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Eugenio Oñate1,∗,†, Riccardo Rossi1, Sergio R. Idelsohn1,§ and Kathryn M. Butler2

1International Center for Numerical Methods in Engineering (CIMNE), Technical University of Catalonia (UPC),

Gran Capitán s/n, 08034 Barcelona, Spain
2National Institute of Standards and Technology (NIST), Building and Fire Research Laboratory (BFRL),

100 Bureau Drive, Gaithersburg, MD 20899, U.S.A.

SUMMARY

A new computational procedure for analysis of the melting and flame spread of polymers under fire
conditions is presented. The method, termed particle finite element method (PFEM), combines concepts
from particle-based techniques with those of the standard finite element method (FEM). The key feature
of the PFEM is the use of an updated Lagrangian description to model the motion of nodes (particles) in
the thermoplastic material. Nodes are viewed as material points that can freely move and even separate
from the main analysis domain representing, for instance, the effect of melting and dripping of polymer
particles. A mesh connects the nodes defining the discretized domain where the governing equations
are solved as in the standard FEM. An incremental iterative scheme for the solution of the non-linear
transient-coupled thermal-flow problem, including loss of mass by gasification, is used. Examples of the
possibilities of the PFEM for the modeling and simulation of the melting and flame spread of polymers
under different fire conditions are described. Numerical results are compared with experimental data
provided by NIST. Published in 2009 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Thermoplastic polymer objects, including mattresses, upholstered furniture, and molded objects
such as electronic housings and automobile parts, respond to fire by melting and dripping onto the
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MELTING AND SPREAD OF POLYMERS IN FIRE WITH THE PFEM 1047

surface below. The flow of polymer material affects heat and mass transport within the object, and
the accumulating melt pool below the object extends the flaming zone and increases the overall
rate of heat release [1–3]. If the fire from the object and the pool fire interact, the intensity of the
fire is enhanced even further. The spread rate of the melt pool and its burning behavior (including
whether it is even able to sustain ignition) are affected by the flooring material as well as by the
properties of the melt.

Computer modeling and simulation of the melting, flow and flame spread of thermoplastics
are extremely complex involving fluid flow, heat transfer, material degradation, flame chemistry,
surface tension, and complex material properties [1]. In addition, the drastic changes in shape pose
a severe challenge to traditional modeling methods. Attempts to model melt flow of polymeric
material in fire using the volume of fluid (VOF) method have encountered difficulties with numerical
instabilities and excessive runtimes [4].

The particle finite element method (PFEM) [5–11] presented in this work is a powerful technique
for modeling and analysis of complex multidisciplinary problems in fluid and solid mechanics
involving coupled thermal effects, fragmentation and separation of fluid particles, and fluid–
structure interaction effects, among others. The PFEM combines Lagrangian particle-based tech-
niques with the advantages of the integral formulation of the finite element method (FEM) [12].
A key advantage of the Lagrangian formulation in the PFEM is the elimination of the convective
terms in the fluid flow and thermal equations, which favors the simplicity (and symmetry) of the
formulation, as well as computational efficiency.

In the PFEM, the particles represent the nodes of a finite element mesh. The particles can
move freely according to the velocity field, transporting their momentum and physical properties.
A robust and efficient remeshing algorithm connects the nodes into a finite element grid for solution
of the state variables in the new configuration. The PFEM has been used to solve a variety of free
surface, fluid–structure interaction, and multiphase problems, including breaking waves in harbors,
ship hydrodynamics, dam bursting, and metal casting, among many others [5, 6, 8–11].

This paper describes the key aspects of the PFEM for analysis of the melting flow and flame
spread of polymer objects including loss of mass by gasification. The underlying ideas of the
paper follow the original work of the authors in this field as presented in [13, 14]. The recent
developments of the PFEM described in this paper demonstrate its potential for solving complex
melting flow problems for 2D and 3D heated polymer objects accounting for frictional contact
and self-contact situations.

The paper is structured as follows. In the next section the basis of the PFEM is summarized.
The essential governing equations and an overview of the discretization procedure and the general
solution scheme are given. The potential of the PFEM for the simulation of the melt flow and
spread of thermoplastic objects in fire is shown in examples of its application for different heated
samples,including a rectangular slab, a triangular slab, polymer melt spreading over a surface, a
chair, and a candle. Numerical results for the rectangular slab and the spreading melt are compared
with experimental data obtained at NIST [4].

2. THE PFEM: AN OVERVIEW

2.1. Basic steps of the PFEM

In the PFEM the analysis domain is modeled with an updated Lagrangian formulation [6, 8, 11].
The analysis domain can include solid and fluid subdomains. As an example, we can model one or
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1048 E. OÑATE ET AL.

several thermoplastic objects and the surrounding air as forming part of the analysis domain. All
variables in the fluid and solid domains are assumed to be known in the current configuration at
time t . The new set of variables in both domains is sought in the next configuration at time t+�t .
The FEM is used to solve the continuum equations in both domains. Hence a mesh discretizing
these domains must be generated in order to solve the governing equations for both the fluid and
solid problems in the standard FEM fashion. To do this, the nodes discretizing the analysis domain
are treated as material particles whose motion is tracked during the transient solution. This is
useful to model the separation of particles from a solid domain, such as in the dripping of melt
particles from a thermoplastic object, and to follow their subsequent motion as individual particles
with a known density, an initial acceleration and velocity, and subject to gravity forces. Every
node is a material point and hence is characterized by the density of the polymer material. The
mass of a given domain is obtained by integrating the density at the different material points over
the domain.

In this paper, we will consider the analysis domain to be formed of polymer material only, that
is the surrounding hot air is not included as a part of the analysis domain. Melted drips of the
polymer material separating from the main body of the heated object will be treated as independent
analysis domains.

The way the PFEM solution process operates, for the problems, we are solving in this paper,
is schematically shown in Figure 1. The figure represents a polymer object hanging from a wall
and subjected to an incoming heat flux q acting at the lower part of the object.

The collection or cloud of nodes pertaining to the polymer analysis domain will be defined as
(C), the volume defining the thermoplastic analysis domain as (V ), and the mesh discretizing this
domain as (M).

A typical solution with the PFEM involves the following steps:

1. The starting point at each time step is the cloud of points in the polymer domain. For
instance, ◦C and nC are the clouds at the initial time and at time t= tn , respectively
(Figure 1).

2. Identify the boundaries defining the analysis domain nV . This is an essential step as some
boundaries, such as the free surface in the melting zone, may be severely distorted during
the solution process. Some nodes may even separate from the boundary. The Alpha-Shape
method [15] is used for the boundary definition. Note that the analysis domain can include
different subdomains formed by the main polymer object and the dripping and spread zones
(Figure 1).

3. Discretize the polymer analysis domain with a finite element mesh nM . In our work an
innovative mesh generation scheme based on the extended Delaunay tessellation is typically
used [7].

4. Solve the coupled Lagrangian equations of motion for the polymer domains. Compute the
relevant state variables at the next (updated) configuration for t+�t : velocities, strain rates,
strains, pressure, viscous stresses, and temperature in the polymer.

5. Move the mesh nodes to a new position n+1C , where n+1 denotes the time tn+�t , in terms
of the time increment size. For the fully Lagrangian application discussed here, the nodes
are moved according to the forces determined in step 4.

6. Go back to step 1 and repeat the solution process for the next time step.

It is important to note that the quality of the numerical solution depends on the discretiza-
tion chosen as in the standard FEM. Adaptive mesh refinement techniques can, therefore, be
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Figure 1. Polymer object subjected to a heat flux q applied to its lower boundary (arrows
indicate incoming heat flux). Sequence of steps to update the ‘cloud’ of nodes representing the

object in time using the PFEM.

used to refine the mesh at the onset of the solution for each of the steps in order to improve
the solution in zones where large motions of the fluid or the structure occur. Indeed, remeshing
implies the introduction of new nodes in the mesh for which the state variables must be assigned
via a projection method. The error introduced by the projection is corrected using an implicit
algorithm that yields a converged solution at the next configuration at time n+1. In the exam-
ples shown in this paper the number of nodes during the transient solution has been kept
constant.

Two distinct features of the PFEM are its capability to model the separation of material fragments
from the main body of the object and its ability to model frictional contact situations. The contact
between two solid interfaces is treated by introducing a layer of contact elements between the
two interacting domains. This layer is automatically created during the mesh generation step
by prescribing a minimum distance (hc) between the two interacting boundaries that controls
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1050 E. OÑATE ET AL.

the accuracy of the contact model. If the layer thickness is greater than the minimum distance
(hc), then the generated elements are given the properties of air and treated as standard fluid
elements, or else they are removed from the analysis domain (Figure 2). Otherwise, the elements
are treated as contact elements where a relationship between the tangential and normal forces
and the corresponding displacements (or velocities) is introduced so as to model frictional contact
effects. This technique also prevents nodes in a fluid domain from crossing over rigid boundaries
[8, 11].

The PFEM has proven to be very effective for modeling complex frictional contact conditions
between two or more interacting rigid or deformable bodies or between fluid and solid interfaces in
an extremely simple manner. Examples of applications of the PFEM can be found in [6–11, 13, 14].
2.2. Governing equations

It is assumed that the polymer melt flow is governed by the equations of an incompressible fluid
with a temperature-dependent viscosity. A quasi-rigid behavior of the polymer object at room
temperature is reproduced by setting the viscosity to a sufficiently high value so that the unheated
polymer moves a negligible distance over the duration of the problem. As temperature increases
in the thermoplastic object due to heat exposure, the viscosity decreases by several orders of
magnitude as a function of temperature. This induces the melt and flow of the particles in the
heated zone. The key equations to be solved in the polymer melt flow problem, written in the
Lagrangian frame of reference, are the following:
Momentum

�
dvi
dt

= ��ij
�x j

+bi in � (1)

Mass balance

�vi

�xi
=0 in � (2)

Heat transport

�c
dT

dt
= �

�xi

(
ki

�T
�xi

)
+Q in � (3)

In the previous equations vi is the velocity along the i th global (cartesian) axis, T is the
temperature, �, c, and ki are the density (assumed constant), the specific heat, and the conductivity
of the material along the i th coordinate direction, respectively, bi and Q are the body forces and the
heat source per unit volume, respectively, and �ij are the (Cauchy) stresses related to the velocities
by the standard constitutive equation (for an incompressible Newtonian fluid).

�ij = sij− p�ij (4a)

sij = 2�εij, εij= 1

2

(
�vi

�x j
+ �v j

�xi

)
(4b)

In Equations (4) sij are the deviatoric stresses, p is the pressure (assumed to be positive in
compression), εij is the rate of deformation, and � is the viscosity. In the following we will assume
ki =k and the viscosity � to be a known function of temperature, that is �=�(T ).
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Figure 2. Modeling of contact between the melting object and a fixed boundary.

In Equations (1)–(3) d�/dt means the total (material) derivative of any variable � with respect
to time.

Indexes in Equations (1)–(4) range from i, j =1,nd, where nd is the number of space dimensions
of the problem (i.e. nd=2 for 2D problems).
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1052 E. OÑATE ET AL.

Equations (1)–(4) are completed with the standard boundary conditions of prescribed velocities
and surface tractions in the mechanical problem and prescribed temperature and prescribed normal
heat flux in the thermal problem [6, 8–10]. For surfaces exposed to fire conditions, energy losses
due to radiation and convection must be taken into account, and the thermal boundary condition is

k
�T
�n

+ q̄n =0 (5a)

with

q̄n =qn+��(T 4−T 4
0 )+�c(T −T0) in �q (5b)

where �T /�n is the derivative of temperature within the object along the direction normal to the
Neumann boundary �q , qn is the outgoing heat flux per unit area along the normal to the boundary
surface, and the last two terms of Equations (5b) are the radiative and convective heat losses
respectively, where T0 is the reference temperature, � is the emissivity, � is the Stefan–Boltzmann
constant, and �c is the convection coefficient.

We note that Equations (1)–(4) are the standard ones for modeling the deformation of viscoplastic
materials using the so-called ‘flow approach’ [16, 17]. In our work we have limited the viscosity
to be a non-linear function of the temperature. Other dependencies of the viscosity with the shear
rate and the yield stress, typical of the non-Newtonian flow of solids, can be easily incorporated
in the model, thus broadening its applicability to other materials.

2.3. Discretization of the equations

A key problem in the numerical solution of Equations (1)–(4) is the satisfaction of the incompress-
ibility condition (Equation (2)). A number of procedures to solve this problem exist in the finite
element literature [11]. In our approach, we use a stabilized formulation based on the so-called
finite calculus procedure [18–20]. The essence of this method is the solution of a modified mass
balance equation that is written as

�vi

�xi
+

3∑
i=1

	
�

�xi

[
�p
�xi

+
i

]
=0 (6)

where 	 is a stabilization parameter given by Oñate [19]

	=
(
2�|v|
h

+ 8�

3h2

)−1

(7)

In the above, h is a characteristic length of each finite element (such as [A(e)]1/2 for 2D
elements), and |v| is the modulus of the velocity vector. Also in Equation (5a) 
i are auxiliary
pressure projection variables chosen so as to ensure that in the second term in Equation (6) 
i
can be interpreted as a weighted sum of the residuals of the momentum equations and therefore it
vanishes for the exact solution. The set of governing equations for the velocities, the pressure, and
the 
i variables is completed by adding the following constraint equation to the set of governing
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equations:

∫
V

	wi

(
�p
�xi

+
i

)
dV =0, i=1,nd (8)

where wi are arbitrary weighting functions (no sum in i in Equation (8)).
The rest of the integral equations are obtained by applying the standard Galerkin technique to

the governing equations (1), (2), and (3) and the appropriate boundary conditions for the numerical
and thermal problems [8, 10, 11].

We interpolate in the standard finite element fashion the set of problem variables. For 3D
problems these are the three velocities vi , the pressure p, the temperature T , and the three pressure
gradient projections 
i . In our work we use an equal-order linear interpolation for all variables
over meshes of 3-noded triangles (in 2D) and 4-noded tetrahedra (in 3D) [8, 11, 12]. The resulting
set of discretized equations has the following form:
Momentum

M ˙̄v+K(�)v̄−Gp̄= f (9)

Mass balance

GTv̄+Lp̄+Qp̄=0 (10)

Pressure gradient projections

M̂p̄+QTp̄=0 (11)

Heat transfer

C ˙̄T+HT̄=q (12)

In Equations (9)–(12) ¯(·) denotes nodal variables, ˙̄(·)=d/dt ¯(·). The different matrices and
vectors are given in the Appendix.

The solution in time of Equations (9)–(12) can be performed using any time integration
scheme typical of the updated Lagrangian FEM. A basic algorithm following the conceptual
process described in Section 2.1 is presented in Box 1 [6, 8–10, 12]. In Box 1 t+1āi+1 denotes
the values of the nodal variables ā at time t+�t and iteration i+1. Note that the position of
the analysis domain in the next equilibrium configuration at time t+�t is also an output of the
solution, as is typical in updated Lagrangian methods. We also recall the coupling of the flow
and thermal equations via the dependence of the viscosity � with the temperature. The conver-
gence of the solution process at each time step ensures the stability and consistency of the
formulation.
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Box 1. Flow chart of basic PFEM algorithm for the polymer domain.

1. LOOP OVER TIME STEPS, t=1, NTIME
Known values

t x̄, t v̄, t p̄, t p̄, t T̄, t�, t f, tq, tC, t V, t M

2. LOOP OVER NUMBER OF ITERATIONS, i=1, NITER

• Compute the nodal velocities by solving Equation (9)[
1

�t
M+K

]
t+1v̄i+1= t+1f+Gt+1p̄i + 1

�t
Mt v̄

• Compute nodal pressures from Equation (10)

Lt+1p̄i+1=−GTt+1v̄i+1−Qt+1p̄i

• Compute nodal pressure gradient projections from Equation (11)

t+1p̄i+1=−M̂−1
D [QT]t+1p̄i+1, M̂D =diag[M̂]

• Compute nodal temperatures from Equation (12)[
1

�t
C+H

]
t+1T̄i+1= t+1q+ 1

�t
Ct T̄

• Update position of analysis domain nodes:

t+1x̄i+1= txi + t+1vi+1�t

Define new ‘cloud’ of nodes t+1Ci+1

• Update viscosity values in terms of temperature

t+1�=�(t+1T̄i+1)

Check convergence for all variables → NO → Next iteration i→ i+1

↓YES

Next time step t→ t+1
• Identify new analysis domain boundary: t+1V
• Generate mesh: t+1M
Go to 1
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Within a time step (once the discretization is fixed) the mass and volume are conserved in a
variational sense. Upon remeshing, the volume is not conserved in a strict sense, but the Alpha-
Shape method provides such conservation in a statistical sense [6, 8].

3. ACCOUNTING FOR GASIFICATION EFFECTS

The effect of gasification can be introduced by adding a (non-linear) energy loss term in the energy
equation. This term represents the energy that migrates from the condensed phase object to the
gas due to the gasification of a part of the material during the heating process. The volumetric
gasification heat flux has the following form:

qgas=�H ε̄v (13)

where H is the enthalpy of vaporization,

ε̄v = f (T ) (14)

where f (T ) expresses the (generally non-linear) relation between the rate of volume variation due
to the temperature, ε̄v , and the temperature itself. In our work, the following Arrhenius function
is chosen, consistent with single-step, first-order thermal decomposition kinetics [4]

f (T )=−Ae−E/RT (15)

where A is the pre-exponential function, E is the activation energy, R is the universal gas constant,
and T is the absolute temperature expressed in Kelvin.

Once the temperature field is known at each iteration of a time step, the rate of volume variation
ε̄v is fixed at every point of the mesh. This allows defining a continuum distribution of the term
ε̄v over the whole polymer domain.

The computed mass loss rate has to be included in the problem to ensure that the volume
variation of the sample is correctly modeled. The approach is thus to solve the momentum and heat
transfer equations, prescribing as constraints the local rate of volume variation and the gasification
heat flux.

From a practical point of view, this simply implies adding the gasification heat flux as an
additional volumetric heat source term in vector q in the heat transfer equations (see Appendix)
and adding the volumetric deformation rate ε̄v into the stabilized mass balance equation (6) as

�vi

�xi
− ε̄v +

3∑
i=1

	i

[
�p
�xi

+
i

]
=0 (16)

The new discretized mass balance equation is

GTv̄+Lp̄+Qp̄= fg (17)

where fg with fgi =
∫
V e Ni ε̄v dV is the forcing term contributed by the gasification heat flux.
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1056 E. OÑATE ET AL.

An example of the effects of gasification will be shown in the following section.

4. NUMERICAL EXAMPLES

The examples were run in the PFIRE code in which the formulation described above has been
implemented using the Kratos software platform [21].

4.1. Validation of the gasification model

A simple computational test has been chosen to verify the accuracy of the gasification algorithm.
A 10cm×5cm×10cm horizontal slab is insulated along its sides and bottom by an impermeable

wall and is subjected to a heat flux of 30kW/m2 acting on the free boundary. The properties of
the material are shown in Table I. The analysis was carried out with several meshes of 3-noded
triangles.

The example is approximately equivalent to a 1D gasification model for which the possibility
exists of finding an accurate semi-analytical solution using Mathematica. The horizontal setup
guarantees that the only mass loss is induced by the gasification term as no flow is allowed to
leave the sample due to the presence of the impermeable boundaries [14].

The results of mass versus time for the different meshes considered are represented in Figure 3.
Results for the finer mesh show a sufficiently close agreement between the numerical

results and the analytical 1D solution, confirming the correctness of the gasification approach
used.

Some screenshots of the sample geometry at different times for the finer mesh are shown in
Figure 4.

Although the results are satisfactory, it is important to observe that a high mesh density is
required in the vicinity of the free surface to capture accurately the analytical solution. This is due
to the sharp gradient exhibited by the Arrhenius function in the proximity of the free surface, which
needs to be accurately resolved. Such situation calls for an adaptive mesh refinement algorithm.
This possibility will be implemented in forthcoming works.

4.2. Melting and flow of a rectangular slab

In the next example shown, the PFEM is used to simulate an experiment performed at NIST in
which a slab of polymeric material is mounted vertically and exposed to uniform radiant heating
on one face. Degradation of the polymer decreases its viscosity by several orders of magnitude
and produces fuel gases. Polymer melt is captured by a pan below the sample.

A schematic of the apparatus used in the experiments is shown in Figure 5. A rectangular
polymeric sample is mounted upright and exposed to uniform heating on one face from a radiant
cone heater placed on its side. The dimensions of the sample were 25 cm high by 2.5 cm thick in
early experiments and 10 cm high by 5 cm thick in later experiments, with a width of 10 cm in all
cases. The sample is insulated on its lateral and rear faces. The melt flows down the heated face of
the sample and drips onto a surface below. A load cell monitors the mass of polymer remaining in
the sample, and a laboratory balance measures the mass of polymer falling onto the catch surface.
Details of the experimental setup are given in previous publications [4, 13, 22].
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The first computational representation of this problem is a 2D rectangle with steady heat flux
applied to one side and adiabatic and no-slip conditions applied to the opposite side, top, and
bottom. The heated side is defined as a free surface, and is subject to radiative and convective
losses. Gasification is not considered in this first example. Material properties except for viscosity
are taken as constant, with values as given in Table I.

Table I. Parameter values for polypropylene type PP702N taken from [22]. The value of �=1.0 for
the emissivity has been assumed.

Parameter Symbol Value Units

Density � 900 kg/m3

Thermal conductivity k 0.25 W/mK
Specific heat c 2400 J/kgK
Reference temperature T0 298 K
Emissivity � 1.0 —
Convective heat transfer coefficient �c 8 W/m2K
Heat of vaporization H 8×105 J/kg
Pre-exponential function A 2.18×1012 s−1

Activation energy divided by universal E /R 24 400 K
gas constant

Stefan–Boltzmann constant � 5.67×10−8 W/m2K4

Figure 3. Gasification of a rectangular slab (10cm×5cm×10cm) analytical (1D model) and
PFEM results for different mesh sizes.
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Figure 4. Gasification of a heated slab. Initial geometry and mesh and slab shapes
at 2000, 4000, and 6000 s after onset of gasification.
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Box 2. Definition of the viscosity–temperature dependence for the polymer melt experiment of
Figure 5.

Tc: Temperature in degrees Celsius; T: Temperature in Kelvins

def f1(Tc):
return 10**(14.48-0.13858*Tc+5.5960e-4*Tc*Tc-7.8665e-7*Tc*Tc*Tc)

def f2(Tc):
return 10**(53.19 - 0.2542*Tc + 2.9879e-4*Tc*Tc)

def AuxFunction(T):

Tc = T - 273
if( Tc <= 25):

mu = 1e6
elif (Tc > 25 and Tc <= 200):

mu = 1e6*(200-Tc)/175 + f1(200)
elif(Tc > 200 and Tc <= 350):

mu = f1(Tc)
elif(Tc > 350 and Tc < 425 ):

mu = f2(Tc)
else:

mu = f2(425)

return mu

For polymer melts, viscosity is a function of both temperature and molecular weight distribution,
which changes as the polymer bonds break during heating. This model uses an approach that
incorporates this degradation into a simple description of viscosity as a function of temperature
alone [22]. Figure 5 shows three curves of viscosity v.s. temperature for the polypropylene type
PP702N, a low viscosity commercial injection molding resin formulation. The relationship used in
the model, as shown by the black line, connects the curve for the undegraded polymer to points A
and B extrapolated from the viscosity curve for each melt sample to the temperature at which the
sample was formed. The viscosity at room temperature is set to 106 Pa s to maintain rigidity, and
viscosity changes linearly between T =25◦C and T =200◦C. The result is an empirical viscosity–
temperature curve that implicitly accounts for molecular weight changes. The analytical definition
of this curve is given in Box 2.

An initial spacing of 2.0mm between nodes results in a finite element model of 1537 nodes and
2818 3-noded triangular elements for a 2D representation of the 10cm×5cm×10cm geometry,
while a spacing of 1.4mm results in 3098 nodes and 5832 elements. No nodes are added during
the course of the analysis in this and all the other examples shown in the paper.

The addition of a catch pan to capture the dripping polymer melt tests the ability of the PFEM
model to recover mass when a particle or set of particles reaches the catch surface. To match the
experiment, heat flux is only applied to free surfaces above the midpoint between the catch pan
and the base of the sample. However, every free surface is subject to radiative and convective heat
losses. The problem was studied for three heat flux levels of 20, 30, and 40kW/m2. The catch
pan is set to a temperature that is high enough to keep the melt fluid.
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Figure 5. Polymer melt experiment. Viscosity vs temperature for PP702N polypropylene in its initial
undegraded form and after exposure to 30kW/m2 and 40kW/m2 heat fluxes. The black curve follows

the extrapolation of viscosity to high temperatures.

Figure 6(a) shows four snapshots of the time evolution of the melt flow into the catch pan from
a 25cm×2.5cm sample. The finer grid spacing of 1.4mm is used, and the sample is exposed to
a heat flux of 20kW/m2. In this case, the heat flux is applied to all free surfaces.

A detail of the flow of the melt as it drips into the pan at two different times is shown
in Figure 6(b).

Figure 7 (left) shows the flow into the catch pan at time t=600s for a 10cm×2.5cm×10cm
sample. Directly below the base of the sample where the melt is dripping, the temperature of the
melt is higher. On the catch pan away from this point, the top of the melt has cooled below 325◦C,
the temperature of the catch pan surface in this case. The melt spreads to either side from the
point at which the dripping melt contacts the catch pan.

Figure 7 (right) shows the mass of the sample, the mass of the melt on the catch pan, and their
sum. After a heating time of about 170 s, the mass begins to be transferred from the sample to
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Figure 6. (a) Evolution of the melt flow into the catch pan at t=400, 550, 700, and 1000 s and (b) detail
of the flow of the melt as it drips into the pan at t=550 and 1000 s.

the catch pan. The total mass reflects a conservation of mass within ±5%. Note that because of
the way nodes eliminated and recreated at surfaces in the PFEM, the total mass at times exceeds
100% of the initial mass. Holes in the melt flow on the catch plate are occasionally generated by
the Alpha-Shape method. Both types of error can be reduced by increasing the number of particles
(nodes), as in the standard FEM.

Figure 8 compares the mass loss rate of the quasi-steady period with that obtained from exper-
iments at three levels of heat flux performed at NIST [22]. The mass loss rate follows the same
trend, although the values are about 25% higher than the experimental data. This is not a bad
result for a model that contains only melt flow and a steady heat flux with radiative and convective
losses. Note that a reduced thickness gives quicker results without affecting the mass loss rate.
Note that this solution includes only melt flow in response to heating at a steady heat flux with
radiative and convective losses.
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Figure 7. Melt flow into catch pan at t=600s. Mass vs time for polymer in
sample, in catch pan, and total mass.
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Figure 8. Comparison of PFEM results to experiments for mass loss rate as a
function of incident radiant flux.

4.3. Inclusion of gasification effects

The same problem was solved next including gasification effects. The parameters in the gasification
heat flux model chosen for the computations (Equations (13)–(15)) are given in Table I.

The general trend of the numerical results including gasification is not very different from the
results shown in Figures 6 and 7. Gasification effects, however, have an influence on the mass
loss rate.

Results for the mass loss rate including gasification are also plotted in Figure 8. The compu-
tational results fall within experimental error for the range of heat fluxes considered. This shows
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the importance of accounting for gasification effects in this type of problem. The decrease in
mass loss rate when gasification is added to flow demonstrates two competing effects: the loss of
additional mass as gas is released and the cooling caused by the endothermic process of polymer
decomposition.

Note that this model is not yet complete, since phenomena such as in-depth absorption, the
melting of the crystalline fraction of the polymer, and the temperature dependence of other material
properties are not yet included. However, these phenomena are not difficult to add to the model
and will be included in future development.

The solution of this melt flow problem took 2 CPU hours in a standard Pentium 4 PC.

Figure 9. Solution of a 3D polymer melt problem with the PFEM. Melt flow from a heated
prismatic sample at different times.
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Figure 10. Simulation of the melt flow of a heated triangular thermoplastic object.

4.4. 3D polymer melt flow

To test the ability of the PFEM to solve polymer melt flow problems in three dimensions, a 3D
heated sample was studied. The same boundary conditions are used as in the 2D problem illustrated
in Figure 5, but the initial dimensions of the sample are reduced to 10cm×10cm×2.5cm thick.
The initial discretization has 22 475 nodes and 97 600 4-noded tetrahedra, and the runtime for this
problem was slightly over 8 h in a Pentium 4 PC. The shape of the surface and temperature field
at different times after heating begins are shown in Figure 9.

Edge effects in the 3D model slow the rate of flow along the side walls, resulting in a thicker
sample there throughout the melt flow process. This has also been observed in the experiments.
Although the resolution for this problem is not fine enough to achieve high accuracy, the qualitative
agreement of the 3D model with 2D flow and the ability to carry out this problem in a reasonable
amount of time indicate that the PFEM can be used to model melt flow and spread of complex
3D polymer geometry.

4.5. Melting and flow of a triangular slab

Figure 10 shows results for the analysis of the melting of a triangular thermoplastic object with
a base of 5 cm and a height of 5cm. The solution is symmetrical about the x=0 axis. All free
surfaces are heated at a heat flux of 30kW/m2. The material properties for the polymer are the
same as for the previous 2D example. The potential of the PFEM for simulating the progressive
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Figure 11. Melt flow of a heated triangular object into a catch pan.

detachment and flow of the polymer particles from the object surface toward the underlying floor
is clearly demonstrated.

A similar but more complex analysis is shown in Figure 11. Here the problem is the simulation
of the melt flow of the same triangular thermoplastic object into a catch pan. The PFEM succeeds
in predicting in a very realistic manner the progressive melting and slip of the polymer particles

Published in 2009 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1046–1072
DOI: 10.1002/nme



1066 E. OÑATE ET AL.

Figure 12. Initial conditions for melt spread problem.

Figure 13. Thermoplastic object dripping into horizontal catch pan at t=600s.

along the vertical wall separating the triangular object and the catch pan. The analysis follows
until the whole object has fully melted and its mass is transferred to the catch pan. The total mass
was preserved with an accuracy of 0.5% in both these studies. Gasification, in-depth absorption,
and radiation were not taken into account in these examples.

4.6. Study of melt spread

In the 2D PFEM model of the melt spread experiment, the initial computational space is an
upright rectangle representing the thermoplastic object mounted above a rectangular catch plate, as
illustrated in Figure 12. The catch plate may be tilted with respect to the horizontal line, although
the catch plate always extends along the x-axis for ease of defining the distinction between the
melt belonging to the object and that in the melt pool.
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Figure 14. Spread of melt pool over horizontal catch plate.

Figure 15. Thermoplastic object dripping into tilted catch plate at t=600s

The left surface of the object and the top surface of the catch plate are designated as free
surfaces, which are subject to heat losses from radiation and convection. A steady heat flux is
applied only to the free surface of the object, whose drips are distinguished from the melt on the
catch plate by location above a specified height. All other faces in the problem, identified by dark
lines in Figure 12, obey no-slip conditions. These faces are adiabatic, except for the bottom surface
of the catch plate, which is maintained at a fixed heater temperature of 235◦C. The thermoplastic
object is initially at room temperature, and the linear temperature distribution within the catch
plate balances the heat losses from the upper surface. The temperature of the top surface, given
the heater temperature and the thermal conductivity of the catch plate, was found to agree with
the experimental value [23].

Thermophysical material properties for the polymer are the same as for the other examples in
this paper. The viscosity of the dripping object follows the curve for the undegraded polymer in
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Figure 16. Melting of a heated chair modeled as a 2D object. Note self-contact between
chair surfaces as melting evolves.

Figure 5. For the flow of melt on the catch plate, a straight line is fitted to the viscosity–temperature
relationship for this polymer after it has been degraded at a heat flux of 22kWm2. This relationship
is obtained by rheological measurements of the melt deposited on the catch plate, and is not
shown in Figure 5. The ceramic catch plate is assigned the thermal properties reported by the
manufacturer. Neither gasification, in-depth absorption, nor radiation were taken into account in
this study.

The spatial resolution of the finite element mesh is initially uniform throughout the thermoplastic
object. Results are reported for a grid with initial spacing of 1.0mm. For the catch plate, the mesh
size at the top surface must be small enough to catch the particles dripping from the object, but
the mesh can be coarser further in-depth since only thermal diffusion needs to be resolved.

Figure 13 shows a snapshot of flow onto a horizontal catch plate at time t=600s. Directly
below the base of the object where the polymer melt is dripping, the temperature of the melt
pool is around 340◦C. This equals the set temperature of the melt feeder used in the experiments.
The temperature of the melt pool cools as it flows away from the line of dripping and loses
heat to the catch plate and to the surroundings. At far enough distances, the surface temperature
of the melt pool drops below the temperature of the catch plate. If the plate was not heated,
the polymer would continue to cool, until its viscosity may be high enough to interfere with
the flow.

Figure 14 shows the evolution of the melt pool with time as the object continues to drip. The
spread rate is determined by a balance between the potential energy caused by the accumulation
of melt under the drip line, the kinetic energy of the flow and the viscous drag on the melt as it
moves over the catch plate.

In Figure 15 the catch plate has been tilted at an angle of 1.8◦. The slope of the plate adds to
the potential energy of the melt, and the spread rate increases in the downslope direction while
it decreases in the upstream direction where the accumulation of fluid must counter the potential
energy due to the slope. A study of the movement of the melt front with time for horizontal and
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Figure 17. Melting of a cylindrical candle with the PFEM.

tilted catch plates is reported in [23]. PFEM spread rates are within 10% of experimental results
when the continuing degradation over the surface of the heated catch plate is taken into account.

4.7. Melting of a thermoplastic chair

This example and the example that follows demonstrate the capabilities of the PFEM to model the
fire behavior of polymers of more complex shapes.

The example shown in Figure 16 is the simulation of the melt flow of a thermoplastic object
resembling a chair modeled as a 2D solid. The images show the progressive melting of the chair
exposed to a heat flux of 30kW/m2 on all surfaces except the base. The ability of the PFEM
to model self-contact situations as the shape of the chair changes with time due to melting is
demonstrated.

4.8. Melting of a candle

The last example shown in Figure 17 and 18 is the simulation of the melting of a cylindrical
candle. Heat flux is applied at the top surface of the candle at a rate of 30kW/m2. This induces
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Figure 18. Melting of candle. Detail of melted zone and pan surface at a certain instant.

the progressive melting and dripping of the candle particles along the cylindrical wall until they
eventually hit and spread over the underlying pan surface.

5. CONCLUDING REMARKS

The PFEM is a powerful technique to model the melting, flow and flame spread of thermoplastic
objects in fire situations. The method allows to track the motion of the polymer particles as they
melt, flow over the surface of the object, and fall toward and on the underlying floor. The PFEM
can also predict the spread of the flame in the floor for different ambient temperature conditions
and effect of gasification, in-depth absorption and radiation problems.

The simulation of the melting of a simplified chair of arbitrary shape and a candle has shown
the potential of the PFEM to model the drastic change of shape of objects as they melt, drip, and
spread, including self-contact situations.

Developments in progress include coupling the PFEM formulation with the surrounding hot air
and the external heat source, inclusion of elastic effects in the polymer material and increasing the
computational efficiency of the method.

APPENDIX

The matrices and vectors in Equations (9)–(12) for a 4-noded tetrahedron are:

Mij =
∫
V e

�NT
i N j dV, Kij=

∫
V e

BT
i DB j dV

Gij =
∫
V e

BT
i mN j dV, fi =

∫
V e

NT
i bdV +

∫
�e

NT
i td�
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Lij =
∫
V e

∇TNi	∇N j dV, ∇=
[

�
�x1

,
�

�x2
,

�
�x3

]T

Q= [Q1,Q2,Q3], [Qk]ij=
∫
V e

	
�Ni

�xk
N j dV, no sum in k

M̂=

⎛
⎜⎜⎝
M̂1 0 0

0 M̂2 0

0 0 M̂3

⎞
⎟⎟⎠ , M̂i =

∫
V e

	NTNdV, i=1,2,3

B= [B1,B2,B3,B4], Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Ni

�x
0 0

0
�Ni

�y
0

0 0
�Ni

�z
�Ni

�y
�Ni

�x
0

�Ni

�z
0

�Ni

�x

0
�Ni

�z
�Ni

�y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D=�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N= [N1,N2,N3,N4], Ni =Ni I3, I3 is the 3×3 unit matrix

Cij =
∫
V e

�cNi N j dV, Hij=
∫
V e

∇TNi [k]∇N j dV, m=[1,1,1,0,0,0]T

[k] =
⎡
⎢⎣
k1 0 0

0 k2 0

0 0 k3

⎤
⎥⎦ , qi =

∫
V e

Ni (Q+qgas)dV −
∫

�e
q

Ni q̄n d�

In above equations indexes i, j run from 1 to the number of element nodes (4 for a tetrahedron), qn
is the heat flow prescribed at the external boundary �, t is the surface traction vector t=[tx , ty, tz]T
and V e and �e are the element volume and the element boundary, respectively.
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5. Idelsohn SR, Oñate E, Del Pin F. A lagrangian meshless finite element method applied to fluid–structure
interaction problems. Computers and Structures 2003; 81:655–671.
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