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Abstract. Classical information can be carried by either a discrete signal or by a continuous signal. Quantum information can
also be carried by a discrete, finite-dimensional system, such as a two-level atom or an electron spin, or by continuous, infinite-
dimensional system, such as a harmonic oscillator. In Gottesman et al. [1] a qubit is encoded in the continuous position and
momentum degrees of freedom of an oscillator (Gottesman - Kitaev - Preskill or GKP qubit states). One likely realization of
GKP states is in the quadrature variables of traveling light waves. Quantum computation can be performed on GKP states using
relatively simple linear optical devices, squeezing, and homodyne detection. However, the initial GKP states are extremely
difficult to prepare. Here we propose the generation of an approximate GKP state by using superpositions of optical coherent
states (sometimes called “Schrödinger cat states”), linear optical devices, squeezing, and homodyne detection. We initially
consider two optical modes containing Schrödinger cat states. A displacement followed by a squeezing is applied to both
modes and then the two modes are sent into a beam splitter. The action of the beam splitter entangles the two modes. An
approximate GKP state is obtained when we perform a measurement of the p-quadrature in one of the beam splitter output
modes.
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Many quantum computation schemes propose encod-
ing qubits using natural two level systems such as spin
1/2 particles. Others exploit only two states of a larger
discrete Hilbert space such as the energy excitation levels
of an ion. An alternative method for encoding a qubit in
the continuous position and momentum degrees of free-
dom of an oscillator is proposed in Gottesman et al. [1].
One of the advantages of this proposed scheme is the
possibility to perform error correction to repair shifts on
the optical variables [2].

The ideal GKP qubit state with logical value of zero
has an x-quadrature wave function that is an infinite
series of delta function peaks occurring whenever x =
2
√

π s for all integers s. Because these states are un-
physical, GKP described approximate states whose x-
quadrature is a series of Gaussian peaks with width ∆
contained in a larger Gaussian envelope of width 1/k:
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where N is a normalization factor. We plot the x-
quadrature probability distribution in figure 1 for the
case ∆ = k = 1/4. To closely approximate the ideal GKP
states and avoid errors in quantum computations we de-
sire ∆ and k to be small, so there are many sharp Gaussian
peaks contained in a wide envelope.

The GKP states are extremely difficult to prepare.
In [1] GKP proposed preparing these states by coupling

an optical mode to an oscillating mirror. Travaglione and
Milburn [3] describe a method that prepares the qubit
states in the oscillatory motion of a trapped ion rather
than the photons in an optical mode. Pirandola et al.
[4] discusses the preparation of optical GKP states using
a two mode Kerr interaction followed by a homodyne
measurement of one of the modes. The same authors also
describe a fourth method for GKP state production in [5,
6]. No experiments have yet demonstrated preparation of
GKP states.

Here we propose the generation of an approximate
GKP state by using superpositions of optical coherent
states (“cat state”), linear optical devices, squeezing, and
homodyne detection. The basic recipe is first prepare two
cat states (each of which contains two Gaussian peaks
in its x-quadrature wave function), squeeze both cats (to
reduce the width of the Gaussian peaks), interfere them
at a beam splitter, then perform homodyne detection on
one of the beam splitter’s output ports. Depending on the
measurement result, we will find an approximate GKP
state (with three Gaussian peaks) in the beam splitter’s
other output port.

A superposition of coherent states can be written as:

|ψ (α)〉=
|−α〉+ |α〉√
2(1+ e−2α2)

(2)

where α is the amplitude of the coherent state. A
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FIGURE 1. Approximate GKP state x-quadrature probabil-
ity distribution for ∆ = k = 1/4.
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FIGURE 2. Left: Probability for measuring p2 = R as func-
tion of R. Right: Square of the wave function as a function of
x1 for the state of mode 1 at R = 0. In both cases α1 = α2 = 4,
ζ1 = ζ2 = ln4 and transmissivity η = 0.5.

Schrödinger cat state such as the one in equation (2)
can be created using several techniques [7], including a
scheme that sends traveling optical modes through a Kerr
medium [8]. In the x-quadrature basis, we can write the
cat state in equation (2) as:
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The initial state of the system has two modes, both of
which have cats. We may write the initial state as

A(x1,x2) = ψα1(x1)×ψα2(x2) (4)

This initial state must be displaced by α1 and −α2, in
modes 1 and 2, respectively. Mode 1 is then squeezed
by S(ζ1) and mode 2 by S(ζ2). The two modes are now
sent into a beam splitter with transmissivity η . Finally,
we want to measure mode 2 in the p basis, and for that
we do a Fourier transform on mode 2, project the state
of the system onto p2 = R, and then discard the second
mode.

We show our results in figure 2. At left, we plot the
probability for measuring a certain value R as a function
of R. The maximum value of this function is obtained for
R = 0. If we measure p2 = 0, we obtain a state with three

Gaussian peaks, figure 2 at right, whose widths are deter-
mined by the degree of squeezing applied to the initial cat
states and whose heights are proportional to the third row
of Pascal’s triangle (1,2,1). This is similar to the GKP
state in figure 1, but we would like to create states with
more peaks in the x-quadrature. This can be achieved by
using the above procedure iteratively. If we produce two
copies of the state, then they can be combined to create
a state with 4 peaks, whose heights are proportional to
the fourth row of Pascal’s triangle (1,3,3,1). As the num-
ber of iterations increases, we approach a wave function
of Gaussian peaks contained in a Gaussian envelope, as
originally proposed by GKP.

As described above, the success of the procedure re-
quires measuring p2 = 0 in the homodyne detection step.
In a future work we will investigate how the fidelity of
our GKP states depends on this measurement result. Also
we will investigate the possibility of using linear optical
operations to salvage cases in which p2 6= 0.

Although our scheme is built of apparently simple,
well understood linear optical operations, it will certainly
be very difficult to achieve in an experiment. We expect
the greatest difficulty will be matching the transverse and
longitudinal shapes of all of the optical modes especially
during the squeezing stage [9, 10].
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