes in Nizhny Novgorod.
The Institute of Chemistry of High-Purity Substances RAS
(IChHPS RAS) demonstrated its capability to produce 28Si
with the necessary enrichment. The second step was to scale
up the production facility of the Central Design Bureau of
Machine Building in Saint Petersburg to produce a sufficient
amount of enriched 28Si in order to grow a 5 kg single crystal,
which was produced in 2007 by the Institute for Crystal Growth
(IKZ) in Berlin with sufficient chemical and isotopic purity.
More recently, in Sydney, Australia, the Division of Industrial
Physics of the CSIRO has polished two almost perfect 1 kg
silicon spheres from the enriched material, which have been
under investigation worldwide in the international Avogadro
experiment since April 2008. With respect to the new material
all quantities related to the Avogadro constant have to be
remeasured with lower measurement uncertainty, and also the
CTE for the enriched material was subjected to inspection.
Two independent experimental approaches were therefore
performed: temperature-dependent length measurements of
the diameter of a macroscopic silicon sphere made of 28Si and
measurements of the temperature-dependent lattice parameter
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Figure 1. Experimental setup of the sphere interferometer.

changes in the microscopic domain. How much the value of
the CTE of 28Si differs from that of naturally composed silicon
is described in the following.

2. Length change measurements with the sphere
interferometer of PTB

2.1. Experimental setup

The interferometer for spheres (figure 1) has been developed
at PTB for the determination of the diameter of silicon spheres
for the Avogadro project [4]. The centre of the setup is defined
by the sphere under test resting on a three-point support, which
is tightly fixed to the solid stainless steel frame. The reference
faces of two Fizeau lenses, which are mounted opposite to
each other in the same frame, form a spherical etalon with
the sphere in the middle. This interferometer frame is located
in a vacuum chamber to eliminate influences of the refractive
index of air. The illuminating and imaging optics are installed
symmetrically on each side of the vacuum chamber.

The diameter of the sphere is calculated from the
difference of the diameter D of the empty etalon and
the distances between the reference faces and the surface of
the sphere d1 and d2 (figure 1). Therefore the sphere has to be
elevated out of the etalon, which is done by a lifting mechanism
below the three-point support. In the lifted position a hole in
the supporting cylinder allows the diameter D of the empty
etalon to be measured.

For absolute diameter determinations a precise control
of the temperature is essential [5]. This control is realized
by a thermostat that stabilizes the temperature of water
flowing through tubes that encase the vacuum chamber of
the interferometer. Due to thermal inertia of the whole
setup the residual fluctuation amounts to a few millikelvin.
In order to allow for the correction of remaining deviations
from the targeted measurement condition (generally 20 ◦C)
the temperature has to be measured in the domain of 1 mK.
Therefore, the temperature difference between the sphere
under test and a copper block inside the interferometer chamber
is measured by thermocouple pairs. One bead of each pair is in
resilient contact with the surface of the sphere near the three-
point support and the other is attached to the copper block. This

Figure 2. Topography segment of the sphere S8 inside the circular
field of view of 60◦ at the measurement position. The greyscale
spans approximately 24 nm.

copper block acts as a reference body in thermal contact with
the interferometer chamber. This temperature measurement is
traced back to the ITS-90 [6] by determining the temperature
of the copper block using a platinum resistance thermometer
calibrated in relation to thermometric fixed point cells.

2.2. Measurement procedure

For the measurement of the length of 28Si as a function of
the temperature two spheres made from a silicon single crystal
were used as the objects under test. Each sphere was orientated
to a selected position at which the diameter topography inside
the field of view of the optics features only a slight slope.
As an example, figure 2 displays the topography segment of
sphere S8 with the greyscale corresponding to about 24 nm
from peak to valley. At different stabilized temperatures with
a fluctuation of only a few millikelvin series of measurements
were performed with each series containing four to eleven
diameter measurements. The targeted temperatures were set
by the thermostat in an interval between 17.5 ◦C and 30.0 ◦C.
Since the temperature changes are large compared with the
thermal time constant of the interferometer, after each change
a period of some days had to elapse until an acceptable
equilibrium at the millikelvin level was reached again.

One single diameter measurement process provides 9856
measurement values given by the pixels of the camera. The
resulting interferograms were evaluated as described in [4]
so that every pixel corresponds to one value L, which is the
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Figure 3. Principle of the averaging process of one series of
measurements at a certain temperature. In the first step the
topographies are averaged pixelwise. The averaged topography is
then, in the second step, averaged over the field of view to yield one
mean length value for the diameter.

diameter of the sphere at the respective position inside the field
of view.

2.3. Evaluation of the CTE and its uncertainty

The CTE, named α, is defined as [7]

α = 1

L

dL

dT
, (1)

where L is a continuous length as a function of the kelvin
temperature. In order to generate such a continuous function
from length measured at given temperatures a least square
fitting procedure can be applied. For this purpose the length is
described as a function of the temperature by a polynomial of
degree n from which the CTE is calculated:

L(n) = a0 + a1(T − T0) + a2(T − T0)
2 + · · · + an(T − T0)

n,

α(n) = 1

L(n)

dL(n)

dT
, (2)

where T is the temperature in kelvin and T0 defines a certain
point within the temperature interval.

In principle, it is possible to apply the fitting to each
specific length value assigned to a certain pixel position
within the diameter topography. However, it is more
applicable to average the diameter topographies within the
entire field of view before the fitting is applied. In fact,
the variation of the length within a topography is surely less
than 50 nm. Accordingly, the error induced by the averaging
of the diameters within the topography can be estimated
to be 10−12 K−1 and is thus negligible. Furthermore, sets
of measurements performed at the same temperature were
averaged pixelwise to reduce noise. Then, as stated before,
they were averaged again over the field of view. The principle
of this process is shown schematically in figure 3.

Applying a number of temperatures leads to a data set
{t i , li}, where t i are the mean temperatures and li the mean of
the averaged lengths. Such a data set constitutes the basis for
the calculation of the CTE of 28Si.

An effective method of uncertainty evaluation is the
use of symbolic computation by MATHEMATICA® (Wolfram
Research) as described in [8]. In short, the measured data
points are replaced by free variables and, just in a final step, the
data are inserted into the symbolic expressions. This gives the
possibility to calculate derivatives of the resulting coefficients
in order to extract sensitivity coefficients as required by the
‘Guide to the Expression of Uncertainty in Measurement’
(GUM) [9]. The minimum of χ2 = ∑N

i=1 (li − L(n)(t i))
2,

Figure 4. Setup for the comparison of the lattice parameters of 28Si
and natSi crystals.

with N being the number of data points, is obtained from the
algebraic solution of the set of n+ 1 equations: (∂/∂ak)(χ

2) =
0, k = 0 . . . n, resulting in symbolic expressions for the
coefficients ak of the fitted polynomial. The uncertainties of
the ak are calculated according to

u(ak) =
√√√√ N∑

i=1

[(
∂ ak

∂li
(li)

)2

+

(
∂ ak

∂ti
u(ti)

)2
]
. (3)

Then the uncertainty of the CTE can be obtained from

u(α) =
√√√√ n∑

k=0

(
∂ α

∂ak

u(ak)

)2

. (4)

In a final step the measured data {t i , li} and their uncertainties
{u(t i), u(li)} are inserted so that numeric expressions for ak

and u(ak) and therewith for α and u(α) are returned. In this
approach it is useful to set T0 in equation (2) to the centre of
the overall temperature interval of interest.

The straightforward calculation of u(α) resulting in
equation (4) presumes that the length can be described as a
function of the temperature by a polynomial of certain degree
n. However, the functional relationship between the length
and the temperature for a given material is not known on the
nanometre scale. Therefore, the choice of the polynomial
degree in equation (2) is arbitrary and there is an unknown
deviation of the material intrinsic thermal expansion compared
with the CTE obtained. This deviation can by far exceed
u(α) obtained from equation (4) as demonstrated in [10].
Therefore, an additional uncertainty contribution due to the
arbitrariness of the fitted polynomial is considered via the
expression |α(n+1) − α(n)|.

3. Measurements of the lattice parameter at NIST

3.1. Experimental setup

The NIST lattice comparison spectrometer measures the
difference in lattice spacing of two crystal samples [11, 12].
Lattice spacing differences are inferred from the measured
Bragg angles differences. The comparator uses the Laue case
two-crystal geometry (figure 4) and has a translation slide that
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Table 1. Length values (diameters of the 28Si sphere) as a function of temperature.

Data set i Temperature t i /◦C u
(
t i

)
/◦C Averaged length li /mm u(li)/nm

1 17.588 0.001 93.721 6725 1.2
2 18.835 0.001 93.721 9686 1.0
3 19.978 0.001 93.722 2419 1.0
4 19.981 0.001 93.722 2425 0.9
5 19.997 0.001 93.722 2460 0.9
6 20.056 0.001 93.722 2601 1.0
7 21.174 0.001 93.722 5285 1.0
8 22.442 0.001 93.722 8335 1.2
9 26.044 0.001 93.723 7080 1.5

10 28.094 0.001 93.724 2109 1.5
11 29.698 0.001 93.724 6050 1.5

permits remote interchange of the crystal samples that are being
compared. The Bragg angle differences are measured with
a sensitive heterodyne interferometer. The first long crystal
and the second crystal samples have lamellas with nearly
equally thickness so that the recorded x-ray profiles exhibit
Pendellosung oscillations which contribute to a more accurate
determination of profile centres.

In the measurements reported here the difference in lattice
spacing between a natural silicon (natSi) crystal and a 28Si
crystal was measured as a function of temperature. The lattice
spacing difference as a function of temperature is a measure of
the difference between the thermal expansion coefficients of
natSi and 28Si as a function of temperature. Because only the
difference of the thermal expansion coefficients of natSi and
28Si is measured and because the spectrometer is located in
an environment where the temperature is not easily varied, the
contribution of these measurements to a precise determination
of the CTE of 28Si is limited. However, these measurements
do provide an important and independent confirmation of the
direct and more complete CTE measurements of 28Si described
in section 2 above.

3.2. Measurement procedure and evaluation

For the CTE measurements a natSi crystal from the WASO
04 boule and a 28Si crystal from the 28Si 5 kg single crystal
produced for the Avogadro project were mounted on the
translation slide. The coordinates of the natSi crystal within the
WASO 04 boule were: longitudinal 143 cm and radial near the
centre of the boule. The coordinates of the 28Si crystal within
the 5 kg 28Si boule were: longitudinal 17.4 cm to 17.9 cm and
radial near the surface of the boule. The set point for the room
temperature was at the nominal 20 ◦C which results in a stable
temperature of about 21.1 ◦C at the second crystal position
when the x-ray tubes have been continuously operating for
about 24 h. The lattice spacing differences between the natSi
crystal and the long first crystal and between the 28Si crystal
and the long first crystal were sequentially measured in three
data runs, each lasting about 24 h. By subtraction, the lattice
spacing difference between natSi and 28Si was obtained for
each of these runs and the results from the three runs were
averaged.

Then the set point of the room was raised to 23.1 ◦C
(maximum temperature allowed by the heating and air

Figure 5. Change of the mean average length l in relation to the
length at the reference temperature of 20 ◦C. The solid line is a
linear fit to the measurement data.

conditioning controls) and the room and spectrometer (with
x-ray tubes operating) stabilized after 6 days to about 24.2 ◦C
at the second crystal position. Lattice spacing differences were
again measured in five data runs covering 6 days. The results
were averaged.

The set point of the room was returned to 20 ◦C and
after about 5 days the temperature at the second crystal
position returned to 21.1 ◦C. Lattice spacing differences were
measured in two data runs over 2 days and the results were
averaged. Because the first and third sets were recorded at
almost the same temperature, these lattice spacing difference
measurements provide a check on the CTE at essentially only
two temperatures.

4. Results and discussion

4.1. Results of the measurements at PTB

Following the evaluation procedure described in section 2.3,
a polynomial fit according to equation (2) is applied to
the mean average length values which are presented in
table 1 including the temperature values and the corresponding
standard uncertainties. The uncertainties of the length values
for temperatures apart from 20 ◦C are slightly increased due
to the fact that the temperature stabilization works most
efficiently at 20 ◦C. In figure 5 the result of a fit of the degree
n = 1 is shown together with the measurement values. Since
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Figure 6. Deviation of the measurement data from the polynomial
fits up to the degree n = 3.

Figure 7. Results of the calculations of the CTE of 28Si based on the
polynomial fits of the degrees n = 2 (solid line) and n = 3 (dashed
line) as a function of temperature. The dark grey area indicates the
uncertainty of the case n = 2 and the light grey the uncertainty for
n = 3.

this plot does not reveal the residuals, in figure 6 the deviation
of the fitted polynomial from the measurement values is shown
for the polynomials up to the degree n = 3. The standard
deviation in the form

σ =
√∑N

i=0

(
li − L(n)(ϑi)

)2

N − (n + 1)

acts as a figure of merit of the fit and takes into account the
number of free parameters, which is n + 1 for a polynomial of
degree n. As can be seen, using a polynomial of degree larger
than n = 1 considerably reduces σ by an order of magnitude.
Hence, in the following, the linear fit is disregarded.

The results of both the calculation of α corresponding to
equation (2) and the uncertainty are plotted in figure 7 as a
function of temperature. As the two cases, n = 2 and n = 3,
coincide within the given temperature interval in consideration
of the uncertainty, the quadratic polynomial was chosen for
further evaluation.

When T0 in equation (2) is set to 293.15 K (20 ◦C),
a0 represents the length at 20 ◦C and the related coefficients

Figure 8. CTE α of 28Si as a function of the temperature (heavy
solid line). The dark grey area indicates the uncertainty for the case
of the quadratic polynomial and additionally taking into account the
difference from the cubic one. For comparison, the thin solid line is
a plot of the CTE of natSi.

can be converted according to

α0 = a1

a0
= 2.5530 × 10−6 K−1 ± 0.0012 × 10−6 K−1 and

α1 = a2

a0
= 4.32 × 10−9 K−2 ± 0.37 × 10−9 K−2, (5)

where the uncertainty values are based on the uncertainties of
the fit parameters given by equation (3).

The CTE of 28Si can then be expressed as

α28(t) = 1

L

d

dT
L(T )

= α0 + 2 α1 × (t − 20 ◦C)

1 + α0 × (t − 20 ◦C) + α1 × (t − 20 ◦C)2

≈ α0 + 2 α1 × (t − 20 ◦C), (6)

in which t is the Celsius temperature (t/◦C = T/K −
273.15). Therefore, α0 represents the value of α28(t) at
the temperature of 20 ◦C and the temperature dependence of
α28(t) is approximately given by α0 + 2 α1 × (t − 20 ◦C) (see
equation (6)). In addition to the curve of α28(t) shown in
figure 8 (heavy solid line), the overall standard uncertainty,
u(α28), is displayed as a grey belt. For comparison, the curve
of the CTE of natSi is plotted as a thin line. Considering
the measurement uncertainty the difference between the two
curves is of significance only in the central region of the
temperature interval. At 20 ◦C the difference corresponds
approximately to the uncertainty of α28, which is u(α28) =
3.0 × 10−9 K−1 at this temperature.

A difference between the CTEs of 28Si and natSi was
predicted theoretically in [13]. Figure 9 shows the difference
of the CTEs as a function of the temperature (dashed line)
together with the difference in the experimental results (solid
line). At 20 ◦C both lines agree within approximately 1.7 ×
10−9 K−1, which is well within the experimental uncertainty of
3.0×10−9 K−1. This is also the case in the overall temperature
range displayed.

4.2. Results of the measurements at NIST

The recorded x-ray profiles were fitted with theoretical
dynamical diffraction profiles to obtain the angular profile

420 Metrologia, 46 (2009) 416–422



The coefficient of thermal expansion of highly enriched 28Si

Table 2. Lattice spacing differences between natSi and 28Si as a function of temperature.

Data set Temperature t / ◦C u(t)/◦C (d28 − dnat) /dnat × 106 u((d28 − dnat)/dnat) × 106

1 21.131 0.026 1.9540 0.0049
2 24.205 0.118 1.9436 0.0056
3 21.147 0.002 1.9557 0.0044

Figure 9. Difference of the CTE of 28Si and natSi as a function of
the temperature. The dashed line represents the theoretical result
and the solid line is based on the experimental results.

positions. The detailed shapes of the recorded and theoretical
dynamical diffraction profiles are sensitive to the thicknesses
of the first and second crystal lamellas. In order to obtain
the best fits, slightly different theoretical profiles were used
for natSi and 28Si. The target thickness of the crystal lamellas
used on the NIST comparator is 0.455 mm and the inferred
difference in thickness between the natSi and 28Si crystals to
obtain the best fits is 0.010 mm. This small difference is within
the tolerance expected from the cutting and etching procedures
that are used.

The results of the lattice parameter difference measure-
ments are presented explicitly in table 2 and graphically in
figure 10 including uncertainties in both the lattice param-
eter difference and temperature measurements. The lattice
parameter difference uncertainty includes systematic contri-
butions from temperature (3.0 × 10−9), crystal alignment
(1.0 × 10−9) and precise location of the x-ray beams on the
crystals (3.0 × 10−9). The larger temperature uncertainty at
24.2 ◦C is likely due to the fact that the room temperature set
point was at its maximum value.

4.3. Comparison of the results

Since the concentration of vacancies is low in the crystals
used for the Avogadro project [14], a potential difference of
the CTE results on the macroscopic and microscopic scale is
neglected. Hence, in order to check the results of PTB and
NIST for consistency, the result for α28(t) from the optical
length measurements was used to calculate the curve of the
relative difference of the lattice parameters of natSi and 28Si as
a function of temperature.

First, the lattice parameters dnat(22.5 ◦C) =
192.015 5710 × 10−12 m [15] and d28(21.139 ◦C) =

Figure 10. Results of the lattice parameter measurements from
section 4.2 (diamond symbols) as a function of temperature. The
dashed line indicates the calculated relative difference of the lattice
parameters of natSi and 28Si based on the experimental result for the
CTE of 28Si presented in section 4.1. The two long error bars
indicate the uncertainty of the latter curve.

192.015 2742×10−12 m (calculated from the mean of the data
sets 1 and 3 in table 2) of natSi and 28Si, respectively, were
converted to the reference temperature of 20 ◦C:

dnat(20 ◦C)

= dnat(22.5 ◦C)

1 + α0,nat×(22.5 ◦C − 20 ◦C)+α1,nat×(22.5 ◦C − 20 ◦C)2
,

d28(20 ◦C)

= d28(21.139 ◦C)

1 + α0×(21.139 ◦C − 20 ◦C) + α1×(21.139 ◦C − 20 ◦C)2

(7)

with the parameters α0,nat = 2.5554 × 10−6 K−1 ± 0.0002 ×
10−6 K−1 and α1,nat = 4.58 × 10−9 K−2 ± 0.04 × 10−9 K−2

published in [16] and with α0 and α1 as given in equation (5).
The data from [16] are in agreement with those from former
measurements of the CTE of natSi [17, 18], but have to our
knowledge the smallest uncertainty.

Then, in the next step, the expressions

dnat(t) = dnat(20 ◦C) × (
1 + α0,nat × (t − 20 ◦C)

+ α1,nat × (t − 20 ◦C)2
)
,

d28(t) = d28(20 ◦C) × (
1 + α0 × (t − 20 ◦C)

+ α1 × (t − 20 ◦C)2
)

(8)

define the curve of the temperature dependence of the lattice
parameters of natSi and 28Si, respectively. With equations (8)
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one can calculate the behaviour of the relative difference of the
lattice parameters

d28(t) − dnat(t)

dnat(t)

dependent on the temperature in order to compare the resulting
values with the measurement results of NIST. In figure 10
both the calculated function (dashed line) and the data points
(diamond symbols) of the lattice parameter measurements are
plotted in the same coordinate system. The data coincide
within the given uncertainty range. This finding acts as a
validation of the result for the value of the CTE of 28Si.

5. Conclusion

For precise diameter measurements of the Avogadro project’s
spheres made of a 28Si crystal the knowledge of the thermal
expansion behaviour of 28Si is of fundamental importance.
In this paper the determination of the CTE of 28Si in a
temperature interval from 17.5 ◦C to 30.0 ◦C is described. The
results are compared with theoretical considerations and with
an independent measurement method, all being in agreement
within the measurement uncertainty. This fact provides
an important confirmation of the measured result for the
CTE of 28Si.

In the central region of the temperature interval
investigated in the experiments the CTE of 28Si differs
significantly from that of natSi. Even though the uncertainties
of the CTEs at 20 ◦C are approximately equal to the difference
in the CTEs at that temperature, the CTE as given by
equation (6) should be used for 28Si crystals instead of that
for natural silicon.

Disclaimer

The trade name MATHEMATICA is included to more
completely describe the procedures. Such identification does
not suggest endorsement nor indicate that this product is
necessarily best suited for this application.
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[1] Becker P, Bièvre P D, Fujii K, Glaeser M, Inglis B, Luebbig H
and Mana G 2007 Considerations on future redefinitions of
the kilogram, the mole and of other units Metrologia
44 1–14

[2] Fujii K et al 2005 Present state of the Avogadro constant
determination from silicon crystals with natural isotopic
compositions IEEE Trans. Instrum. Meas. 54 854–9

[3] Becker P et al 2006 Large-scale production of highly enriched
28Si for the precise determination of the Avogadro constant
Meas. Sci. Technol. 17 1854–60
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